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Abstract. We present efficient algorithms for the on-line g-adic covering of
the unit interval by sequences of segments. The basic method guarantees the
covering provided the total length of segments in a sequence is at least 142- % —

q—lg. Other algorithms improve this estimate for ¢ > 6. The unit d-dimensional
cube can be on-line covered by arbitrary sequence of cubes of the total volume
at least 29 + g + g 274,

We say that a sequence Q1, Qa,. .. of subsets of Euclidean space E? permits a covering
of a set C' C E? if there exist rigid motions 71, 72, ... such that C is contained in the
union of sets 7 Q1, 72Q2, . ... Many questions appear about efficient covering algorithms.
In the on-line version of this problem, at the beginning we are given the first set Q1
but then we learn every succeeding set (Q; from the sequence only after the preceding
set (Q;_1 is definitely used for the covering. The reader can find more information about
on-line covering algorithms in the survey articles [1] and [7]. We prove that arbitrary
sequence of cubes of the total volume at least 2% + g + g .27% is able to cover on-line
the unit d-dimensional cube. This is very close to the best non-on-line estimate 2¢ — 1
(see [2]).

The closed interval with end-points  and y, where < y, is denoted by [z, y]. The
symbol (x,y) means the corresponding open interval.

Recall the on-line g-adic covering problem (see [6]). Let ¢ > 2 be an integer. Find
an efficient algorithm for the on-line covering of the interval [0, 1] by a sequence of closed
segments S; of lengths d;, where §; € {¢7,¢72,...}, and where every segment 7;5; is of
the form [c;d;, (¢; + 1)d;] with ¢; € {0,...,6; ' — 1} for i =1,2,....

We present an algorithm which is a far going modification of the algorithm from
[3]. We improve the assumption about the total length of a sequence of segments which
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permits the covering from a little less than 1+ 3 - % to a little less than 1 + 2 - %. Next
we propose a more sophisticated algorithm which lessens the above estimate to a little

over 1 + g . é. We also show how to decrease the factor g ~ 1.667 arbitrarily close to

%(1 ++/5) ~ 1.618. A natural questions is about more efficient algorithms. It would
be nice to manage with sequences of total length 1 + %. Another question is about a
non-trivial lower estimate. The only known such an estimate is % =1+ % . % for g = 2
(see [4]).

At every moment of the covering process we take into account the greatest number
b € [0,1] such that the whole interval [0,b] is covered. We call b the current bottom.
When a segment S, say of length ¢—", is given to us, we find the greatest integer a such
that ag™" < b. If the interval [(a +h — 1)¢~",(a + h)q~ "], where h € {1,2,...}, is a
subset of [0, 1], then we call it the h-th interval. We put S on the first not totally covered
h-th interval of length ¢—" selected in the following order: the (¢ 4+ 1)-th interval, then
the g-th interval and so on up to the 2-nd interval, next the (¢ + 2)-nd interval and the
successive intervals up to the 2¢g-th interval, and finally the 1-st interval. We end the
covering process when the whole interval [0, 1] is covered.

It is natural to call this algorithm the (¢ + 1,...,2,9 + 2,...,2q, 1)-algorithm. In
particular, for ¢ = 2 we get the (3,2, 4, 1)-algorithm which tries to put every segment by
checking successively the 3-rd, the 2-nd, the 4-th and the 1-st interval of length 27".

For the convenience of the reader, who possibly will compare the considerations, the
proof of Theorem 1 is organized similarly as the proof of Theorem 1 from [3]. We use
analogical notation like this in [3]. In particular, we have three analogical lemmas. Here
is a lemma similar to Lemma 1 in [3]. Also the proof is similar, so we omit it.

LEMMA 1. Let p < 1 be a positive multiple of ¢g—". Assume that the interval [0, p]
is not completely covered yet by the (¢+1,...,2,q+2,...,2q,1)-algorithm. For j > 0
denote by v; the number of segments of length ¢~ put to the right of p. Assume

that vo > q—1,...,vy > q — 1 for some ¢ > 0. Then there is at most one number
z € {0,...,l} such that a segment of length q—*~% used for the covering contains p. In
such a case we have v; < q—1 for each j € {0,...,2 — 1}, we have ¢ < v, <2¢—1, we

have ¢ — 1 < v; < 2q — 2 for every j > z, and the interval [p,p + ¢~ '] is completely
covered.

