
A Unified Model of Internet Scale Alerting
Services

Annika Hinze, Daniel Faensen
Institute of Computer Science

Freie Universität Berlin, Germany
�hinze,faensen�@inf.fu-berlin.de

Abstract

In the last years, alerting systems have gained strengthened attention. Sev-
eral systems have been implemented. For the evaluation and cooperation of these
systems, the following problems arise: The systems and their models are not com-
patible, and existing models are only appropriate for a subset of conceivable ap-
plication domains. Due to modeling differences, a simple integration of different
alerting systems is impossible. What is needed, is a unified model that covers the
whole variety of alerting service applications.

This paper provides a unified model for alerting services that captures the spe-
cial constraints of most application domains. The model can serve as a basis for
an evaluation of alerting service implementations.

In addition to the unified model, we define a general profile structure by which
clients can specify their interest. This structure is independent of underlying pro-
file definition languages. To eliminate drawbacks of the existing non-cooperating
solitary services we introduce a new technique, the Mediating Alerting Service
(MediAS). It establishes the cooperation of alerting services in an hierarchical and
parallel way.

1 Introduction

The number of scientific publications doubles every 10 - 15 years [Odl95]. Electronic
publication becomes very popular. Since the readers do not want to be forced to re-
gularly search for information about new documents, there is strong need for alerting
services (AS). An alerting service keeps its clients informed about new documents
and events they are interested in. But alerting services are not restricted to the area
of scientific publications. Examples for applications that could benefit from alerting
services are applications such as digital libraries, stock tickers, and traveler infor-
mation systems. Currently, several implementations of alerting services already exist
for the different applicational domains, such as Salamander [MJS97], Siena [Car98],
Keryx [BK97a, BK97b, LRW97] or OpenCQ [LPT99, PL98, LPR98] and Conquer
[LPTH99]. The underlying models of these services do not meet all requirements
found in applications suitable for wide area networks, such as digital libraries. Ad-
ditionally, the models for existing alerting services mainly cover the applications the
services are designed for.

In this paper, we provide a unified model for alerting services that considers the
special constraints of the different application domains. The interests of clients are

1

defined as so-called profiles. Since several profile definition languages are used in the
different services, we give a general structure of profiles for alerting services, indepen-
dently from the profile definition language.

The large number of existing alerting services for a certain application domain
has several drawbacks. The users have to define their interest at different services in
different ways. The available notifications are mostly bound to the supply of individual
services, information from different suppliers is not combined. We therefore introduce
and propose the use of a Mediating Alerting Service (MediAS), that connects several
suppliers and clients.

The remainder of this paper is structured as follows: In Section 2, we provide an
overview of the structure and tasks of an alerting service. In Section 3, we introduce
scenarios for the conceivable application domains of alerting services and name the
problems with existing alerting services in detail. Section 4 introduces our architectural
model for alerting services and Section 5 outlines our event-based model. In Section 6,
we propose the use of a mediating alerting service. Section 7 provides an overview of
some related systems and models. Section 8 gives some directions for our future work.

2 Event Notification Service

In this section, we introduce the general structure and tasks of an alerting service. Alert-
ing services connect suppliers of information and interested clients. In our example of
scientific papers the suppliers are publishing houses and the clients are the interested
scientists. Alerting services inform the clients about the occurrences of events on ob-
jects of interest. Objects of interest are located at the supplier’s side. Events can be for
example changes on existing objects or the creation of new objects, e. g., the publication
of a journal article. Clients define their interest by personal profiles. The information
about the occurring events is filtered according to these profiles and notifications are
sent to the interested users (clients). Figure 1 depicts the data-flow in a high-level ar-
chitecture of an alerting service. Keep in mind that the data-flow is independent from
the delivery mode, such as push or pull.

Service

Interested
Party

Object of
Interest

Alerting

notify
publish

subscribe
Description

Event

advertise advertise

Notification

Profile

Event

Event Data

Description

Figure 1: Data-flow in an Alerting Service

The tasks of an alerting service can be subdivided into the following steps: First,
the observable event classes are to be determined and offered to the clients. Then,
the client’s profiles have to be defined and stored. The occurring events have to be
observed and filtered. Before creating notifications, the events are integrated in order
to detect combinations of events (e. g., two conferences happen to be at the same time).
After duplicate recognition the messages can be buffered in order to enable efficient
notification (e. g., by merging several messages into one notification). According to a
given schedule, the clients have to be notified.

2

3 Scenarios and Arising Problems

We present a collection of possible scenarios in which Internet-scale event services
are applicable. The main purposes of this collection are the motivation and validation
of an event model that covers all applications. Based on the given scenarios and the
derived common requirements for alerting services, we will point out the problems
with existing alerting services and their models.

3.1 Scenarios

Event services are applicable in a variety of scenarios of wide area network usage. In
this section, we present a selection of these applications to demonstrate the need for a
unified and extended event model and a Mediating Alerting Service.

Stock ticker Selected stock values are pushed to registered clients. The clients sub-
scribe to selected stocks. Notifications are delivered only to the subscribers. Delivery
can be immediate (to paying customers) or deferred (by 20 min). Clients can be off-
line. In that case, notifications are lost without consequences. A client can be a PC
with an analysis software that reacts on events like threshold crossing of a share value
by notifying its user or by reacting autonomously.

Cardinality of the relation between supplier and client is usually � � �, size of
notification messages is small (a few bytes) but they are sent with high frequency.
Encryption can be required. Objects of interest are identifiable in advance, the clients
subscribe to objects by selecting from a given list of objects (� out of �).

Digital Library In a digital library, users want to be notified on new publications
they are interested in. They define their interest by specifying certain bibliographical
meta-data (e. g., a journal or an author) or by Information Retrieval-like queries. Infor-
mation suppliers can be publishing houses or universities’ technical report servers. The
offered documents reside on publisher’s side within a database, file systems, or other
repositories. Within the profiles, the clients have to specify the source.

