Point Pattern Matching

Gerald Weber
December 21, 1995

Abstract

We consider the problem of finding (possibly transformed) copies of a point
pattern B in a larger point set A. We discuss several special versions of this
problem.

Contents

Introduction and Motivation

1

One-Dimensional PPM under Even Isometries
One-Dimensional PPM under Even Similarity Mappings
Two-Dimensional PPM under Translations or Scaled Rotations
Two-Dimensional PPM under Even Isometries

Two-Dimensional PPM under Even Similarity Mappings

10

11

11

13

Introduction and Motivation

Pattern matching in pictures is an important problem in automatic image process-
ing. The problem is to find fast algorithms which decide whether a certain pat-
tern appears in a given image. We study here a certain class of pattern matching
probems, called point pattern matching problems: We consider the pattern as well
as the picture to be finite point sets in a certain fixed dimension. Our aim is to
find algorithms with small asymptotic running time in the number of picture points
n and pattern points m in the algebraic model of computation. We can state the
problem in the following generic form:

Given a set A of n points and a set B of m points, 2 < m < n, find all
geometric transformations in a given class C that map B into A. A is
called the picture, B the pattern.

In this report we discuss the problem from a theoretical point of view. We can
consider instances of the problem for points in an arbitrary dimension d and for
different possible classes of allowed geometric transformations, typically subclasses
of the class of similarity mappings (translations, stretch-rotations with fixed cen-
ter, isometries, arbitrary similarity mappings). We will abbreviate “Point Pattern
Matching” in the following with “PPM”.

We give algorithms for some instances of this problem, which are connected
with applications or simply of theoretical interest. It will turn out that even for
one-dimensonal PPM under isometries there is a gap between the upper and lower
bounds. In fact, the only known lower bound for PPM in arbitrary dimensions is
an Q(nlogn) lower bound, which is presented in [19] and can be found by a Ben-Or
argument.

In one dimension we focus on isometries as allowed transformations. We first
establish an O(nm + nlogn) general upper bound in Theorem 1. For patterns
with points in a certain kind of general position we can present in Theorem 2 an
O(nlog® n) bound, independent. of the pattern size. It is proved using an interesting
lemma (Lemma 2.1) on special graphs. For one-dimensional PPM under similarity
mappings only an O(n?*mlog(n/m)) algorithm is known (see Subsection 2).

Two-dimensional PPM under translations or under rotations can easily be re-
duced to the one-dimensional case. Theorem 5 reports a well known result for the
two-dimensional problem for isometries. It shows that this problem can be solved
in O(n*3mlogn) time. This bound rely heavily on the best known results for the
problems, how many unit distances can appear among n points in the plane and how
fast can they be reported. The algorithm for the two-dimensional problem for simi-
larity mappings is very similar to the corresponding one-dimensional algorithm. Our
investigations on better algorithms failed, but we found the interesting Theorems 6
and 7.

One general remark: All classes that we consider are closed under reflection,
like isometries or similarity mappings. For simplicity we present each time only an
algorithm for the subclass of nonreflected mappings, e.g. even isometries and even

similarity mappings. This suffices, because the problem for the whole class can in
each case be solved with the same algorithm by running it twice, once with the
original pattern and once with a pattern, that is the reflection of the original one
(on an arbitrary hyperplane).

This article studies only exact matching. Another approach to pattern matching
is the computation of the (nonsymmetric) Hausdorff distance. [8] gives solutions
for minimal Hausdorff distance computations under Euclidean motion, [1] discusses
pseudooptimal solutions by use of a reference point. In [14] methods are given to
compute the Hausdorff distance of digital images using special-purpose graphics
hardware (z-buffer). A topic similar to point pattern matching is the determination
of congruences and symmetries of point sets, which is treated in [2].

I want to thank Helmut Alt, who supported me in the process of this work.

1 One-Dimensional PPM under Even Isometries

In one dimension even isometries and translations are the same. We consider one-
dimensional PPM with respect to translations in the following form:

Given two sets A = {ay,as,...,a,} and B = {by,by,..., by} of real
numbers, determine whether there exists a real number ¢t with B+t C A
(and find all such numbers).