For every integer ¢ > 1, we denote by b; the position of the current bottom immedi-
ately after putting the first ¢ — 1 segments from our sequence. Moreover, let by = 0.

LEMMA 2. Assume that we apply the (¢+1,...,2,q+2,...,2q,1)-algorithm and that
b; < bjy1 < 1. Let Ab = b;11 — b; and let Al be the total length of those among the first
i placed segments which have non-empty intersection with (b;, b;+1). Then

Al < (1+$+qi2>Ab.
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Proof. Let w mean the smallest positive integer such that a segment of length ¢=" has
been used for the covering of the interval (b;, b;y1). Of course,

g <Ab<2q-q7".
We have Ab = \gg™", where \g € {2,...,2¢} or
Ab = )\oq_w + )\kq_w_k + ...+ )\mq—w—m7

where A\g € {1,...,2¢}, 1 <k <mand Ag,..., A\, € {0,...,¢g—1} with A\, > 1, A\, > 1.

w

Clearly, if Ap > 2, then b;+; is a multiple of ¢=". By the last segment we mean the
segment, such that after putting it, the whole interval (b;, b;1+1) is covered. Denote by
¢~ the length of the last segment put on (b;,b;11) and by p; the number of segments
of length ¢=“~7, which are different from the last segment and which are used for the

covering of the interval (b;, bj+1). We have 0 < p; < 2¢. Of course,

oo
A=+ 3 g,
j=0

In Cases 2 and 3 we will consider the smallest multiple p of ¢=" such that the
interval [0, p] is not totally covered after putting all segments besides the last segment.
Observe that the last segment is put such that p becomes its right end-point. Since

Mg VTR g™ < g7 TR all segments (besides the last segment) of lengths

—w—k+1 w

between ¢ and ¢~ used for the covering of (b;, b;11) are put to the right of p.

Figures 1-7 below show some extremal situations in the considered cases and sub-
cases. We present the order in which the segments are put on the interval [b;, b;1+1] by
showing them level by level. A lover level means that a segment is put later. I order to
fix attention, we always take ¢ = 3. The figures show only segments of length at least
q~“~2 since shorter segments cannot be well drawn here. For clear presentation of the
worst situation to the right of p, in Figures 4-7 we have 0 < p — b; < ¢~“~2 despite in

w

general 0 < p—0b; < q¢7 ™.

Case 1, when Ab=s-q~" fors € {2,...,2q}. We will show that Al < (1 + é)Ab

holds true in Case 1. This inequality is stronger than the inequality announced in the

formulation of Lemma 2. Observe that b; and b;; are multiples of ¢=".

Subcase 1.1, when s = 2q. We have Al < ¢~ + (2¢ — 1)g™% + (2¢ — 2)qg~ ¥~ +

(20 —2)g7" 2+ ... <207+ (20— 2) 72 1077 = (20— 2) ;5207 + 207" =

(2¢+2)g~" = (1 + %)Ab. In this evaluation we consider at most 2g — 2 segments of each
—w—1 ,—w-—2

of the lengths ¢ ,q , ..., despite it may happen that we put 2q — 1 segments of
a specific length ¢=*~¢, where ¢ € {1,2,...}. In such a case we have at least one less
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—w—c+1

(than in the above evaluation) segment of length ¢ and thus the estimate still

holds true.
-W
bl bl + g b| +1
=
|:':':|

Fig. 1. A sequence of maximum total length in Subcase 1.1.

Subcase 1.2, when s € {q+1,...,2q — 1}. This time the last segment has length at
most ¢~“~1. We have Al < ¢7t + (31— Dg™ +(2¢—2) 372 07 <qg (s -
D¢+ (2¢-2);5¢" " = (s + %)q_w <(s+9)av <1+ %)Ab. Providing this

calculation we take into account a similar remark about the coefficients 2¢q — 2 like in the
preceding subcase.

+1

Fig. 2. A sequence of maximum total length in Subcase 1.2.

Subcase 1.3, when s € {2,...,q}. The situation of this subcase appears when a

W are placed without causing an immediate increase of the

few segments of length ¢~
current bottom, and later the current bottom grows close to those segments thanks to
placing sufficiently many shorter segments. Again the last segment has length at most
g~ %~! but less segments of length ¢=“~! can be put to the left of b; + ¢~. We obtain
Al < gt +(s=1)g "+ (=) T +(2¢-2) 272 ) 2q 7 < g s g7 =g+
(2q — 2)(1%191_“’_2 = (s+ %)q_“’ <(s+2)g" <(1+ %)Ab. And again we have in mind
a similar remark about the coefficients 2q — 2 like in Subcase 1.1.