Notifications can include the full document or a pointer to it (DOI, URL). To avoid
an unnecessary high frequency of notification deliveries, users can specify a time in-
terval (e. g., weekly) within which notifications are collected and then delivered alto-
gether. Since users do not know each supplier and do not want to register at differ-
ent suppliers’ interfaces, a service covering many suppliers and unified access to their
repositories operates between clients and information sources. Departments or work-
ing groups have overlapping user profiles. That allows for hierarchical cooperating
alerting services to ensure scalability.

Cardinality between suppliers and clients can be � � �, notifications can be large
(several MB). Frequency of notifications is low, delivery has to be guaranteed. Objects
of interest are unknown at the time of profile definition and usually come into existence
later. An arising problem is the notion of composed objects: A mathematical proof is
part of an article, which is part of a journal issue, which in turn is part of a journal.

Software Update Registered users of software (programs, data) automatically get
updates pushed from their vendors via the Internet. To avoid too frequent delivery,
users can specify that only every second update is really of interest.

3

While notification frequency is low, their size can become huge. It depends on
previous events whether an update event is to be forwarded to the client. We call
dependence of events on other events event patterns.

Remote monitoring and control A power station is equipped with a variety of
probes and sensors. Multiple devices of the same type ensure reliability by redun-
dant measurement. Measured values are pushed in real-time to the monitors. Monitors
are displaying devices supervised by a human, or software agents that evaluate the data
and react, e. g., by alerting a technician or by shutting down parts of or the whole power
plant. Redundancy is not restricted to the probes and sensors. The bus for sending mea-
surement values is multiplied. Monitoring is done at different places, several control
rooms and replicated software agents. A client can request information from certain
probes or probe classes. Additionally, it can require to be notified only if two or more
probes deliver the same value or if a probe did not deliver new measurements for a
certain time interval.

Cardinality of supplier to client can be � � �� out of ��, that means 1 of � re-
dundant clients has to handle en event. Reliable connections and real-time delivery is
required. Notification delivery in the case of at least two related event occurrences is
another example of an event pattern. Events that indicate that nothing happened in a
time interval are called passive events.

Replication Services In a replication service, a DBS (or file system or Web site)
has knowledge of several mirror sites. These have to be notified on any changes that
occur. With the notification, a change log (e. g., transaction log) is delivered that allows
the mirrors to update themselves. There is not necessarily a master. That means any
“mirror” can accept local changes and notifies the other mirrors. Mirrors can define a
profile to subscribe to subsets of the masters (or peer’s) repository (e. g., “sports-related
Web pages”, “transactions on private customer accounts”, or “small documents daily,
larger ones only weekly”). To ensure consistency, the receiver can acknowledge the
notification.

Cardinality can range from � � � to � � �. Event producer and subscriber roles can
switch continuously. Notifications can occur frequently (and then are small) or less
frequently (bundling changes to large notifications).

Mobile Computing Portable end-user devices lack the power to compute complex
tasks, e. g., the detection of certain conditions to alarm a share holder. Transfer of appli-
cation logic to a server is a typical such scenario. Moreover, mobile devices cannot be
online permanently. That rises (i) the need to buffer notifications and (ii) the necessity
of defining complex event patterns in the profile. Mobile users of a digital library avoid
automatic delivery of large documents by stating in their profile that only pointers to
the objects are to be delivered.

3.2 Dimensions for Model Evaluation

From the scenarios described in the previous section, the following dimensions to clas-
sify and evaluate event models and alerting services emerge:

Cardinality Associations between suppliers and clients cover the range from � � � to
� � �. The Remote Monitoring and Control scenario shows that the notion of a
� � �� out of �� cardinality is useful.

4

Notification size Depending on application type, the size of a notification can range
from a few bytes (e. g., stock ticker) to several megabytes (digital library, soft-
ware update). By delivering pointers to objects instead of the objects themselves,
the size can be reduced significantly.

Notification frequency Can vary from high frequent (in the range of seconds) to, say,
once a year or only once at all.

Guaranteed delivery In a digital library, for instance, it is necessary to guarantee
delivery of notifications even if clients are offline.

Real time Remote monitoring and control can require real time delivery of notifica-
tions.

Passive events In some cases, it is useful to be notified if during a specified interval
nothing happened, e. g., if a server does not handle requests anymore.

Event pattern Clients register for events that depend on other events.

Composed objects Objects do not need to be atomic, but can consist of other objects
(e. g., journals consists of articles).

Object repositories Clients can subscribe to repositories to get informed about the
changes within that repository. To subscribe to information objects that do not
exist at the time of the profile definition, clients refer to the repository the object
will appear in.

Profile definition Clients can subscribe to concrete objects (e. g., by referring to their
identifier), by specifying meta-data that describe the objects of interests or (in
the case of digital libraries) using an IR-like query.

Scalability Can be achieved by redundant alerting services (or duplicated parts of
them). If profiles of different clients are overlapping, a hierarchy of cooperat-
ing alerting services can improve scalability.

Encryption Scenarios that cover delivery of privacy data or data that are liable for
costs can require encrypted delivery. Encryption is handled on protocol level.

Reliability and Acknowledgment In the case of remote monitoring and control, reli-
able connections are required. Acknowledgments can be used to implement re-
liable delivery. These characteristics will not be considered in our model, since
they have no influence within the modeling level used here.

In the following part, we show the drawbacks of the existing models for alerting ser-
vices in covering the requirements derived from the different scenarios.

1. Terminology: On the one hand there exist several names for this kind of service
(Alerting Service , Notification Service, Profile Service, etc.), while on the other
hand several different concepts are called notification service (see Section 7).

