An Introduction to State History Diagrams
Technical Report B-02-09

Dirk Draheim and Gerald Weber
Institute of Computer Science
Free University Berlin
email: {draheim,weber}@inf.fu-berlin.de

March 2002

Abstract

This paper provides two contributions to UML modeling, namely state history diagrams
and path expressions. Both concepts are directly motivated by a new analysis technique, form
oriented analysis, which is tailored for an important class of interactive applications including
web applications.

Contents

1 Introduction 3
2 State History Diagrams 3
2.1 Constraints on the Object Net 4
2.2 Semantics of State History Diagrams 4
2.3 State Output Constraints 5

3 Path Expressions 5
4 Form Oriented Analysis 7
4.1 Form Charts as SHDs 7

5 Semantics of Form Charts 8
5.1 ClientPage Visits L 8
5.2 Generation of ServerAction Visitso o o 8

6 Dialogue Constraint Language 8
6.1 Well-Formedness Rules 8
6.2 Semantics for Constraint Stereotypes Lo oL 9
6.2.1 Enabling Conditions e 9

6.2.2 Server Input Constraint 10

6.2.3 Flow Conditions 10

6.2.4 Client Output Constraints and Server OQutput Constraints 10

6.3 Path Expressionsin DCl o 10

1 Introduction

We introduce two contributions to modeling techniques which have applications in practical mod-
eling tasks. First we define state history diagrams, which are a semantic unification of class
diagrams and state transition diagrams. Secondly we introduce path expressions, an extension of
OCL [8] [4] which decisively improves the navigational features of OCL. Both contributions are
not only abstractly introduced, but shown to provide significant added value in the context of
form based applications.

Form based applications are an appropriate abstraction from an important class of interactive
systems including especially web applications. Form oriented analysis [1] [2] addresses the analysis
phase of form based applications, in contrast to other approaches focusing on OO design of web
application architectures [3]. Form based analysis makes use of both introduced concepts. Form
based analysis has a special type of SHD called form charts. Form charts are bipartite state
transition diagrams with an OCL extension DCL, which is mapped in this paper on OCL.

Form oriented analysis is also an intuitive application domain of the second innovation, OCL
path expressions. However, path expressions are a much more general concept. One of the advan-
tages of OCL as a declarative language is the dot notation for navigation e.g. Path expressions are
a necessary extension of this concept, which can be intuitively conceived as a powerful structural
wildcard notation for paths.

In section 2 we introduce state history diagrams. In section 3 we introduce path expressions. In
section 4 we recall form oriented analysis and form charts. In section 6 we introduce the dialogue
constraint language, DCL.

2 State History Diagrams

State transition diagrams, STDs, are the nonhierarchical version of state machines [4]. Our contri-
butions in this paper are presented for this subclass of state machines, but are fully generalizable
to state machines. However we introduce only the theory for STDs, since this part is sufficient for
the application domain we discuss, namely form charts.

STDs and core class diagrams can be modeled by a similar metamodel. The basic metaclasses
are nodes and connectors. In STDs the nodes are states and the connectors are directed transitions.
The motivation for state history diagrams, SHD, is the fact that in important applications of STDs
to every STD a structurally identical, canonical class diagram has to be considered. The object
net over this class diagram is the history of the visits to the states of the STD. The concept behind
SHDs is the approach that one needs only a single diagram which is STD and class diagram at the
same time. This must not be confused with the metamodeling approach, where a single diagram
type is sufficient.

We adopt the following rules for speaking about SHDs. The diagram can be addressed as SHD
or as STD or as class diagram, emphasizing the respective aspect. The nodes are called state
classes, the connectives are called transitions and they are associations, their instances are state
changes. A run of the state machine represented by the STD is called a process. The visit of a
state during a process over the STD is identified with an instance of the state class and is called a
visit. Hence a process is the object net over the SHD. Considering only the connections through
transitions, this object net is a path from the start visit of the process to the current visit. This
path is seen directed from the start visit. Each prefix of the path is a part of the whole current
path. This matches the semantics of the aggregation. Hence all transitions are aggregations. The
aggregation diamond points to the later state. In SHD however, the transitions are not drawn
with diamonds, but with single arrows. The associated state classes are called source and target.