First we state the upper bound yet known for arbitrary patterns:

Theorem 1 One-dimensional PPM is solvable in O(nm + nlogn) time.

Proof (by Algorithm):

Because of the O(nlogn)-term we can consider the input to be given as sorted
sequences (sorted arrays) A = (ai,...,a,) and B = (by,...,b,). We give here a
simple algorithm for finding all pattern occurrences, which we describe informally
(see Figure 1). It translates the pattern consecutively with its first point on each
point of the picture and checks whether the pattern occurs at this position. The
work which must be done on one position we call a check on this position. In each
check the algorithm performs for consecutive points of the pattern a search in the
picture to determine if the translated pattern point matches some picture point,
until the first search fails. We describe later how this search is done. We will call
a search “good” if the pattern point is found in the picture, and “bad” otherwise.
Thus, in each check there will be at most one bad search, after which the check
terminates with negative answer.

At this point the correctness of the algorithm follows from the fact, that the
algorithm tests all possible matching positions. We will now achieve the claimed
time bound by performing all searches for one b; in the different checks altogether in
only O(n) time. We use for each b; a pointer ¢; with initial value zero which stores

the position (the index) of the search for b; in A. All linear searches for b; can be
performed now without decreasing c;: After a good search for b;, ¢; contains the
index of the matching point in A, and after a bad search, it contains the smallest
index k for which a;, is bigger than the translated b;. The next linear search for b;
can start at this position. Figure 1 illustrates this argument. Thus the time needed
for all searches for one b; is altogether O(n), and the running time of the whole
algorithm (after the sorting step) is O(nm).

QEEVIEE

Figure 1: The principle of the algorithm.

O

The worst case running time of our algorithm is also ©(nm), and it is reached
for example if A = {1,2,...,n} and B ={1,2,...,m —1,m — %} For this input,
the algorithm will find on each possible position all but the last pattern points. This
gives also the reason why it suffices to perform the searches as linear searches: In
our example, each search takes only constant time, so we can not do better. This
particular worst case example gives rise to the question: Do all worst case inputs
have some regular structure? In a certain sense, the answer will be yes: We give
here a definition for patterns without regularities.

Definition 1 We call a pattern B in general position if it is affinely independent
in the vector space R : Q, i.e. for the set

D = {bg — bl,bg — bl, ,bm — bl}

there are no linear combinations with integer coefficients that sum up to zero, except
the trivial one. (This means also, D is linearly independent in R : Q.)

For example, patterns of real numbers, drawn with a continuous probability
distribution, are in general position. Exactly the patterns which can be interpreted
as finite subsets of an one-dimensional grid are not in general position. In fact, for
patterns in general position, a significantly better bound can be shown:

Theorem 2 For patterns B in general position, one-dimensional PPM is solvable
in O(nlog®n) time.

Proof:

We again consider A and B as sorted sequences (sorted arrays). We change
our algorithm in the following way: We replace the linear searches for the pattern
points in the picture by so called exponential-binary searches, i.e. we first go one
step, then two, then four and so on, until we exceed our target, and then perform
a binary search between the last two positions. Where linear search takes k steps,
an exp.-bin. search needs only O(logk) steps. So the bound from Theorem 1 still
holds.

Now, given a picture A and a pattern B in general position, we want to show
that our algorithm achieves the claimed time bound. Because the time for each
exp.-bin. search is in any case O(logn), it suffices to show that there will be only
O(nlogn) such searches. In each of the n checks there can be only one bad search
(because we leave the check after a bad search), therefore it remains to prove that
there are at most O(nlogn) good searches.

Given an arbitrary good search, the difference between two picture points (the
one is the point on which B is positioned with b; and the other is the point which is
found by the search) is an element of D := {by — by, b3 — by, ..., b, — b1 }. The good
searches are therefore mapped injectively into the edge set of the graph G(A, E)
defined by:

Vu,v e Actuwwv e FE<sv—u€e D,

with D as above. Each edge uv € E is naturally labeled with v — u, which is an
element of D. An example is shown in Figure 1.