Additionally, the different models for alerting systems use identical terms to
describe different concepts. For example consider the term Channel: In the
CORBA model, an event channel is an intervening object that allows multiple
suppliers to communicate with multiple consumers asynchronously [OMG97].

5

CDF [Ell97] or Netcaster Channel [Net] are similar to television broadcast chan-
nels. In contrast to CORBA, a CDF-Channel has an observer function for the
channel objects. Further evaluation of the implementation of alerting services
with channels can be found in [FHS98].

2. States of non-existing objects: In most event-based models, an event is defined
as a state transition of an object of interest at a particular time, where the state of
an object is the current value of all its attributes (e. g., [OMG97, KR95]). Other
definitions refer more to the observation of events and therefore identify events
by their physical representation as messages (e. g., [Car98, TIB]). Here, we tend
to the first approach, as it is more complete and also covers the existence of un-
observed events and is therefore the superordinate case. The binding of events
to the object of interest cannot be weakened in general as the events are strongly
related to the objects (opposite to clock-time events).
Consider the case of a scientific paper or article that is published. This object
(publication) appears at a specific time, the state of the object is then the content
of the paper and its meta-data such as author and title. But what is the state of
the object before it exists? So the terms of an event as a state transition of the
object is not appropriate here. Rosenblum and Wolf [RW97] define an event as
an instantaneous effect of the termination of an invocation of an operation on
an object. This definition associates the event with the invoker of the operation
instead of with the object of interest. As a consequence, the invoker has to com-
municate with the observer in order to announce the event. It cannot be generally
presupposed that invokers actively announce events to observers, due to several
reasons, e. g., they are not known to each other or suppliers of documents refuse
to support the observer.

3. Composed objects: The notifications sent to the clients are the messages that
are seen as the physical representation of the events [Car98] that the clients are
subscribed to. Since the events relate to identifiable objects of interest, the no-
tifications contain or refer to these objects. (Example: The client subscribes to
all articles by author X, the publishing house publishes a journal (the object) that
contains an article by X, the client gets the journal, or rather the information
about the journal.) However, clients are often not interested in whole documents
or sites (they are interested in an article instead of the whole journal, or even in
a single mathematical proof instead of the article), therefore, substructures need
to be identifiable as objects.

4. How to register that nothing happened: Example: “Send message if the value
of share S does not change for a period of days” (see Section 3.1). Existing
models of alerting services cannot handle this kind of profile, as neither is an
operation performed on the object of interest, nor does the object of interest
change its state. We are aware of the fact that this construct is contradictory to
the intuitive notion of an event as something that happens.

4 Architectural Model

In this section we introduce a general architectural model for alerting services that can
be applied for existing implementations and is used for the identification of compo-
nents involved in the event model presented in Section 5. It serves as a basis for the

6

development of MediAS, the Mediating Alerting Service that notifies users of a digi-
tal library of electronically available scientific publications from different suppliers. A
diagram that shows the involved components and their relations is shown in Figure 2.

Figure 2: Architectural Model of an Alerting Service

Objects of interest are so-called information objects that are located at the sup-
plier’s side, optionally in an object repository. Information objects can be persistent
(e. g., documents) or transient (e. g., measured values). The objects can be organized
hierarchically.

Changes of theses objects (creation, update, deletion) are induced by an invoker.
Responsibility of the observer is the detection of changes of single objects or in the
object repositories. Change detection can be an active task of the observer, performed
periodically, if the invoker does not inform the observer by itself. Any change is an
event. A detailed definition of the term event will be given in Section 5.1.

Events are reported as materialized event messages to the filter. The filter has
knowledge of the client’s profiles and compares the event with the query part of the
profiles. If a profile and event match, the filter creates an event message and delivers
it to the notifier. For the detection of event patterns, events are stored in the event
repository.

The notifier in turn checks the schedule part of the profile. If immediate delivery
is demanded, the event message is edited according to the format specified by the
client and delivered. Otherwise, it is buffered until the notifications become due. The
notifier keeps track of the due-dates. The buffering of notifications is also needed for
the notification of offline clients to guarantee delivery.

Client’s profiles consist of two parts (see Section 5.1). The query-profile (used by
the filter) specifies the set of information objects the client is interested in. In the meta-
profile, a schedule, a notification protocol, and a notification format (e. g., for data
type conversion) are defined. Schedule, protocol and format are attributes used by the
notifier.

The components of the alerting service can be (and usually are) deployed and du-
plicated for scalability and reliability. Invoker and object repository usually reside at
the supplier’s side. Not all information suppliers implement an observer; an alerting
service that covers this type of suppliers could implement an observer as a wrapper for
each supplier. The observer is enforced to keep various information on the repository
(e. g., previous states) if it is not notified by the invoker and the supplier’s interface

7

does not offer a search for changes since a specified date. Alternatively, the observer
can be moved to the supplier’s side (if allowed) and perform its tasks as an agent of the
alerting service there.

5 Unified Event Model

In this section, we introduce our event-based model for alerting services. First, we de-
fine the terms used within the model, then we formally describe the tasks of a MediAS.

5.1 Terms and Definitions

Object: In correspondence to other models, we use objects to encapsulate the func-
tionality of model participants. In our model, an object can be any logical entity resid-
ing on a hardware component within a network, such as files and processes. Hardware
and human beings can also participate but are represented by their software-based prox-
ies. Each object is uniquely identifiable, for simplicity reasons, we refer to the identifier
as a handle (already used in [CGM97]). A handle can be, e. g., a URL or a DOI. Con-
siderations of a naming model for alerting services can be found in [RW97].
The objects that are offered by suppliers, such as journals, news-pages, or movies, we
call objects of interest. Objects have a state. The state of an object is the value of its
attributes. A set of objects offered by a supplier is referred to as repository. A sup-
plier can offer one or more repositories, examples are databases, web-sites, or a set of
documents on an ftp-server. Since repositories can also be seen as objects of interest,
we consider a hierarchy of objects, whereas the items within the repositories are called
information objects. Information objects can also be composed of other objects, e. g.,
journals consist of articles. Therefore, objects need to carry information about their
position within the hierarchy.