We define a type hierarchy for classes and associations, as shown in Fig. 1. The basic class
is State and it has an aggregation to itself, called transition. All state classes shall be derived
from State and all transitions are indirectly derived from transition. These derivations do not
appear in the SHD. The ends of transition have roles source and target.

transition

{xor}

-7\ state history diagrams
State Lﬁ //,/ xar} \\‘
4 [T Pt ‘:—_,— /target K \

. . 1
<<s|ng|eton>> initialSource ! ' target 1
- (? ModelState [——— =

StartState 1 !
source
c1urrentTarget

<<singleton>>
CurrentEnd

form charts serverPage
ServerAction pageServer ClientPage

<

Figure 1: State history diagrams and form charts

2.1 Constraints on the Object Net

We now discuss the formalization of the constraints on the process as the object net over a SHD.
Except for the start visit every visit must have exactly one predecessor. There are two flavors
of formalization: first one could exempt the start visit from the general rule. The second way is
to use a technique similar to the sentinel technique in algorithms: an artificial predecessor to the
start node is introduced. This artificial visit is of a StartState class which cannot be revisited. We
choose this second method. Both StartState and ModelState are derived from State. In the
same way, the current visit has always an artificial successor from the class CurrentEnd. All States
created by the modeler in the SHD shall be indirectly derived from ModelState. The cardinalities
are expressed in the class diagram in Figure 1. Each time a new state A is visited, a new instance
of A must be created. This new visit gets the old current state as a predecessor and the current
end as a successor.

2.2 Semantics of State History Diagrams

The model states in SHDs can have attributes and also parts defined by aggregations. Visits
of model states are assumed to be deep immutable. Each state has an enterState() method,
which has to be called on each newly inserted visit. The new visit has to be seen as being the
conceptional parameter of its own enterState() method. The attribute list of the ModelState
replaces the parameter list, therefore we have assigned the name superparameter to this concept
of a single parameter. Each state has a makeASuperParam() method, which must be called
when the state is left and which constructs the superparameter. The superparameter is passed
to the enterState() method in sigma calculus style. This means that the enterState() method
is called on the superparameter without method parameters. State changes are performed by a
single method changeState() in the old state. The changeState() method of one state calls its own
makeASuperParam() and the enterState() of the next state. makeASuperParam() and enterState()
must not be called from any other method. changeState() is defined final in ModelState. In Java-
like pseudocode:

abstract class ModelState extends State {
/...
abstract ModelState makeASuperParam() ;

abstract void enterState();
final void changeState(){
ModelState aSuperParam = makeASuperParam();
aSuperParam.enterState() ;
}
}

The control logic which invokes changeState() of the current visit is not prescribed. However,
the only way to change the state is by calling changeState() of the current visit.

2.3 State Output Constraints

In SHDs for each enterState() method the possible predecessor are known from the diagram, and for
each changeState() method the possible successors are known. SHDs have a new constraint context
which is conceptually placed on the edge between two states. The constraint in this context is called
state output constraint. This new context corresponds to the fact that from the implementation of
changeState() it is known that the precondition of enterState() is immediately executed after the
postcondition of makeASuperParam(). The transition constraint could be placed as post condition
of makeASuperParam() or as precondition of enterState(). However, in each of the contexts the
actual type of the respective other type is not known. This is overcome in the newly introduced
transition context: there is no self keyword, but the rolenames of the transiotion ends can be
used, especially the rolenames source and target from the general transition.

3 Path Expressions

We introduce path expressions for collecting objects along the transitive closure of link paths,
called gathering in the following. The notation is needed to give semantics to the ”along” notation
of the dialogue constraint language which is used in writing enabling conditions during form
chart analysis. However path expression have a justification in their own right. We start with
an unrestricted wildcard notation for expressing path navigations. Consider the following OCL
expression.

A

*.B

For every arbitrary fixed object of the context type A the expression denotes the bag of objects of
target type B that are linked to the context type object by a path of links, i.e. not only directly
connected objects, but all reachable objects are gathered. Consider the example given in Fig. 2. It
shows the bag resulting from the application of the above expression to a concrete object net. An
object that is reachable along several link paths occurs more than once in the bag. Only link paths
in the object net which are acyclic are considered. This ensures finiteness of the result bag. With
respect to a possible generalization structure only such link paths are considered that are instances
of strictly interchanging class association paths in the class diagram. Therefore the object aC3:C
in the current example does not belong to the result set of the above expression, because following
the link path, from the viewpoint of the start object the connected object aB’ :B’ if of type B and
has no link to the object aC3:C. The above expression has the same meaning as the following OCL
expression.