+1

Fig. 3. A sequence of maximum total length in Subcase 1.3.
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Case 2, when q-q~" < Ab < 2q-q~" and when Ab is not a multiple of ¢g=". Of
course, ¢ < A\g < 2¢— 1 and pg > q— 1.

Subcase 2.1, when py > q—1,...,ux—1 > q— 1. Assume first that there is z €
{1,...,k—1} such that a placed segment of length ¢~ ~# different from the last segment,
contains p. Lemma 1 implies that the sum of length of segments (different from the last
segment) of lengths between ¢~*~¥+1 and ¢~ put on (b;, b;41) is at most (Ao —1)g~% +
(20-2) Y20 a7 + 20— D+ (- DX a7 = o+ g — g R
(we take z = 1 in Fig. 4). We applied Lemma 1 since segments of length at most
g~ ~k+1 are placed to the right of p. It may also happen that puy = ¢ and that the
interval [p,p + ¢~"] is covered by a segment of length ¢~ put ”a long time before” the
current bottom has arrived up to our present b; (thus [p + ¢~ %,p + 2¢~ "] is covered
later by a segment of length ¢=* than [p,p + ¢~"]). Then the total length is at most

Aog™" + (g —1)g~~ L.

hp p+q™ b1
— — | |

Fig. 4. A sequence of maximum total length in the first part of Subcase 2.1.

Now assume that p is not in the segments of lengths ¢=%~1,... ¢~ ~*+! different

from the last segment used for the covering. The sum of the lengths of the considered

segments is at most Aog~™" + (¢ — 1) z;";ﬂ’:ll ¢ =N+ 1)gv — gkt

ey

+1

b p p+g*

=
::

Fig. 5. A sequence of maximum total length in the second part of Subcase 2.1.

We obtain that always the sum of lengths of the segments which are different from
the last segment put on (b, b;y1), and whose lengths are between ¢~*~**+1 and ¢=v, is
at most

(o +1)g™" — g7 (1)
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Now we estimate the total length of segments of length at most ¢~%~* different
from the last segment put on (b;,b;11). The total length of those segments is less
than S Nmw + ¢ — a7 + A + ¢ = 2)g7 ™ + 35 (20 — 2)g70 =

+ —j +m—1 _ - -
> ik Ni—wd (g =1) X a T+ (g—2)g7 T+ (20-2) 3252, gy @75 which
is less than

w+m

ST Njmwa T gL (2)
j=w+k

In the above calculation we see components (A; + ¢ — 1)g~7 despite sometimes up to
2q — 1 segments of length ¢~/ can be put on (b, b;41) during the covering process. But
then the estimate (2) holds true as well. Just if between A; 4+ ¢ and 2¢ — 1 segments of
a specific length ¢=7, where j € {w +k +1,...,w +m — 1}, are used for the covering,
then one less segment of length ¢~/ can be put there because of lack of space. In such
a case the total length is even smaller than (2). The reason is that in the calculation we
add here up to ¢ — 1 segments of length ¢=7 and that we subtract one segment of length
g+,

From (1) and (2) we conclude that

w+m

Al<gt+ Mo+ D™+ > Aowg™
j=w+k

If \g < 2¢ —1, then t > w + 1. Thus Al < ()\0+1+%) —w+zzﬂ+$rk jmwq ™’
This and ¢ < Ao imply that Al < (1 + = + )Ab

If Ao = 2¢ — 1, then Al < (2¢ + 1) —w + S Ni—wd ™ < (14 £+ ) Ab.