Event: Based on the scenarios, we get a set of possible events regarding information
objects: A new information object appears; existing information objects are changed;
existing information objects are deleted; for a certain interval of time the information
object remains unchanged.

Similar to the model used for Event Ac-

active passive

Event

Time Event Event PatternObject Event

*

1

Figure 3: Event Types

tion Systems [KR95] we divide events into
two classes: time events and object events
(see Figure 3). Time events involve clock
times, dates, and time intervals. Object events
involve changes of non-temporal objects. We
additionally distinguish active and passive
events. Active events are state transitions
of the repository at a particular time; they
are observer independent. State transitions
can be actions such as insertion, deletion, or
change of a data-object. In the context of

databases, as in digital libraries, the notion of state transition is in close relation to
integrity constraints. Each transaction on the database underlies several constraints
(e. g., the key of a tuple has to be unique) and the operations are accepted only if the
constraints are fulfilled. Allowed operations transfer the database from a valid state
to another valid state. This process is called a state transition. As final consequence,

8

both constraints and given set of values ensure an invariant state space. A state of a
particular information object is a defined attribute of an object that has a finite number
of predefined values (e. g., the output of a logic circuit can be high, low, or high-Z,
an interrupt-flag can be set or not). A state transition occurs if the attribute value is
changed. Passive events involve counters and object properties at a specified time.
They have to be observed. Passive events model the fact that for a given time interval
an object did not change. Examples are also given in Section 3.

Profile: A profile is the formally defined information need of a client. Each profile
consists of two parts, the description of the events the client wants to get notified about
(query-profile) and the conditions for the notification (meta-profile).

Within the query-profile, the clients specify the events they are interested in.

For time events, we can distinguish between events given as points (� �), as intervals
(����������, ��� �����, or �������� �����) or as frequencies (e. g., weekly). Here the
events are given as absolute values in time. These points, intervals, or frequencies can
also be given in relation to another event, e. g., “X weeks after the conference” (rela-
tive). Other time events can be formed by using combinations. Relative time events
and combinations can be seen as forms of event patterns, which are described later. For
time events, client and server need to define a reference (e. g., a common time zone).

For the object events, clients have to define the objects, the attribute values they are
interested in and the state transistion to observe on the object. Additionally, the repos-
itory of the objects has to be defined (by giving the repository identity in the profile
or indirectly by subscribing to services from special suppliers). The definition of the
object repository is independent from the object itself since the same object can reside
as duplicate on different repositories. Identification of objects can be done by giving

1. the object handles,

2. metadata about the objects,

3. values of attributes of the objects.

For example, if clients define their interest by giving similar objects (“Notify about
all objects similar to THIS one”), this can be seen as a handling of (2) and/or (3).
The subscription to subject-based Internet-channels is covered by (2), subscription to
Internet-sites (favorites) refers to (1). For composed objects, the level of the object and
the concerned attributes within the hierarchy should also be given (e.g. consider the
journal-example).

For active object events, clients have to define the objects as described above, further
attribute values they are interested in and the type of state transition to be observed on
the object. Possible state transitions are the occurrence of a new object, the change
of an object, or the removal of an object. The change of an object can concern the
structure (changing set of attributes, changing range of attributes), or the values of the
attributes. Additionally, clients can be interested in the number of values, if it changes
or in different changes of the value itself. Conceivable are values that change from
point or interval to point or interval (e. g., “Notify, if value X is no longer in ��� ��”,
change from interval to interval).

Passive events need to specify the objects and their attributes (see active events), and
constraints as time or counters.

9

In addition to primitive events (time and object events), clients can specify event pat-
terns. Event patterns are combinations of events. A pattern can include any number
of events combined with unary, binary, n-ary-operators. Conceivable operators are,
for instance, the sequence operator or Boolean operators in combination with time
constrains. The sequence operator reflects the temporal order of the events (e.g. imple-
mented in Siena [Car98]).

Examples of query-profiles are:

- “Notify, when in an issue of journal X an article about topic Z is published”:

object event, object identification by metadata, state transition: new object ap-
pears),

- “Notify, when in database X the value of attribute Y is larger than Z”:

object event, object identification by handle, state transition: change of object,
change: attribute value from interval to interval),

- “Notify, if the temperature in room X is constant for the time period Y”:

passive event, object identification by handle

- “Notify, if file X is changed after message Y appeared”:

event pattern of two object events, sequence operator, object identification by
handle

- “Notify, if two articles with title X appear in different journals”:

event pattern of two object events, Boolean AND with unlimited time period,
object identification by meta-data

The following items have to be defined within a meta-profile:

1. Content of notification (e. g., object-handle, object itself, meta-data describing
the object/event and/or their number),

2. Structure of notification (number of events reported in the message, instructions
for the merging of notifications, ranking mechanism),

3. Notification-protocol (e. g. e-mail, desktop-icon, download),

4. Time-policy for event detection (frequency of observations),

5. Time-policy for notification such as scheduled (e. g., daily) or event-dependent
(e. g., on � events or depending on event-attributes, such as “X weeks before the
conference”).

Observer: Observers detect events. The event observation can be triggered by the
invoker, by a time policy for observation or by a profile (for passive events). Observers
can be part of the alerting service or reside on suppliers side. A MediAS can be dis-
tributed so that it employs several observers.

Notification: A notification is a message reporting about events. Clients are notified
according to the time-policy given in their profiles. Notifications created by observers
have to be evaluated to discover patterns or duplicates. Before sending notifications,
depending on the profile, they have to be edited (e. g., duplicate removal, merging,
formating) in order to ensure that clients get only one notification at the time.