A
self.v.y—union(self.w.y) —»union(self.x)

Recall from the latter expression that in OCL a multi-step navigation is a shorthand notation for
the repeated application of collect and therefore yields a bag.

V
A . B Hc D
AN z
B!
dup/icatel
| |x /,x/,o :,,
aA:A ‘1aB1:B HAac1:c ac1:.c| laci:c}” -

v ' ;

= aB2:B y aC2:C aC2:C] |aC2:C| [aC2:C

— aB'B Hacs:c result bag

Figure 2: Example class and object diagram

parent

Node

5 {xor}
-

AP

Leaf

1

InnerNode

1

parent

<<singleton>>

Root

The wildcard notation may be used straightforwardly for writing constraints on cyclic class
diagrams, too. The semantics remains the same. Consider the example in Fig. 3. The following
constraint yields for an object tree which is accessed through its root node, the set of its leafs.

Root
*.Leaf —asSet

This expression has only non-trivial counterparts in UML. A notation like path expressions is
clearly needed. Cyclic class diagrams are the backbone of proven object oriented patterns, both
from problem domains and solution domains, e.g. the structural reducts of both the composite

Figure 3: UML tree definition

design pattern and the organisation hierarchies analysis patterns [7] are trees.

We proceed with the general notation for path expressions, which is summarized in the following

expression:

ContextType

{oclConstraint,{package.associationName,..}}.GatheringType

The path expression consists of a structured wildcard and the type of the objects that are to be
gathered. The structured wildcard is a constraint on the link paths which may be followed to
gather objects. The wildcard consist of an OCL constraint and an association constraint which
is a set of association specifications. In a valid link path, every object must fulfill the given OCL
constraint. There are subtle typing aspects of this mechanism. The OCL constraint of a path
expression is not tight to a single context, it must be evaluated with respect to objects of possibly
different types. This is not a problem if all classes of the underlying class association path have
a common supertype and the OCL constraint is written in terms of this type. Otherwise the
expression must be made general enough by first questioning the type of the object.

Furthermore in a valid link path every link must adhere to the association constraint. This
constraint is a set of association specifications. A link in a valid link path must be an instance
of an association which is a generalization of one of the association specified in the association
constraint. The modeler specifies an association by giving its qualified name consisting of a package
name and the association name. If the model is not structured by packages, only an association
name suffices. Association names are unique in packages. If the association specification is is an
empty set, the link path is not constrained with respect to the links.

The structured wildcard is a powerful narrowing mechanism, e.g. to exclude object net cycles
from constraints involving path expressions. It is exploited in section to give semantics to path
expressions of dialogue constraint language used in form charts.

At least consider the first path expression in unrestricted wildcard notation in the preceeding
section. It is a shorthand notation for the following verbose path expression.

A
{true,(}.C

4 Form Oriented Analysis

The usefulness of SHDs and path expressions is exemplified in form oriented analysis. Form
oriented analysis is tailored for form based systems like today’s web interfaces. These systems have
a specific interaction style, named form based, submit/response. This style allows for abstraction
from finegrained user interaction on one page and allows for viewing user interaction as high level
requests. From an analysis point of view the user virtually submits fully typed requests in the
strong type system. In terms of the user interface community as laid down in the seminal Seeheim
model [6] form based systems can be seen as using an application independent user interface
management system, which is best exemplified by the standard web browser.

Using these insights, in form oriented analysis the interface is modeled by a visual artifact
called form chart beside an analysis class diagram. A form chart models the states of the user
interface. We consider in this paper only single page dialogues. In a further work we analyze multi
window dialogues. However, single window dialogues are a useful abstraction of web applications.

4.1 Form Charts as SHDs

The form chart is a bipartite state transition diagram which we model in this paper as a SHD.

We introduce two subclasses to State namely ServerAction and ClientPage. All states in
the form chart have to be derived from these classes. We derive aggregations pageServer and
serverPage between them from the transition aggregation in order to enforce the bipartiteness:
In the form chart, all transitions must be derived from either pageServer or serverPage. We
explain now the special properties of form charts as SHDs. In section 5 we explain the semantics
of form charts.

In form charts the ServerAction states are short lived and left automatically. Only the Client-
Page states wait for a user input.

Form charts have new constraint stereotypes. In these stereotypes certain extensiond of OCL
are allowed. We call the new constraint stereotypes together with these extension the dialogue
constraint language DCL. The important well-formedness rules concerning the bipartiteness of
form charts are already specified by the class diagram in Fig. 1.