Subcase 2.2, when at least one of the numbers i1, ..., pgx—1 s smaller than q — 1.
Let y denote the smallest number from {1,...,k — 1} such that pu, < ¢ — 1. The present

evaluation differs from this in Subcase 2.1 only by a different proof of (1). Now, the

w—k+1 w

total length of segments of lengths between ¢~ and ¢~" used for the covering of
the interval (b, biy1) is at most Aog™® + (¢ — 1) WY1 g=7 4+ (¢ — 2)g~¥~¥ + (2¢ —

j=w+1 9
2) Z;U+1j+;+1q T+ 2¢—1)qg v+ (¢g—1) Z;”+£+zl+1q J, where z is defined at the
beginning of Case 2.1 (in Fig. 6 we take y = 1 and z = 2). Instead of the last three
w+k—2

components we may also have (2¢—2) > "1 ¢~ T4+(2¢q—1)g~*~k+1, The components
Mg "+ (g —1) Zwﬂ’_lq_j stand for the worst possible case and in the remaining

j=w+1
cases we take an expression of the form (Ag — 1)¢~% + (2¢ — 2) E;”+£+11 a7+ (2q —
g ¥ "+ (¢g—1) Z;”;g;iH q~7. In all the variants, the total length of segments is at

most (Ag + 1)g~% — g~ w—k+1,



hp p+q” 1

ey

Fig. 6. A sequence of maximum total length in Subcase 2.2.

Case 3, when ¢~ < Ab < q-q~" and when Ab is not a multiple of ¢—*. Similarly
like in Subcase 1.3, the situation is a result of placing a number of segments of length ¢=
with later growing of the current bottom close to those earlier put segments of length
q

segment cannot be of length ¢=*, thisis ¢ > w + 1. We have

~%, Of course, \g < ¢ — 1. From the description of our method we see that the last

w+m
1 1 .
(Lo 4 ) A 2 Dog™ - dog ™71+ 20g ™2 30 Ajwa ™. (3)
j=w+k

w

Subcase 3.1, when the interval [p,p+q~"] is not covered by a segment of length q~
Since at least one segment of length ¢~ is put on [by, b;1+1], we have Ay > 2.

We evaluate the sum of lengths of the segments put on (b;, b;11) whose lengths are

—w—k+1 w

between ¢ and ¢~" like in Case 2, but now one less segment of length ¢~ and

—w—1

one more segments of length ¢ should be taken into account (of course, A\g > ¢ in

Case 2 and now Ay < ¢). Thus this sum is not greater than
1 —w —w—k+1
(Ao +-)a™" —q : (4)
q
Now (4) substitutes (1) from Case 2 and the value of (2) remains unchanged. Considering
the sum of (4), (2) and of the length ¢~* of the last segment we obtain
w+m .
AL<qg + X0+ > Nowa ™ +q7 (5)
j=w+k

Since the last segment is of length at most ¢~%~!, from (3), (5) and from )y > 2 we
obtain Al < (1+ % + &5)Ab.

hp p+q™ b1
ﬁ=F1%= |
.

Fig. 7. A sequence of maximum total length in Subcase 3.1.
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Subcase 3.2, when [p,p+ q~"] is covered by a segment of length ¢—". We show that

w+m
AL<q P+ 200"+ > Nowg? +q 7k (6)
j=w+k

If b1 = p+ Aog™ ", we show (6) analogically like (5). Remember that (5) is the
sum of (2), (4) and of ¢~*. The difference is that now we can put at most Ay segments
of length ¢=*~%. This lessens (2) by (q — 1)g~*~% = g=w=F+1 _ g=v=F and thus leads
to (6).

If biy1 # p+ Aog™ ™, we have A\g = 1 and Ay € {1,...,q — 1}. Moreover, b;11 =
p+q Y +ug "t where u € {1,...,A1}. So the only difference is that u segments of
length ¢~ ~! are put to the right of p + ¢~*~! instead of to the left of p. Consequently,
(6) also holds in this special situation.

From (3) and (6) we see that if A\g > 2 or if £ > 2, then Al < (1+ % + q—g)Ab.

It remains to consider the situation when A\g = 1 and £ = 1. Observe that ¢t > w+ 2.
Thus Al < g% =2 4+ ¢~ + 3™ Nj_wq ™7 + ¢ =1, Thanks to (3) we obtain Al <

j=w-+k
(1 + 1 + L)Ab = =
q ' ¢ )

LEMMA 3. Consider the (¢+1,...,2,q+2,...,2q, 1)-algorithm. Let Ab = b; 11 — b;,
where b; 1 = 1. Let w be the integer for which ¢ < Ab < ¢~**1. The total length Al
of those among the first i — 1 segments which have non-empty intersection with (b;,1) is
less than Ab+ q~"v.

Proof. We consider two cases.