A . dl . . d1 "““ .
L d2
B 's dl) " »

Figure 2: The Graph G

It now suffices to show :
nlogn

2

We can assume that G is connected in the undirected sense, and ag = 0. (If G is
disconnected in the undirected sense, we can translate the vertices of one connected
component of G until a new edge between this and a second component appears;
so G does not have a maximal number of edges.) We take an arbitrary a; and
an arbitrary undirected path from ag to a;. If we sum up the labels on the edges
of the path (taking the negative label if the edge is passed backwards), we get a

|E| <

representation of a; as an integer linear combination of D. We now use the affine
independency of B and can conclude that this linear combination depends only on
a;, but not on the particular path chosen.

If we map each point a; from A to the (m — 1)-tuple of coefficients of that
unique linear combination representing a;, we get a mapping of A into the (m — 1)-
dimensional unit grid Z™~!. The edges of G are mapped onto edges of length 1
between neighbouring grid points. Such a graph we will call a grid-graph:

Definition 2 A graph G(V, E) is called a grid-graph if the following conditions
hold:

1. Vis a subset of Z% for some d € N,
2. Yu,v € V:uv € F < u and v have Euclidean distance 1.

We can therefore complete the proof by using the following lemma, which is of
interest not only for this application:

Lemma 1 Let G(V, E) be a grid-graph. Then |E| < ME2 where n = |V|.

Proof (by induction):

n =1: clear.

(1..n — 1) — n : We take an arbitrary hyperplane h parallel to d — 1 coordinate
axes that cuts ¢ > 1 edges of G. Taking away these edges, we get two grid-graphs,
with k& and n — k vertices, say k < n/2, for which the claim holds by induction.
Furthermore ¢ < k (the number of vertices in the smaller part is the maximum
number of edges that can cross h). It follows:

klogk (n—k)log(n — k)

<
|E| < 5 + 5 +c
< kl(;gk+(n—k)l(2)g(n—k)+k

The right hand side is a function of k£ for fixed n. By considering the derivatives, it
turns out that it has its maximum for k£ = n/2. We get:

n/2log(n/2) n/2log(n/2) n

E| < -
Bl < 2 * 2 +2
_nlog(n/2) n
- 2 3
~ nlogn
= 5

Remarks

1. In Lemma 1 the bound on the number of edges of a grid-graph does not depend
on the dimension in which the vertices live. An intuitive explanation of this
surprising property is that n vertices have most grid edges in common if they
are packed as a (possibly incomplete) hypercube in [logn]| dimensions.

2. The algorithm described in the proof of Theorem 2 is not numerically totally
instable, as it may seem because of the very strong condition for the patterns.
First of all, the correctness does not depend on this condition; the algorithm
works for arbitrary patterns. Secondly, one could use a considerably weaker
condition for the patterns in the proof. For example, we could assume only
that the linear combination representing each point of A is independent of the
particular path chosen to generate this combination (this is exactly the point
where the affine independence is needed). However, this new condition is no
more only a property of the pattern, but of both the pattern and the picture;
therefore the meaning of the theorem could be more difficult to understand in
this new version.

3. The bound established by Theorem 2 does not seem to be tight for the dis-
cussed special case, because the graph G seems to be significantly larger than
the subgraph the algorithm works on.

In short, G contains all pattern fractions occurring in A, while the algorithm
works only on pattern prefizes occuring in A. More formally, the mapping
beween good searches and edges of GG is only into £, but not onto E. An edge,
on which a search is mapped will be referred to as visited.

Now it is an interesting question how many visited edges can occur for a given
picture size n. So far it is still open whether the number v(n) of visited edges
in G is o(nlogn). On the other hand we show with the following example that
the number of visited edges can be superlinear. (This seems to be moreover a
worst case example for the number of visited edges).

We can characterize the visited edges as follows: Let e be an edge. The vertex
incident on e which has the lower coordinate value is called the base verter. We
call the set of edges which have a vertex a as base vertex and lie in ascending
dimensions, starting with the first dimension, an ascending n-pod on a. The
visited edges are exactly the edges which are contained in ascending n-pods.