10

5.2 Model

An alert relation describes a connection between repositories of information objects,
clients, and events the client wants to get notified about. A supplier can provide vari-
ous repositories. Suppliers inform clients about possible events by means of advertise-
ments. Clients define their interest using profiles, where they specify the events on the
repositories they are interested in.
The alert relation � is a relation of a set of repositories �, a set of clients 	, and a set
of profiles
 (We employ the notion of the relational algebra.):

� � �� 	 �
� (1)

Clients may register or unregister for certain events happening on certain repositories,
for instance by subscribing to an event channel, such as CDF-channels. The corre-
sponding tuples ���� � ���, where � denotes the repository, the client, and � the pro-
file regarding an event on �, are inserted into, or deleted from, the relation. An event
channel � is a projection of the alert relation onto the repositories and the profiles:

� � ��	
 ���� (2)

Within a projection duplicate tuples, are deleted. According to this model, a CORBA
channel is only a communication medium and not covered by the definition of a channel
given above. Another conclusion is, that clients that are interested in the same events
at the same repository are subscribed for the same event channel, as in CDF-channels
or mailing lists.

Events can happen at any time, they are caused by invokers that perform actions on
the repository. Let �� be the time a state transition � in repository � has been caused by
an invoker. An observer can learn of events in two ways. Either an observer is notified
by the invoker at time ���� � ��. Or the observer proceeds according to a time schedule

� ��� � ���� � �� 	 �Æ���� � � �� � Æ��� �
�� (3)

The observer registers all state changes on � in the interval �� ��� ��, ���� � � � ���,
at time ���� � �. The observer creates a message reporting the occurrence of the event
and forwards it to the filter (see architecture, Section 4). The profile filter compares the
reported events to the profiles. With Carzaniga [Car98], � � � denotes that an event �
matches a profile �. Notifications to the following clients must be produced:

	��	��� �� � ������	��� ���� (4)

where
���	��� �� � ������������
������ (5)

is the set of alert relations affected by events � in � at �� � ����� ��.
Passive events have no invoker, they can just be recognized by the filter. A profile

for a passive event consists of the object description and the interval during which the
object should not change. Let �	� be the set of objects in � that did not change in the
time interval ��� �� �, �� �� � � ���, � � � . Let � be the profile that triggers a filter
by its time-policy in ��� �� �. Assume that �	���� � �	� is the set of objects that is
covered by the passive event specification in �. The clients that must be notified are
		���� �� � ����	���� ���, where �	���� �� � ������������	�����.

11

Objects can be composed of other objects, e. g., journals that consist of articles.
The matching of the compound objects can require further data inquiries or calcula-
tions. For example, databases of digital libraries often do not contain the full-text of
journals but references to the suppliers (e. g., the publishing houses) and, therefore,
need to query the suppliers database.

Notifications for the clients are buffered. Before the delivery, they are checked for
duplicates and then merged and delivered according to the client’s profile.

For a scheduled profile, clients want to get notified according to a schedule

���� � ������ � �� 	 �Æ���� � � �� � Æ��� �
�� (6)

where Æ��� � Æ���. The time �� here denotes generally a start point in time, it can
be different for different profiles and observers. The condition for the cycle durations
ensures that notifications are sent only after the observer noticed events. (Otherwise
clients could be misled by the impression that no event happen if only the observer
did not recognize it by that time.) The events that happened in �� � �� �, �� �� � � ���,
� � � affect a set of channels ����	�, with ����� �� � ����, where ���� � �� 	 ��,
���� 	 � � ����, and therefore ����	� � ��	
 ��	��.

Since this asynchronous approach can lead to a maximal notification delay of
Æ��� 	 Æ���, it is recommendable to synchronize observation and notification, so that
Æ��� � �Æ���, � � � and
� � � ���� �� � ���� so that � � �� (i.e. that enshures that
the phase shift equals zero). Immediate delivery is performed by � � �.

Notifications on events are sent at the time the notifier gets the event messages.
In notifications on � events, the notifications are merged and then delivered. In no-
tifications on the ��� event, the first �� � �� notifications are omitted. Notifications
depending on events are handled similarly. The time of notification is triggered by
attribute values of the object (“Send notifications X weeks before the conference Y
starts”). In the push model of alerting, the supplier is the active part. It has to inform all
customers that have registered for event channels in which the supplier’s repositories
participates. As described in Section 2, an alerting service can act as supplier. In the
pull model, the customers regularly check the event channels for which they are regis-
tered.

Several conclusions can be drawn from the model:

� The observers either have to be informed by the invokers or they have to be aware
of the state of the repository (and the objects contained in the repository). In the
latter case, observers, therefore, need to be initialized with the states of all ex-
isting objects in the repository. They can only detect changes with frequencies
less or equal to the observation frequency. Otherwise, observers can miss events
within their observation interval. If two events regarding the same object happen
within the same observation interval, these events can weaken or intensify each
other. For example, if the events that a value of an attribute increases and de-
creases happen shortly one after another, these two events neutralize each other
(e.g. a stock ticker with to low observation frequency would miss some stock
value changes).

� For passive events, filters initially have to know about the existence of objects,
and, therefore, they have to be initialized with all existing objects.

12

� For the recognition of changed objects, different update strategies have to be
considered [CGM97]. Versioning: The old object remains, as a previous ver-
sion. The handle of the new object is different from the one of the old object.
In-Place-Update: The old object is removed, the handle of the new object is un-
changed. Shadow Updates: The old object is removed, and the new object has a
new handle.