Case 1, when Ab=s-q~" for s € {2,...,q}. We obtain Al < (s —1)¢™" + (2¢ —
2)> e 07 S (=1 + (20— 2) g = (s + 1)g7” < Ab+ ¢, We take
into account a remark about the coefficients 2¢ — 2 as in Case 1 of the proof of Lemma 2.

Case 2, when Ab is not a multiple of ¢=. We have Ab = \og~ % + Apg~ V"% +
coeF AT ™, where A\g € {1,...,¢— 1}, Ay > 0 and A, > 0. We provide a similar
consideration like at the beginning of Case 3 in the proof of Lemma 2. The difference is
that this time we can put a segment of length ¢~ on the interval [p, p + ¢—"] provided
one less segment of length ¢~*~! has been put there. Also we do not count the last
segment whose length is denoted by ¢~ in (5). In analogy to (5), we obtain Al <
Ao+ 1)g™ + 30 Aj—wa ™. Thus Al < Ab+ g~ .

THEOREM 1. Let g > 2 be an integer. Every sequence of segments whose lengths are

2 ...} and whose total length is at least

1+2 L
qg ¢

from the set {q~1,q~

8



permits on-line covering of the interval [0, 1] by the (¢+1,...,2,q+2,...,2q,1)-algorithm.

Proof. 1t is sufficient to show that if a sequence of segments of lengths from the set

{a=tq?
of the segments in the sequence is less than 1 + % — q%. Observe that all segments from

,...} does not cover the interval [0, 1] by the algorithm, then the total length

such a sequence are used during the covering process.

Case 1, when b; = 0 during the whole covering process. We apply Lemma 3 with
Ab = 1 and w = 1. We conclude that the total length of segments put during the
covering process is less than 1 + %. This is less than 1 + % — qig for every ¢ > 2.

Case 2, when lim;_,,, b; = 1. From Lemma 2 we see that the total length of segments
used for the covering which have non-empty intersection with [0, b;] is less than (1 + é +
q%)bi. Thus the total length of used segments is less than 1 + é + q—12 which is less than

2 1

Case 3, when 0 < b < 1, where b’ is either lim; o, b;, or b = b; and b;11 = 1.
Consider the smallest integer w for which ¢~ < 1—b'. From Lemmas 2 and 3 we see that
the total length of segments used in the covering process is less than (1+ é + q—12)b’ +(1-
V)+g ™ = 1+(5+ )b +q7" <1+ (g + ) (1—¢7 ) +q7" = 14+ 5 +(1—g—5)a ™.

q2
Thusitlessthanl+é+q—12+(1— —%)q—1:1+§_1. -

1 1

a q q?

PROPOSITION. Let g > 2 be an integer. Assume that an on-line g-adic covering of
the interval [0, 1] is provided by the (¢ +1,...,2,q 4+ 2,...,2q,1)-algorithm up to the
total covering of this interval. Then the total length of the used segments is less than

3 1
1+ - =
qg ¢

Proof. Assume that b; < 1 and b;41 = 1. Let w be smallest integer w such that ¢~ <
1—b;. Of course, the segment which finally makes the whole interval [0, 1] totally covered
has length at most ¢g~!. This observation and Lemmas 2 and 3 imply that the total length
of segments used in the covering process is less than (1 + % + q%)b’ +(1=b)+qg ¥ +q L.
This number is smaller than 1 + g - q—lg (see the calculation in Case 3 of the proof of

Theorem 1). n

If no segment is put yet on a g-adic interval A up to a moment of a covering process,
we call A empty at this moment (despite possibly it end-points are covered). If all points
of A are covered, we call A totally covered at this moment. If A is not empty and not
totally covered, we call it partially covered at this moment.
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LEMMA 4. Assume that a process of the covering of the interval [0,1] by segments
according to the (¢+1,...,2,q+ 2,...,2q, 1)-algorithm is not finished yet and that the
current bottom has arrived at least to a point (h—1)q~', where h € {2,...,q—1}. Then

during the covering process there is a moment at which (i) exactly h — 1 or h from the

-1 2

q-adic intervals of length ¢~ are totally covered by segments of length at most ¢—= and

1

no g-adic interval of length q~" is partially covered, or there is a moment at which (ii)

exactly h — 1 from the g-adic intervals of length q—*

2

are totally covered by segments of

1

length at most ¢—* and one or two g-adic intervals of length ¢—* are partially covered (if

two, then the second is covered only by segments of length q—2).