We define a family of grid-graphs G(n) with n vertices for which the number
of visited edges is v(n) = O(nloglogn), by giving their vertex sets A(n). We
define A(n) for n = 22°, k € Ny in a recursive fashion as it is shown in Figure 3.
Each A(2%") lives in the k+1-dimensional unit grid. A(22") is the set {(0,0), (1,0)},
therefore the corresponding grid-graph has one edge between the two points.

0

2 o
A(2):A(Z) = dimension 1
X 4 — — T —
AQ) = | —] R
4 — —_ T — D
4 — —_ T — W

k_’—V—\J dimension 1

k-1 k-1

copies of A(22)

Figure 3: The Definition of A4(2%")

Theorem 3 Let v(n) be the number of visited edges in A(n), then:

Proof:

We prove for n = 22"

v(n) = ©(nloglogn)

1p2? <0(2%) < (k+1)2%

e Proof of the left inequality (by induction):
The claim holds for £k = 0. Thus let £ > 1.
The visited edges in A(22") are either in the direction of the first dimen-

sion, or they are visited edges in the first (22~ — 1)copies of A(2

Therefore we get:

v(2%)

Il v v IV

k—1
2)

(22k_ 221‘:71) + (22/071_ 1) ,U(22k71)

(22k_ 22k71) + (221071_ 1) (k B 1) 22k71

1
1

k k—1 k—1
127 427 1(k—2) 2
192" 4 Lk —2) 2%

1 2k
1k 2

10

e Proof of the right inequality: Let ¢(22°) be the total number of edges of
G(2%"). We charge each edge to its base vertex. Each vertex is charged by
at most k + 1 edges, since G(22°) lives in k + 1 dimensions. We therefore
have

v(2%) <e(2®) < (k+1)2%

edges in total.

From the proven inequality follows the conjecture.

We can construct from each set A(n) immediately two sets A and B such that
the algorithm performs ©(n loglogn) good searches in A: We must choose an
arbitrary set B with |B| = loglogn in general position and define A as the
set of all integer linear combinations of the set Dp whose coordinate vectors
represents elements of A(n). This means, we perform the inversion of the
mapping described in the proof of Theorem 2.

2 One-Dimensional PPM under Even Similarity
Mappings

A straightforward algorithm solving the PPM-problem for similarity mappings is
the following: We take two arbitrary points p < ¢ from B. For each pair s < t of
points from A there is a unique even similarity mapping M, that maps (p, ¢) onto
(s,t). We check now for each of these O(n?) mappings, if it maps B into A.

How long does the check take for one particular mapping M? We must search
the m points of M(B) in A. We use again exponential-binary search: We start the
search for M (by) at a;. If M(b;) is found in A, we can start the search for M (b; 1) at
the position of M (b;) in A. The worst case is the case that all searches are succesful.
Let k; be the difference between startindex and stopindex of the search for M (b;) in
A. We have:

The time needed for the search of M (b;) is clogk;) for some constant ¢. Hence the
time needed for the check is

c(logky + ...+ logk,,)

If k is the average of ki, ..., ky,, then because of the convexity of the logarithm this
term is at least B B
c(logk + ... +logk)

This term is O(mlog(n/m)) because of 1. The time complexity of the algorithm is
therefore O(n?*mlog(n/m)).

11

3 Two-Dimensional PPM under Translations or
Scaled Rotations

Theorem 4 Two-dimensional PPM with only translations or with only scaled ro-
tations (i.e. combinations of scalings and rotations around a given fixpoint) allowed
can be solved in time O(nm + nlogn).

Proof: We reduce both problems to the one-dimensional problem with isometries
(translations). For the two-dimensional problem with translations we consider the
points to be given as cartesian coordinate vectors. For the two-dimensional problem
with scaled rotations we consider the points to be given as polar coordinate vectors
around the given fixpoint, i.e. given is the angle and the logarithm of the radius.
The problem to solve is now the following:

Given two sets A and B of two-dimensional real vectors, determine
whether there exists a two-dimensional real vector ¢ with B +¢ C A
(and find all such vectors).