5.3 Example

In this section, we show exem-
R C P

�� faensen “articles by author Gray”
�� faensen “articles in journal X”
�� hinze “articles by author Brown”
�� hinze “articles in journal X”

Table 1: Instance of an alert relation

plary the application of the model to
an alerting service for digital libraries
(see Section 3). The repositories for
our service are the journal reposito-
ries �� and �� at the servers of two
publishing houses. Clients are stu-
dents and research assistants at the
Freie Universität Berlin, who define
the journal articles they are interested in in their profiles. An instance of the alert rela-
tion � is shown in the Table 1. The instances of event channels are then [��, “articles
in journal X”], [��, “articles by author Gray”], and [��, “articles by author Brown”].

Let us assume, that the observer is scheduled daily, starting at 1/1/99, 12:00am .
The profiles are scheduled weekly, starting 1/1/99, 12:00am synchronous to the ob-
server. The parameters for the alerting service are then:

Æ��� � ���
�� � ����;12:00am, �� � � ���

Æ��� � ����
�� � �����12:00am, �� � ����

� � Æ���
Æ���

� �.
Let us consider the following event: On �� �1/2/99, 7:00am, an issue of journal

X (=information object) is published at ��, the journal contains, besides others, an
article by Gray. The event is observed the same day (���� � �� �1/2/99, 12:00am)
and reported to the filter. We therefore define �� �1/1/99; 12:00am and �� �1/2/99;
12:00am. The affected alert relation is ��	�=�[��, faensen, “articles by author Gray”],
[��, faensen, “articles in journal X”], [��, hinze, “articles in journal X”]�.

The clients that have to be notified are 	�	� � ����	�=�[faensen],[hinze]�. They
are then notified on ���� � �� �1/8/99; 12:00am, so the delay is �� � ���� � ���, the
maximal possible delay with this configuration is Æ��� 	 Æ��� � ���. Client Faensen
gets the whole journal with all articles, the article by author Gray has been eliminated
by the duplicate handling component (This can be specified in the meta-profile). The
journal is a composed object that consists of objects at different levels. Since she de-
fined the filter for articles, client Hinze does not get the whole composed object but the
article.

6 Mediating Alerting Service

In this section, we motivate and propose the use of a mediating alerting service. Con-
sider the application domain of a digital library. For full coverage of scientific publi-
cations, users have to register at a variety of suppliers (� � � cardinality), some even

13

unknown to the user, with different interfaces for profile definition. Notification format
and protocol are heterogeneous, and many suppliers do not offer an alerting service. In
addition the notifications of different providers cannot be combined.

As solution to the problems mentioned above and pointed out in previous sections,
and as an implementation of both the architectural and the event model, we propose a
Mediating Alerting Service (MediAS).

In MediAS, multiple alerting services cooperate in a hierarchical and parallel man-
ner. That means that alerting services are clients (or suppliers) for other alerting ser-
vices. An alerting service can also cover multiple suppliers employing multiple ob-
servers. In turn, one observer can deliver event messages to multiple filters.

MediAS integrates the view to the information suppliers. Its observers serve as
wrappers for the suppliers’ interfaces. For suppliers that implement their own alerting
services the observer acts as a client and is notified of all changes in the suppliers’
repositories. Other suppliers are queried regularly by the observer that wraps the sup-
pliers’ interfaces.

Profiles are stored in MediAS’ repository. If profiles of different clients are overlap-
ping (as it is expected in a digital library environment, e. g., profiles owned by library
users of a working group or university department), several instances of MediAS can
cooperate hierarchically, which improves scalability. A MediAS which is the client of a
different MediAS submits an integration of its profiles to its supplier. That ensures that
the client MediAS will be notified of all information objects its clients are interested
in.

Problems arise when an alerting service is notified by other alerting services whose
coverages are overlapping. It can happen that notifications of the same event are deliv-
ered more than once. The MediAS must take this into account and filter out duplicate
events. A similar problem can be caused by observers covering the same repository
or suppliers providing similar objects (e. g., two digital libraries that offer the same
journals).

In addition to the problems that are well examined in the area of non-sequential
processing when having parallel tasks, the duplication of the event repository forces
replication to ensure reliable detection of event patterns.

7 Related Work

Event services and event action systems are related systems to be considered for the
definition of model and architecture. Event services support the asynchronous mes-
sage exchange between objects. They depend on an event-based infrastructure (such
as JEDI [CDF98]). Examples are event notification services (such as SIENA [CRW98,
CDRW98, Car98]), SIFT [YGM95], the CORBA Event Service [OMG97] or the TINA
Notification Service [Con96]. Alerting Services can be built upon event services. This
is especially useful in the handling of asynchronous events. Other examples for event-
based infrastructures underly remote monitoring and control systems [HICD�98]; event-
based communication is also used in distributed programming [SCT95] and distributed
systems [MSS97].

Event action systems are software systems in which events occurring in the envi-
ronment of the system trigger actions. The reaction is performed according to some
action specification defined by the users. The triggered actions may generate other
events, which trigger other actions, and so on. The actions are, in contrast to com-
mon event-based infrastructures, relevant to human beings rather than notifications to

14

other software components [Car98]. The alerting services considered here are closer
to event-action systems than to common event-based infrastructures. An example of
an event-action system is Yeast [KR95]. Yeast is a client-server system in which dis-
tributed clients register event-action specifications with a centralized server, which per-
forms event detection and specification management. Each specification consists of an
event pattern that is of interest to the client’s application plus an action that is to be
executed in response to the occurrence of an associated event pattern.

There is a class of infrastructures that we do not consider here. These infrastruc-
tures do not realize a notification service, though they are published as such, e. g.,
the Java Distributed Event Specification. An investigation of these frameworks can
be found, e. g., in [Car98]. Also, we do not consider local event-based procedures in
operating systems, such as IPCs and interrupt handling.

Active databases [CM93, CM94, GJS92a, GJS92b, GJS93] can serve as triggers
for alerting services. The underlying model is based on ECA-rules (Event-Condition-
Action), that can also be applied to alerting services, where the conditions are defined
in the profiles and the action is sending the notification. (The notion of events used in
active databases can be seen as a subset of the event classes described in our unified
model.) Here, active databases are of limited use, they cannot implement a complex
alerting service. They cover the repository, the observer, and the filter facility, but the
complex handling of scheduled notification profiles are beyond the means of active
databases. Alerting Services can be implemented based on active databases.