Proof. We look at the first moment (if any) before the end of the covering process, when

the current bottom attains a value b at least (h — 1)g~!.

In order to fix our attention, we start from taking into consideration a covering
process during which only segments of length at most ¢—2
First assume that (h —1)g~! < b < hg™!. Of course, the interval [(h — 1)g~ 1, hg™?]

is not totally covered before the current bottom attains b. Thus from the description

are given to us.

of the (¢+1,...,2,g+2,...,2q,1)-algorithm we conclude that no segment of length at
most g2 is put to the right of hg~! (if the current bottom is below (h — 1)g~!, then a
segment can be placed to the right of hg~! only if the interval [(h—1)g~1, hg™!] is totally
covered). We conclude that if b < hq™!, then the first h — 1 from the g-adic intervals

~1 are totally covered, the interval [(h — 1)¢~1, hg™!] is empty or partially

1

of length ¢
covered, and the remaining g-adic intervals of length ¢—' are empty. We have (i), or we
have (ii) with one partially covered interval of length ¢=*. Of course, if b = hg~?!, then

(i) holds true.

Now assume that b > hg~!. As a result of placing one segment, the current bottom
changes from a value b* < (h — 1)g~! to b > hq~!. According to the description of our
algorithm, this is possible only if the interval [(h — 1)g~1, hg~!] is totally covered. Thus,
at the moment when the current bottom is at b*, we have exactly h—1 intervals of length
q~! totally covered (by segments of length at most ¢~2) and two such intervals partially

covered. The second interval is covered only by segments of length ¢—2.

fulfilled.

If also segments of length ¢~* are given to us, they are put successively from the

right to the left on the interval [0,1]. It is clear that if they are put to the right of
2

Hence (ii) is

1

(h+1)g~1, they do not influence on placing segments of lengths at most ¢—2 considered
earlier. Observe that if a segment of length ¢! is put on the interval [hg™t, (h + 1)g!]
before the current bottom arrives to b, then the current bottom has no chance to attain
(h — 1)q~! before the end of the covering process and thus this situation cannot happen

in our lemma. m
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Here is the two-stage (¢+1,...,2,q+2,...,2q,1)-algorithm. Let h € {2,...,q—1}.
In the first stage of the covering process we apply the (¢ +1,...,2,q + 2,...,2q,1)-
algorithm. If we reach the first moment described in Lemma 4, we pass immediately to

the second stage. At the beginning of the second stage, applying the (¢ + 1,...,2,q¢ +

2

2,...,2q, 1)-algorithm, we put all segments of length at most ¢~ only on the first not

1

totally covered g-adic interval of length ¢~ considered now as the only interval for

covering by segments of length at most ¢~2. When this interval becomes totally covered,

by the (¢+1,...,2,q+2,...,2q,1)-algorithm we put all segments of length at most g2

1

on the next not totally covered g-adic interval of length ¢~ considered now as the only

interval for our covering process. We proceed analogically taking succeeding intervals of

1 1

length ¢7*. If in meantime we obtain segments of length ¢~*, we put them on g¢-adic

intervals of length ¢—! starting from [(¢ — 1)¢—!,1] and then proceeding one by one to
the left.

Observe that the idea of the improvement in this algorithm is in avoiding the situa-
tion which may happen, if the original (¢+1,...,2,¢+2,...,2q,1)-algorithm is applied,

when a segment of length ¢!

1

is put on an ”almost totally covered” g-adic interval of

and when simultaneously not many empty g-adic intervals of length ¢—! are

length ¢~
covered by segments of length ¢—! during the covering process. The price payed for the
introduced improvement is a weaker effectiveness in the second stage of our algorithm
(just Proposition is applied instead of Lemma 2). A calculation shows that h = (%q]

optimizes the choice of the moment at which we decide to pass to the second stage.

THEOREM 2. Let g > 3 be an integer. Every sequence of segments whose lengths are

2

from the set {qg~',q72,...} and whose total length is at least

5 1

142 by ®
3 3 ¢

=

permits an on-line covering of the interval [0,1] by the two-stage (¢ + 1,...,2,q +
2,...,2q,1)-algorithm with h = (%q]

Proof. Since ¢ > 3, the requirement 2 < h < g — 1 of Lemma 4 and of the description of
our algorithm is fulfilled. We present h = (%‘ﬂ in the form %q provided ¢ = 3¢, where ¢
is a positive integer, in the form h = %q + % for ¢ = 3c + 1, and in the form %q + % for
q=3c+ 2.