Every addition or lexicographical comparison of the two-dimensional vectors
costs O(1) time. The problem can be solved with the same algorithm as for the
one-dimensonal problem with isometries (translations), except that our input sets
A and B are now finite subets of the two-dimensional real vector space and the
operations in the one-dimensional algorithm must be replaced by the corresponding
vector operations.

O

4 Two-Dimensional PPM under Even Isometries

We consider now PPM in the plane with even isometries as allowed geometric trans-
formations. For this problem instance, we describe here an already known algorithm.
This algorithm is a straightforward application of deep results on another problem,
the problem of counting and reporting all unit distances in a set of n points.

1/3

Theorem 5 2-dim PPM with respect to isometries can be solved in O(n**mlogn)

time.

Proof: The algorithm has the following steps:
1. Chose a pair (p, q) of points from B.

2. Search for all sorted pairs (s,t¢) in A which have the same distance as (p, q)
(i.e. if (s,t) is such a pair, then also (¢, s)).

12

Figure 4: The mapping between the two pairs defines the whole mapping

3. For each such (s, t) the mapping from (p, ¢) onto (s, t) can be uniquely extended
to a rigid motion M (even isometric mapping) of the plane. (see Figure 4).
For each such rigid motion M:

Check whether M (B) € A.
If yes, report M.

We are now interested in an efficient algorithm to compute all occurrences of a given
distance in a set of n points in the plane. Moreover we want to know the maximum
number g(n) of such distances (or occurrences of a given distance). Both problems
have turned out to be hard. The question of bounds for g(n) was posed first by Paul
Erdds in [9]. He established:

n1+c/log10gn < g(n) < n3/2

The best upper bound known so far is O(n*/?), which was first stated by Spencer,
Szemeredi and Trotter in [22]. A simpler proof of the same bound, which also leads
to a better constant, was presented by Clarkson, Edelsbrunner, Guibas, Sharir and
Welzl in [7].

To give an efficient algorithm for computing all unit distances in a finite planar
point set is also very difficult. The problem can be considered as an incidence
problem: Compute all incidences between n points and n unit circles. It is very
similar to a problem called Hopcroft’s Problem: Compute all incidences beween n
points and n lines in the plane.

Matousek has presented in [16] a result, which leads to an algorithm for com-
puting all unit distances in time h(n) = n*/32°0°%€" ") We can use this algorithm to
perform the second step of our algorithm.

In the third step, for each M the check if M(B) € A can be performed in
time O(mlogn) as follows: Test for each b € B, if M(b) € A. Having A properly
preprocessed, this works in time logn for each b € B. A proper preprocessing of
A at the beginning of the algorithm would be the lexicographically sorting of A.
Hence the total time needed by our algorithm is:

O(h(n) 4+ g(n)mlogn) = O(n**mlogn)

13

5 Two-Dimensional PPM under Even Similarity
Mappings

We use an algorithm similar to that for the corresponding onedimensional case: We
take two arbitrary points p, ¢ from B. For each pair (s,t) of points from A each of
the two mappings of (p, ¢) onto (s,t) can be uniquely extended to a even similarity
mapping of the plane. We check now for each pair (s,t) of points from A whether
one of the two even similarity mappings M;, M, that map (p, g) onto (s,t) maps B
into A. As explained in the proof to Theorem 5 this check requires O(mlogn) time.
Since each pair (p,¢) can be mapped onto any pair (s,¢) between points in A by
even similarity mappings, the total running time of this algorithm is O(n*mlogn).
In contrast to point pairs, a triangle pgr can be mapped only onto similar trian-
gles stu in A. So we would obtain a faster algorithm if the set of triangles similar to
a given one within a set of n points would be o(n?). Unfortunately, this is not the
case. This is stated in the following two theorems, which are of general interest.

Theorem 6 Let PQR be an arbitrary triangle. Then for n € N there are point sets
A with O(n) elements for which there are Q(n?) 3-subsets that are similar to PQR.