5 Semantics of Form Charts

The semantics of form charts contains the following complexes: First the interpretation of Client-
Page visits, secondly the rules for creating the ServerAction visits and thirdly as presented in the
section 6 the semantics of the different constraint stereotypes.

5.1 ClientPage Visits

ClientPage visits are the superparameters computed by the preceding ServerAction makeASuper-
Param() and offered to enterState(). The ClientPage methods however have to be seen as provided
by a Browser. enterState() and makeASuperParam() of a ClientPage are therefore not individ-
ually modeled, but conceived as being interpreted by a generic browser concept. This concept
is called the abstract browser. The browser therefore is a parametric polymorphic concept. The
named ClientPage methods are not implemented, but interpreted by using type reflection on the
ClientPage class.

The ClientPage class contains the information which has to be shown to the user together with
interaction possibilities, links and forms. Since form charts are used in the analysis phase, the
ClientPage superparameter is assumed to be a pure content object. The ClientPage superparam-
eter is a hierarchical constant datatype constructed with aggregations. As explained earlier, in
form oriented analysis we consider an abstract browser as given. The analyst’s view of the browser
is a black box taking the content object and delivering a state change to a ServerAction later. The
presentation of the content to the user and the construction of the method calls to the allowed
server actions according to the SHD is the task of the abstract browser. The analyst assumes
that the page offers a form for each outgoing transition of the ClientPage. However in a current
ClientPage visit certain forms may be disabled. For this purpose the ClientPage is assumed to
have for each outgoing transition A a flag formAenabled which specifies whether the transition is
enabled. They are specified by the enabling conditions.

5.2 Generation of ServerAction Visits

ServerAction visits are the actual superparameters which are given in a state change to a Server-
Action. The objects are created whenever the user triggers a state change in the dialogue. The
ServerAction superparameter is constructed by the browser by using the ClientPage visit as a
page description. Since form charts are in contrast to concrete technologies like HTML a strong
typed concept, the type description of the serverAction has not to be contained in the ClientPage
visit, but the default parameters and the enabled flags have to be provided. The abstract browser
constructs the new ServerAction visit from the user input.

6 Dialogue Constraint Language

In this section we define the well-formedness rules and semantics of the different constraint stereo-
types introduced in DCL (Fig.4). Afterwards we explain special path expressions in DCL.

6.1 Well-Formedness Rules

Form charts introduce new kinds of constraints at the ends of transitions [2]. These new constraint
stereotypes together with their semantics form the dialogue constraint language. The semantics

Lon ONE)
. server Ond\\\o client
input constraint m“ow Cf input constraint
i o
. fiow condition

enabling client / server
A condition transition name OUtPut constraint M @ output constraint B
source name target name
server/page transition

client page page/server transition client page
pag server action

Figure 4: Form chart notational elements

of the new constraint stereotypes is given in section 5. In this section we give the formal rules
where these new constraints are allowed. These rules are well-formedness rules for form charts.
Formally, we define stereotypes for constraints, similar to the stereotypes

<< invariant >> , << precondition >> and << postcondition >> . These stereotypes are con-
straints at transition ends, and are called dialogue constraints. They are derived from the stereo-
type << dialogueconstraint >> . The dialogue constraints appear as new labels in DCL, a variant
of OCL described in section 6. The dialogue constraint stereotypes have the following metamodel
constraints:

enablingcondition

self.stereotype—instanceOf (sourceend) and
self.association—instance0f (pageserver)

clientoutputconstraint

self.stereotype—instance0f (targeteend) and
self.association—instance0f (pageserver)

serveroutputconstraint

self.stereotype—instanceOf (targeteend) and
self.association—instance0f (serverpage)

flowcondition
self.stereotype—instanceOf (sourceend) and
self.association—instanceOf (serverpage)

Nonformal metamodel constraints are: Only one constraint of the same stereotype is allowed
for the same context. The numbers of flow conditions must be ascending. For each ServerAction
there may be only one flow condition which is not numbered.