Case 1, when the current bottom is below (h — 1)qg~! always before the end of the
covering process. We will show that each sequence of segments of the total length at
least

(7)



permits the covering of the interval [0, 1]. Assume the opposite. Then there is a sequence
of segments of the total length at least (7) which does not cover [0, 1] by our algorithm.
Let b’ denote the supremum of the values different from 1 accepted by the current bottom
during the covering process. From Lemma 2 we conclude that the total length of segments
which have non-empty intersection with the interval (0,8") is less than (1 4 = + )b’

From Lemma 3 we see that the total length of segments (different from the segment
finishing the process) which have non-empty intersection with the interval (b',1) is less
than 1 — b + ¢~ !. Providing an evaluation like in Case 3 of the proof of Theorem 1
and taking into account the inequality b’ < % we see that the total length of segments
in our sequence is smaller than (7). This contradiction confirms that every sequence of
segments of the total length at least (7) permits the covering of the interval [0, 1] in Case
1. Substituting h = 2qin (7), we obtain the estimate 1 + 5. l +2. 1 Analogically, for
h=2 q+ we obtain 1+§ l+ +— 3,andforh— q+ we obtam 1+ = 5 ?—kg q—

Case 2, when the current bottom attains at least (h — 1)g™! before the end of the
covering process. According to Lemma 4 and to the description of the algorithm, when
we pass to the second stage, either (i) or (ii) holds true. We will assume (ii) with
the exception of one sentence at the end of Subcase 2.1 where we take care about the
possibility (i).

Assume that we have two partially covered intervals (if we have only one, then we

1

can take the first empty ¢-adic interval of length ¢7" in the part of the second partially

covered interval). Denote by T the more right of our two partially covered intervals.

Subcase 2.1, when T is not covered by a segment of length ¢~ during the covering
process. We apply Lemma 2. We also apply Proposition and Theorem 1 but for the ¢
times lessened image of the original situation. They are just applied for the process of
the covering of separate g-adic intervals of length ¢~! by g-adic segments of length at
most ¢~2. This explains the factors é in the following estimate: (1 + % i L )u + (q —

h)(1 + % - qi)a +(1 + 2 — —)— Consequently, the interval [0, 1] can be covered if the
total length of segments in a sequence is at least
h, 1 hy 1 hy 1 1
1+(3-2-=) =+ (1+=-) - 5+(-2+-) - 5 - . (8)

q° q q° q q° q

Substituting h = 2¢ in (8), we obtain the estimate 1+ 2 - é +5.5-%. 4
forh:%q+%,wegettheest1mate1+§-E+F—i—%-i and for A
0btain1+g-%+%-%—§-q—ﬂ—%-ql4.

If (i) holds true with h totally covered intervals, then in place of (8) we have (1 +

(q—h—l)(1+§—i)l+(1+2—i)— which is smaller by 2 - ——i—%

+)%
2 q3
tha (8), and in the case of h—1 totally covered 1ntervals in (i) we get even a smaller

q% Similarly,

%q+%we

value.
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Subcase 2.2, when T is covered by a segment of length ¢—' during the covering

process. From Lemma 4, from the description of the two-stage algorithm and from the

1

assumption of our subcase we see that before a segment of length ¢=* covers T', only

2 are put on T'. Of course, the number of them is at most ¢— 1. We

segments of length ¢~
take this into account when provide a calculation similar to that from Subcase 1.1. We
conclude that the interval [0, 1] can be covered if the total length of segments in a sequence
: 1, 1\h—1 1 1 2 1\1 _ A\.1,h 1 _ 1 _ 1
is at least (1+ ¢+ ) "ot +(g—1) z+(g—h) s +(1+2—5) s = 1+(1+2) s+ o~ — -
Since this value is smaller than (7), we can disregard Subcase 2.2 in further calculations.
Comparing (7) and (8) (or rather the three pairs of corresponding particular esti-

mates resulting from (7) and (8)) we see that if ¢ has the form 3¢, then we obtain the

estimate £ 1 5 1 41 1
14—+ - = - —. 9
33 3 E ¢ ®)
Analogically, if ¢ has the form 3¢ + 1, we get the estimate
5 1 1 1
1+--—4+ =5+ — 10
+3 q+q2+q3 (10)
and if ¢ has the form 3¢ + 2, we obtain
51 4 1 2 1
1+ —4+--=+=--—. 11
+3 q+3 q2+3 q3 (11)
Of course, (9)-(11) are smallerthanl%—g-é—k%-q%foreveryqz?). n

The formulas (9)-(11) are more precise than the simple formula in Theorem 2. They
give a better estimate than Theorem 1 for g > 6.