Proof: In Figure 5 we give an example for a set A with the desired property.

(7, is the set of all points of the unit grid with an Euclidean distance to the origin of
at most \/n and G, the set of all points of the unit grid with an Euclidean distance
to the origin of at most 2y/n. We refer to the unit grid as U. We assume that the
point P of our triangle is the origin.

Let Mg be the similarity mapping that fixes R and maps P onto). We define

GQ = MR(Gl) Clearly GQ C MR(U)

Let Mg be the similarity mapping that fixes () and maps P onto R. We define
Ggr:= MQ(Gl) Clearly G C MQ(U)

Now we define A := Gy UGg U Gk.

Remark: Let p,q,r be the lengths of the edges of PQR. Then the grid edges of
Mg(U) (and thus of Gg) have length p/q, and the grid edges of My(U) (and thus
of Gg) have length p/r.

There are (n?) triangles P'Q'R’ similar to PQR (according to the point names
and under an even similarity mapping) with Q' € Gg and R’ € Ggi. Therefore
it suffices to prove that for all these triangles P’ € G,. Now let P'QQ'R' be such
a triangle similar to PQR and with Q' € G and R’ € Gg. The proof works by
considering an intermediate triangle PQ R’ where P is the point, for which PQR' is
similar to PQR (see Figure 6).

14

Figure 5: Illustration to Theorem 6.

e We first prove: P’ € U. In order to do this we first remark that P € U because
of the definition of Gz and R' € Gi. The very reason for P’ € U is now, that
U is mapped onto Mp(U) under the similarity mapping Mg/, that fixes R’
and maps P onto . (This is so because Mp (U) must contain @ and must
have grid edges of length ¢/p and the same inclination as Mg(U). Thus both
grids must be the same.) Therefore Q),Q" € Mp/(U) and from this follows
immediately P’ € U.

e It remains to prove that the Euclidean Distance d(P, P') is at most 2y/n. We
have d(P, P) = 2d(R, R') < y/n and d(P,P') = 1d(Q,Q") < \/n. With the
triangle inequality we get:

d(P,P') < d(P,P)+d(P,P") <2\n

Even for a k-element subset S of a grid, the number of occurrences in a picture
A can be quadratic in A, but the constant depends on S:

Theorem 7 Let S be an arbitrary k-subset of the unit grid and L the greatest ab-
solute value of a coordinate in S, but at least 1. Then for n € N there is a point set
A with n elements for which there are Q(n?/L*) k-subsets that are similar to S.

15

Figure 6: The intermediate triangle PQR’' is drawn with dotted lines.

Proof:

Let n be fixed. We define A to be simply the set of all points of the grid with
Euclidean distance less than /n from the origin (see Figure 7). Let 7" be the set
of all points with distance less than \/n/4L. To prove, that A has the claimed
property, it will suffice to show: Each similarity mapping M that maps (0,0) and
(1,0) onto points in 7" maps S into A. Let M be such a mapping. First we remark
that by definition of L all points of S have euclidean distances of at most /2L
from (0,0). Since the distance of M (0,0) and M(1,0) will be at most \/n/2L (see
definition of T'), all point of M(S) have distances of at most y/n/y/2 from M(0,0).
From M (0,0) € T and the triangle inequality follows that all points of M (S) have
distances of at most /n/v/2 + \/n/4L < \/n from (0,0) and are therefore in A.

T has Q(n/L?) elements, so there are (n?/L*) such similarity mappings M.

a

Remark: The conjecture holds for each finite set S of points with rational coordi-
nates in the plane, since each such § is similar to a subset of the unit grid.

References

[1] H. Alt, O. Aichholzer, G. Rote, “Matching Shapes with a Reference Point”,
Proc. 10th Annu. ACM Sympos. Comput. Geom., 1994, 85-92.

2]

16

e //.
-

S

/

Figure 7: Illustration to Theorem 7.