A system-independent design framework for scalable event notification services
has been proposed by Rosenblum and Wolf [RW97]. We have shown the restrictions of
this model in Section 3. However, due to its independence of specialized applications,
it serves as a basis for our model for alerting services.

In the context of the DBIS (Dissemination Based Information System) framework
by Franklin and Zdonik [FZ97], an alerting service like MediAS is an Information
Broker, that acquires information from Data Sources, add value and distribute the in-
formation to Clients (= net consumers of information).

Salamander [MJS97] is a wide-area network dissemination substrate to support
push-based applications. It supports a publish/subscribe paradigm where applications
(invokers in our model) publish data attributed with string-based meta-data. Clients
subscribe to data by supplying a query (profile) that consists of similar string attributes.
A Channel in the notion of Salamander is built by matching the string attributes of
suppliers and clients.

The Simple Digital Library Interoperability Protocol (SDLIP) from Stanford Uni-
versity [SDL] is designed for distributed information retrieval in a digital library en-
vironment. It supports making suppliers’ heterogeneity transparent to the clients by
mapping queries to their interface via wrappers. As query results are not necessar-
ily available immediately, SDLIP offers a way to deliver objects asynchronously peu
à peu. Alerting on new or changed objects is not focus of SDLIP. However, when
starting an asynchronous search, a client can specify the address of an object that im-
plements an interface which will receive the delivery. The server would submit new
documents to that “receiver”. One only needs to make the query long-lasting. In our
terminology such a query is a query-profile.

15

8 Conclusion and Outlook

In this paper, a general structure and architecture for an integrative and scalable alert-
ing service has been defined. We proposed a general event-based model for alerting
services. Moreover the paper introduced a general structure for profile definitions for
notification services and motivated the use of a Mediating Alerting Service (MediAS).

1. Expanded event-based model: Based on the requirements of scenarios for alert-
ing services, we introduced an expanded model for Internet-scale alerting ser-
vices. The model covers various scenarios, whereas existing models for no-
tification services apply only for a restricted range of scenarios (as shown in
Section 3). The model offers a general terminology for the description of alert-
ing service components. It extends the notion of events to cover states of non-
existing objects. In addition, it introduces the notion of composed objects and the
notion of passive events. It can be uses as a basis for the comparison of different
systems.

2. General profile structure: In this paper, we defined the general structure of pro-
files independently from the profile definition language. Several languages and
protocols have been proposed [BK97b, SDL]. One of our next steps will be
the definition of a general profile definition language for bibliographic alerting
services.

3. MediAS: We proposed the use of a mediating alerting service to overcome the
drawbacks of the various existing implementations. Disadvantages of existing
alerting services are, among others, the need for the clients to define their profile
many times in many different ways, duplicate notifications cannot be avoided,
and event patterns can be recognized only in a very restricted manner. In a Me-
diAS, parts of the service can work distributed in hierarchical or parallel order.
Further research will support the decision which part of the service should be
duplicated and in which order the cooperating services are to be arranged. The
merging of the differently ranked results is another question we are investigating
currently. MediAS is under development at the Freie Universität Berlin.

This paper resulted from the first phase of the Hermes project, that is part of the German
Digital Library Project of the German Federal Ministry for Education and Research
(BMBF) Global Info. The aim of the project is the creation of an infrastructure that
supports the user in the paradigm shift from retrieval and browsing to profile-filtered
notification.

References

[BK97a] S. Brandt and A. Kristensen. Keryx: Internet notification service for dy-
namic web applications. (slide presentation), presented to W3C available
at http://keryxsoft.hpl.hp.com/w3c/, September 1997.

[BK97b] S. Brandt and A. Kristensen. Web push as an Internet notification ser-
vice. accompanying paper to a talk held at W3C Workshop on Push
Technology, available at http://keryxsoft.hpl.hp.com/doc/
ins.html, September 1997.

16

[Car98] A. Carzaniga. Architectures for an Event Notification Service Scalable
to Wide-area Networks. PhD thesis, Politecnico di Milano, Milano, Italy,
December 1998.

[CDF98] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an event-based in-
frastructure to develop complex distributed systems. In Proceedings of
the 20th International Conference On Software Engineering (ICSE98),
Kyoto, Japan, April 1998. available at http://ftp.elet.polimi.
it/people/cugola/abstract.html.

[CDRW98] A. Carzaniga, E. Di Nitto, D. S. Rosenblum, and A. L. Wolf. Issues in
supporting event-based architectural styles. In 3�� International Software
Architecture Workshop, Orlando, FL. USA, November 1998.

[CGM97] A. Crespo and H. Garcı́a-Molina. Awareness services for digital libraries.
In C. Peters and C. Thanos, editors, Research and Advanced Technology
for Digital Libraries. First European Conference, ECDL ’97, Pisa, Italy,
1-3 September, volume 1324 of Lecture Notes in Computer Science, pages
147–171. Springer, 1997.

[CM93] S. Chakravarthy and D. Mishra. Snoop: An expressive event specifica-
tion language for active databases. Technical Report UF-CIS-TR-93-007,
University of Florida, Gainesville, Department of Computer and Informa-
tion Sciences, March 1993.

[CM94] S. Chakravarthy and D. Mishra. Snoop: An expressive event specification
language for active databases. Knowledge and Data Engineering Journal,
14:1–26, 1994.

[Con96] Telecommunications Information Networking Architecture (T.I.N.A)
Consortium. Tina notification service description. available at ftp://
ftp.omg.org/pub/docs/telecom/96-07-02.ps, July 1996.