We can improve the two-stage (¢+1,...,2,q+2,...,2q, 1)-algorithm by applying the

two-stage approach additionally for the covering of some g¢-adic intervals of length ¢—2.

We apply our two-stage algorithm with an h = hy € {2,...,q¢—1}. The difference is that

2

in the second stage, for the covering of the g-adic intervals of length ¢== we apply the

g-times lessened variant of the two-stage (¢ + 1,...,2,q+ 2,...,2q,1)-algorithm (with

hy = [%q}) instead of the (¢ +1,...,2,9+ 2,...,2q, 1)-algorithm. Just an interval of

—2 1

length ¢=< is ¢ times shorter than the interval of length ¢~

3

, and we are putting g times
shorter segments (now they are of lengths ¢=2,¢73, ... instead of lengths ¢~ 1,¢72,...).
Let us estimate the effectiveness of the above algorithm in analogical way as in the
proof of Theorem 2. Again we have two cases.
The first case is when the current bottom is below (h — 1)g~! always before the
end of the covering process. We repeat the considerations of Case 1 of Theorem 2. We
conclude that every sequence of segments of the total length at least (7) permits the

covering.

13



The second case is when the current bottom attains at least (h — 1)g~! before the
end of the covering process. Again we apply Lemma 4 and we consider two subcases
analogical to Subcases 2.1 and 2.2 of the proof of Theorem 2. In the first subcase we
apply Lemma 2, Theorem 2 and a modification of Proposition related to Theorem 2
(instead to Theorem 1). We provide an analogical calculation like in Subcase 2.1 of the
proof of Theorem 2: (14+ 1+ 5)2 2+ (g—h)(1+5- s+ 5 -5+ (1 +3-c+35 2t
We see that the interval [0, 1] can be covered if the total length of segments in a sequence

is at least
7 2 h 1 2 1

=tz —) 5+5 = 12
33qq(33q)q23q3 (12)
In the second subcase we again obtain a slightly better estimate than in the first case.

For every specific ¢ > 3 we are looking for the best choice of hy in the part of A
such that the greater from the values (7) and (12) is minimized. When we substitute
hy = [2q] for h in (7) and in (12), then they both become at most 1 + %2 - é plus a

constant times q—12. We see that the component g : % taking place in Theorem 2 is now

lessened to % s
q
We can still improve the algorithm by applying the two-stage approach to shorter
g-adic intervals. We omit here a calculation which shows that a proper application of this

method lessens the crucial component to % . % when also g-adic intervals of length ¢—3

are covered in two stages, and to &2 - é when additionally the g-adic intervals of length

55
q~* are covered in two stages. An evaluation shows that the sequence 2, g, %, g—‘ll, %, ...
of our factors tends to % (1 + /5) = 1.61803. . ..

Each on-line 2%adic algorithm which permits a covering of the unit interval by
sequences of segments of total length [ induces an on-line algorithm which permits a
covering of the unit cube of E? by every sequence of cubes of total volume 2¢]. This
construction invented in [5] is described in Part 3 of [3] and in Part 6.2 of [7]. Thus

Theorem 2 implies the following result.

THEOREM 3. Every sequence of cubes of sides at most 1 in E? whose total volume
is at least = s
24 4 = 4 =074
+ 3 + 5

permits an on-line covering of the unit cube of E¢.

We see that the assumption about the total volume of a sequence of cubes is improved
from almost 2¢ + 3 in [3] to slightly over 2¢ + 2. Despite of the on-line restriction, this
value is very close to the best possible non-on-line estimate 2% —1 (see [2]). In particular,
the estimate for the three dimensional case is lessened from 10.657 ... to 9.875.... But

14



if we apply (11), which is more precise for ¢ = 8 than the estimate in the formulation of
Theorem 2, we get a further improvement up to 9.843.. ..
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