H. Alt, K. Mehlhorn, H. Wagener and E. Welzl, “Congruence, Similar-
ity, and Symmetries of Geometric Objects”, J. on Discr. Comp. Geom., 3
(1988), pp. 237-256.

E. M. Arkin, K. Kedem, J. S. B. Mitchell, J. Sprinzak and M. Werman,
“Matching Points into Noise Regions: Combinatorial Bounds and Algo-
rithms.”, Proc. 2nd ACM-SIAM Symposium on Discrete Algorithms, 1991,
pp- 42-51.

M. J. Atallah, “Checking Similarity of Planar Figures”, Internat. J. Comput.
Inform. Science, 13 (1984), pp. 279-290.

D. Baldini, M. Barni, G. Benelli, A. Foggi and A. Mecocci, “A New Star-
Constellation (sic/) Matching Algorithm for Satellite Attitude Determina-
tion”, ESA Journal 1993, Vol. 17, pp. 185-198.

M. Ben-Or, “Lower Bounds For Algebraic Computation Trees”, Proc. Symp.
on Theory of Computation, 1983, pp. 80-86.

K. L. Clarkson, H. Edelsbrunner, L. J. Guibas, M. Sharir and E.
Welzl, “Combinatorial Complexity Bounds for Arrangements of Curves and
Spheres”, J. on Discr. Comp. Geom. 5 (1990), pp. 99-160.

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
18]

[19]

[20]

[21]

17

L. P. Chew, M. T. Goodrich, D. P. Huttenlocher, K. Kedem, J. M. Kleinberg
and D. Kravets, “Geometric Pattern Matching under Euclidean Motion”,
Proceedings Can. Conf. on Comp. Geom., 1993, pp. 151-155.

P. Erdos, “On Sets of Distances of n Points”, American Mathematical
Monthly, Vol. 53, 1946, pp. 248-250.

H. Edelsbrunner. Algorithms in Computational Geometry, Springer-Verlag,
Heidelberg, 1987.

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics,
Addison-Wesley, 1989.

L. J. Guibas, D. E. Knuth and M. Sharir, “Randomized Incremental Con-
struction of Delaunay and Voronoi Diagrams”, Algorithmica, 7 (1992),
pp. 381-413.

K. Imai, S. Sumino and H. Imai, “Minimax Geometric Fitting of Two Cor-
responding Sets of Points.”, Proc. 5th ACM Symp. on Comp. Geom., 1989,
pp- 266-275.

D. P. Huttenlocher, G. A. Klanderman and W. J. Rucklidge, “Compar-
ing Images Using the Hausdorff Distance”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15 (1993), pp. 850-863.

P. J. Heffernan and S. Schirra, “Approximate Decision Algorithms for Point
Set Congruence.”, Proceedings, 8th Annual ACM Symp. on Computational
Geometry, 1992, pp. 93-101.

J. Matousek, “Range searching with efficient hierarchical cuttings”,
Proc. 8h ACM Symp. on Computational Geometry, 1992, pp. 276-285.

Roger Penrose, The Emperor’s New Mind, Oxford University Press, 1989.

F. Preparata and M. Shamos, Computational Geometry - An Introduction,
Springer-Verlag, Berlin 1985.

G. Rote, “Computing the minimal Hausdorff distance between two point
sets on a line under translation”, Information Processing Letters, 38 (1991),
pp. 123-127.

R. Seidel, “Backwards Analysis of Randomized Geometric Algorithms”,
Technical Report ICSI Berkley, TR-92-014, 1992.

U. Renner, B. Liibke-Ossenbeck and P. Butz, “TUBSAT, Low Cost Access
to Space Technology”, Proceedings, Symp. (international) Small Satellites
Systems and Services, 1992, Arcachon.

18

[22] J. Spencer, E. Szemeredi and W. T. Trotter, Jr., “Unit Distances in the
Euclidean Plane”, Graph Theory and Combinatorics, 1984, pp. 293-303.

(23] G. Weber, L. Knipping, H. Alt, “An Application of Point Pattern Matching
in Astronautics ”, Technical Report B 93-16, Institut fiir Informatik, FU
Berlin, 1993.