6.2 Semantics for Constraint Stereotypes
6.2.1 Enabling Conditions

The outgoing transitions in the class diagram for each ClientPage depict the statically allowed
page changes. Often a certain form shall be offered only if certain conditions hold, e.g. a bid in
an auction is possible only if the auction is still running. Since the page shown to the user is not
updated unless the user triggers a page change, the decision whether to show a form or not has
to be taken in the changeState() leading to the current ClientPage visit. The enabling condition
is mapped to a part of a precondition of enterState().

enterState()
pre: formAenabled = enablingConditionA

pre: formBenabled = enablingConditionB

Alternatively each enabling condition can be seen as a query that produces the boolean value
which is assigned to formXenabled. Typically, the same constraint has to be reevaluated after the
user interaction. In the example above, the auction may end while the user has the form on the
page. Then the same OCL expression is also part of another constraint stereotype, especially
<< serverinputconstraint >> or << flowcondition >> .

6.2.2 Server Input Constraint

These constraints appear only in incomplete models, or models labeled as TBD, to be defined
[5]. A server input constraint expresses that the ServerAction is assumed to work correctly only
if the server input constraint holds. In a late refinement step the server input constraint has to
be replaced by transitions from the ServerAction to error handlers. Context of the server input
constraint is the ServerAction visit. Server input constraints are not preconditions in a design by
contract view, since server input constraint violations are not exceptions, but known special cases.

6.2.3 Flow Conditions

Flow conditions are constraints on the outgoing transitions of a ServerAction. Context of flow
conditions is the ServerAction visit. The semantics of flow conditions can be given by mapping all
flow conditions of a state onto parts of a complex postcondition on this.makeASuperParam(). This
postcondition has an elsif structure. In the if or elsif conditions the flow condition appear
in the sequence of their numbering. In the then block after a flow condition, it is assured that a
visit of the targeted ClientPage is the new Current State. In the final then block the same check
is performed for the target of the serverPage transition without a flow condition.

6.2.4 Client Output Constraints and Server Output Constraints

Client output constraints and server output constraints are specializations of state output con-
straints, and live in the new transition context.

6.3 Path Expressions in DCI1

As an introduction to the general concept of path expressions in OCL we explain path expressions
in DCL. Path expressions allow to express a condition about the path which was taken up to
now by the dialogue within the state diagram. In form charts a test on whether the dialogue has
chosen a fixed single path can be tested with the new along OCL feature. The path is written
backwards in time. The along feature simply test whether the chosen object exists. More generally
constraints are important in which it is tested whether the path has certain properties as long as
he remained in a subdialogue. Hence the path has to be restricted to a subdialogue. The concept
of form chart features is viable to this approach. Form chart features must not be mistaken for
OCL features. The word feature is derived in the context of form charts from the requirements
engineering community.

Path expressions that are restricted to paths allowed in a feature are written in DCL by the
feature name in square brackets. Formally this concept is a shorthand. DCL path expressions
are mapped to general path expressions as introduced in Section 3. For this purpose, form chart
features are not just diagrams, but come along with a class definition. For ech feature diagram,
a modelState with the name of the diagram is created with a transition to itself, again with the
feature name. All modelStates in the feature as well as the transitions shown in the feature are
implicitly derived from these two elements. This is made explicit in Fig. 5.

10

S1

form chart
decomposition

semantic as
state history diagram

N D
boolean linkAenabled f——<
enterState()- -,
J \
l sub :
Sub | pre: linkAenabled = ({ocllsKindOf(Sub),{sub}}.A — exists())\l
Figure 5: Semantics of path expressions in DCL

11

References

[1] Draheim, D., Weber, G.: An Introduction to Form Storyboarding. Technical Report
B-02-06. Institute of Computer Science, Free University Berlin, March 2002.

[2] Draheim, D., Weber, G.: Form Charts and Dialogue Constraints. Technical Report B-
02-08. Institute of Computer Science, Free University Berlin, March 2002.

[3] J. Conallen, ”Modeling Web Application Architectures with UML”, Communications of
the ACM 42(10), 1999, pp.63-70.

[4] Object Management Group, ”OMG Unified Modeling Language Specification”, version
1.4, September 2001.

[5] IEEE Std 830-1993, ” Recommended Practice for Software Requirements Specifications”,
Software Engineering Standards Committee of the IEEE Computer Society, New York,
1993.

[6] G. E. Pfaff, ”User Interface Management Systems”, Springer, Berlin, 1985.
[7] Martin Fowler, ” Analysis Patterns: Reusable Object Models”, Addison-Wesley, 1997
[8] J. Warmer, A. Kleppe, ”The Object Constraint Language”, Addison Wesley, 1999

12