[CRW98] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design of a scalable
event notification service: Interface and architecture. Technical Report
CU-CS-863-98, Department of Computer Science, University of Col-
orado, August 1998.

[Ell97] C. Ellermann. Channel Definition Format (CDF). Technical report, W3C,
Microsoft, 1997. submitted to the W3C on 09 March 97, available at
http://w3.org/tr/NOTE-CDFsubmit.html.

[FHS98] D. Faensen, A. Hinze, and H. Schweppe. Alerting in a digital library
environment – do channels meet the requirements? In C. Peters and
C. Thanos, editors, Research and Advanced Technology for Digital Li-
braries. Second European Conference, ECDL ’98, Heraklion, Greek,
number 1513 in Lecture Notes in Computer Science, pages 643–644.
Springer Verlag, 1998.

[FZ97] M. Franklin and S. Zdonik. A framework for scalable dissemination-
based systems. In Proceedings of the 1997 ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems, Languages & Applica-
tions (OOPSLA ’97), volume 32 of SIGPLAN Notices, Atlanta, Georgia,

17

Oct 5-9 1997. available at http://www.cs.umd.edu/projects/
bdisk/oopsla97.ps.

[GJS92a] N. Gehani, H. V. Jagadish, and O. Shmueli. Composite event specification
in active databases. In Proceedings of the 18th Conference on Very Large
Databases, Morgan Kaufman pubs. (Los Altos CA), Vancouver, August
1992.

[GJS92b] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Event specification in an
active object-oriented database. In Michael Stonebraker, editor, Proceed-
ings of the 1992 ACM SIGMOD International Conference on Manage-
ment of Data, San Diego, California, June 2-5, 1992, pages 81–90. ACM
Press, 1992.

[GJS93] N. Gehani, H. V. Jagadish, and O. Shmueli. COMPOSE: A system for
composite specification and detection. Lecture Notes in Computer Sci-
ence, 759, 1993.

[HICD�98] E. N. Hanson, C. I-Cheng, R. Dastur, K. Engel, V. Ramaswamy, W. Tan,
and C. Xu. A flexible and recoverable client/server database event notifi-
cation system. The VLDB Journal, 7:12–24, 1998.

[KR95] B. Krishnamurthy and D. S. Rosenblum. Yeast: A general purpose event-
action system. Transactions on Software Engineering, 21(10), October
1995.

[LPR98] L. Liu, C. Pu, and K. Richine. Distributed query scheduling service: An
architecture and its implementation. International Journal of Cooperative
Information Systems (IJCIS), 7(2&3), 1998.

[LPT99] L. Liu, C. Pu, and W. Tang. Continual queries for internet scale event-
driven information delivery. IEEE Transactions on Knowledge and Data
Engineering, (Special issue on Web Technologies), January 1999.

[LPTH99] L. Liu, C. Pu, W. Tang, and W. Han. Conquer: A Continual Query Sys-
tem for Update Monitoring in the WWW. International Journal of Com-
puter Systems, Science and Engineering, (Special issue on Web seman-
tics), 1999.

[LRW97] C. Low, J. Randell, and M. Wray. Self-Describing Data Representa-
tion (SDR). internet draft (work in progress), Hewlett Packard Labo-
ratories, October 1997. available at http://keryxsoft.hpl.hp.
com/documents/sdr/draft-low-sdr-00.txt.

[MJS97] G. R. Malan, F. Jahanian, and S. Subramanian. Salamander: A push-based
distribution substrate for internet applications. In USENIX Symposium on
Internet Technologies and Systems, Monterey, California, December 8-
11, 1997, volume 32, 1997. available at http://www.eecs.umich.
edu/˜rmalan/publications/mjsUsits97.ps.gz.

[MSS97] M. Mansouri-Samani and M. Sloman. Gem: A generalised event moni-
toring language for distributed systems. IEE/IOP/BSC Distributed Engi-
neering Journal, 4(2), Feb 1997.

18

[Net] Netscape Netcaster. http://developer.netscape.com/
software/netcast.html.

[Odl95] A. M. Odlyzko. Tragic loss or good riddance? The impending demise of
traditional scholary journals. International Journal of Human-Computer
Studies, 42:71–122, 1995.

[OMG97] OMG. CORBAservices: Common Object Services Specification. Object
Management Group, November 1997. available at http://www.omg.
org/corba/sectran1.htm.

[PL98] C. Pu and L. Liu. Update Monitoring: The CQ project. In Proceedings
of the 2nd International Conference on Worldwide Computing and Its Ap-
plications - WWCA’98,Tsukuba, Japan, volume 1368 of Lecture Notes in
Computer Science, pages 396–411, 1998.

[RW97] D. S. Rosenblum and A. L. Wolf. A design framework for internet-
scale event observation and notification. In Springer, editor, Proceed-
ings of the 6th European Software Engineering Conference, volume
1301 of Lecture Notes in Computer Science, pages 344–360, Berlin,
1997. available at http://www.cs.colorado.edu/users/
alw/AvailablePubs.html.

[SCT95] G. Starovic, V. Cahill, and B. Tangney. An event-based object model for
distributed programming. In Proceedings of the Workshop on Simulation
and Interaction in Virtual Environments, pages 172–177, Iowa, 1995.

[SDL] The Simple Digital Library Interoperability Protocol (SDLIP). available
at http://www-diglib.stanford.edu:8080/˜testbed/
doc/SDLIP/sdlip.htm.

[TIB] TIBCO. http://www.tibco.com/.

[YGM95] T. W. Yan and H. Garcı́a-Molina. SIFT - a tool for wide-area informa-
tion dissemination. In USENIX 1995 Technical Conference on UNIX and
Advanced Computing Systems, Conference Proceedings, pages 177–186,
New Orleans, Louisiana, January 1995. USENIX Association, Berkeley,
CA, USA.

19

