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Abstract

An arrangement of oriented pseudohyperplanes in Euclidean d�space de�nes on the
set X of pseudohyperplanes a set system �or range space� �X�R�� R � 	X of VC�
dimension d in a natural way
 to every cell c in the arrangement assign the subset
of pseudohyperplanes having c on their positive side� and let R be the collection of
all these subsets� We investigate and characterize the range spaces corresponding to
simple arrangements of pseudohyperplanes in this way� such range spaces are called
pseudogeometric� and they have the property that the cardinality of R is maximum
for the given VC�dimension� In general� such range spaces are called complete� and
we show that the number of ranges r � R for which also X � r � R� determines
whether a complete range space is pseudogeometric� Two other characterizations go
via a simple duality concept and 
small� subspaces� The correspondence to arrange�
ments is obtained indirectly via a new characterization of uniform oriented matroids

a range space �X�R� naturally corresponds to a uniform oriented matroid of rank
jXj � d if and only if its VC�dimension is d� r � R implies X � r � R and jRj is
maximum under these conditions�
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� Introduction and statement of results

Set systems of 
nite VC�dimension have been investigated since the early seven�
ties �starting with 
She�� 
Sau�� and 
VC���� and the concept has found numer�
ous applications in statistics 
Dud�� Vap� Ale�GZ� Dud	� Pol�� Tal� Pol	�� combina�
torics 
Ass�DSW�Hau�KPW�MWW�� learning theory 
BEHW�Flo� and computa�
tional geometry 
CM�CW�HW�Mat�� Although the VC�dimension is a purely combi�
natorial parameter associated with a set system� it seems that it is mainly applicable
to �and naturally occurs in� geometric settings� i�e� when the set system �X�R� is
obtained with X as a set of points in d�space� and with R containing the intersec�
tions of X with certain ranges in d�space �hyperplanes� halfspaces� balls� simplices�
etc��� That is why we use the terms range space for �X�R�� and range for a set in
R�

The goal of this paper is to elaborate on this connection to geometry� in partic�
ular to arrangements of �oriented� hyperplanes� We will succeed in characterizing
those range spaces � called pseudogeometric range spaces � which come from hyper�
planes� but we have to respect the usual frontiers of such combinatorial character�
izations �pseudolines 
Lev�Gr�u	�GP	�Rin�� circular sequences 
Per�GP��� oriented
matroids 
BL� FL� EM�BLSWZ��� we cannot distinguish between stretchable and
non�stretchable pseudoline �or pseudohyperplane� arrangements� so our analogy is
actually to simple pseudohyperplane arrangements�

Intuitively speaking� arrangements of pseudohyperplanes consist of �topological�
hyperplanes with the same intersection properties as straight hyperplanes� so they
di�er from the usual arrangements only with respect to the geometric notion of
straightness that is not �recognized� by combinatorial structures like range spaces�

A key concept in our approach is to exploit the structure of range spaces induced
by maximality conditions on the number of ranges� an interesting new insight we
have to o�er in this context is the fact that in order to tell whether a range space
�X�R� is pseudogeometric� it su�ces to count the number of ranges r � R for
which the complement X � r is in R� this characterization presumes that �X�R�
is complete� i�e� jRj is maximum for the VC�dimension of �X�R�� This is also the
basis of another characterization where we show that it su�ces to consider �small�
subspaces to decide upon the pseudogeometric nature of the range space�

When we consider range spaces where jRj is maximum under the additional re�
striction that R is closed� i�e� r � R implies X � r � R� then this class on the
one hand has a very close relation to the pseudogeometric range spaces and on the
other hand is already powerful enough to encode uniform oriented matroids� these
combinatorial objects are known to have topological representations as arrange�
ments of pseudohyperplanes in projective space� and they will form the �bridge�
between pseudogeometric range spaces and the Euclidean arrangements of pseudo�
hyperplanes�

We want to avoid to introduce arrangements of pseudohyperplanes in this pa�
per� this� however� raises the problem of properly de
ning pseudogeometric range
spaces� Our approach will be to extract just one intuitive property that one �ex�
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pects� these arrangements to have� and use it for the de
nition� Only at the end
of the paper we will justify this proceeding by relating the range spaces obtained
in this way to oriented matroids� This has the advantage that the paper presents
itself at a completely combinatorial level� the way to get from oriented matroids to
actual arrangements and vice versa is not part of it but can be found elsewhere� The
reader familiar with oriented matroid terminology might discover a certain coinci�
dence with concepts introduced here� For the bene
t of the unacquainted reader�
however� we will avoid to refer to this terminology and rather develop the theory
from scratch using the range space language which we feel to be more appealing for
a 
rst encounter with the subject�

In the rest of this section we will formally introduce the crucial concepts and
state our results� Proofs and the introduction of further �mainly technical� tools are
postponed to the rest of the paper�

Range spaces� VC�dimension� and the fundamental lemma� We start by
reviewing the basic de
nitions and facts about VC�dimension� We will use the term
�range space� rather than �set system� or �hypergraph�� because of the motivating
examples and in order to distinguish from the graphs we use as tools�

De�nition � A range space is a pair S � �X�R�� with X a set and R � 	X � The
elements in X are called elements of S� and the sets in R are called ranges� S is
called 
nite� if X is �nite�

For Y � X� the restriction of S to Y is de�ned by SjY � �Y�RjY �� RjY ��
fr � Y j r � Rg� We say that Y is shattered by R if RjY � 	Y �

The VC�dimension of S� denoted by dim�S�� is the maximum cardinality of a set
Y � X shattered by R� if R is empty� then we de�ne the VC�dimension to be ���

For example� if X is a set of real numbers� and the set R of ranges is determined by
intersecting X with intervals� then no three�element set is shattered� we can never
�cut out� the smallest and largest out of three numbers by an interval� Since any two
number set can be shattered� the VC�dimension of this range space is two� Many
more examples can be obtained via geometric ranges� some of which we will meet
shortly�

Obviously� the number of intervals de
ned on n real numbers is quadratic in n�
The following lemma shows that this follows also from the fact that the range space
has VC�dimension two� The lemma can be seen as the fundamental lemma and the
starting point of investigations of VC�dimension� and it was proved independently
�and with di�erent motivations� by Shelah 
She�� Sauer 
Sau� �answering a question
of Erd�os�� and Vapnik and Chervonenkis 
VC��� Although this lemma �and some
notions we will use in the sequel� can be formulated for in
nite range spaces as well�
we will restrict our attention to the 
nite case� which is the one occurring in our
application� Therefore� in all subsequent considerations any range space is assumed
to be 
nite�
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In the following we will use the integer function

�d�n� �

�
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�
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�

for d � �� and n � �� � is additive in the following sense�

Fact �
�d�n� � �d�n� �� � �d���n� ��� for d � �� n � ��

Lemma � Let �X�R� be a range space of VC�dimension d� Then jRj � �d�jXj��

To see that the bound is tight� let X be a 
nite set and let R be the set of all
subsets of X with at most d elements� Clearly� the resulting range space has VC�
dimension d� and indeed jRj attains the upper bound of the lemma� The above
example with intervals is another example for VC�dimension two where the upper
bound in Lemma � is attained� An interesting implication is that for 
xed d� jRj is
only polynomial �namely of the order O�nd�� rather than exponential�

Complete range spaces and range spaces from halfspaces� This paper con�
centrates on range spaces for which the upper bound in Lemma � is attained with
equality�

De�nition 	 A range space �X�R� of VC�dimension d is called complete if jRj
equals �d�jXj��

An interesting instance of a complete space can be derived from an arrangement
of hyperplanes� Let X be a set of n hyperplanes in d�space and let A�X� denote the
arrangement formed by the hyperplanes� We assume X to be in general position� i�e�
any d hyperplanes meet in a unique vertex� and any d� � have empty intersection�
Suppose that for every hyperplane one of the two halfspaces is distinguished as
positive� Then each cell �or d�face� c of A�X� can be labeled with a subset of X�
namely the set of hyperplanes which have c in its positive halfspace �Figure ��� If
R denotes the set of all cell labels� then S � �X�R� is called the description of
cells of A�X� 
Ass�Dud�� and is complete of VC�dimension d� This follows from the
well�known fact that number of cells of A�X� is exactly �d�n� 
Gr�u��Zas�Ede��

A range space which stems from a set of oriented hyperplanes �or equivalently�
from an arrangement of halfspaces� in this way is called geometric�

Pseudogeometric range spaces� A key step in many inductive proofs for arrange�
ments of hyperplanes is to consider the arrangement obtained by removing one of
the hyperplanes and the arrangement �of one dimension smaller� obtained as the
intersection of one of the hyperplanes with the remaining hyperplanes� We want
corresponding operations for our range spaces� For a geometric range space� remov�
ing a hyperplane just means to remove its label from every range� For the other
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Figure �� Description of cells of an oriented hyperplane arrangement

operation� observe that every �d� ���face on a hyperplane x corresponds to two ad�
jacent cells whose label sets di�er exactly by x� That is� in the corresponding range
space those adjacent cells give rise to pairs of ranges �r� r � fxg�� This motivates
the following de
nition for a general range space�

De�nition 
 For a range space S � �X�R� and x � X� we de�ne

S � fxg � �X � fxg� R� fxg�� where R � fxg �� fr � fxg j r � Rg

and

Sfxg � �X � fxg� Rfxg�� where Rfxg �� fr � R jx �� r� r � fxg � Rg�

Since the pairs of ranges which di�er in exactly one element seem to be crucial for
the structure of a range space� we look at the collection of such pairs which yields a
graph on the ranges� �We denote by A	B the symmetric di�erence of sets A and
B��

De�nition � For a range space S � �X�R�� the distance���graph D��S� of S is the
undirected graph on vertex set R with edge set

E �� ffr� r�g � R j jr	r�j � �g�

where edge fr� r�g is labeled with the unique element in r	r��
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Let us consider a range space obtained from a ��dimensional arrangement of hyper�
planes� i�e� a set of points on a line� Then the resulting VC�dimension is one� and
it is easy to see that the distance���graph is simply a path �connecting the cells in
the order as they appear on the line�� In general� we get the following nice property�
proved e�g� in 
Dud��AHW��

Lemma � If S � �X�R� is a complete range space of VC�dimension �� then D��S�
is a tree� and each x � X occurs exactly once as an edge label of D��S��

So there is a natural one�to�one correspondence between trees and complete range
spaces of VC�dimension one� It is quite easy to see that whenever the distance���
graph is a path� then the range space is geometric �and vice versa�� Consequently�
geometric range spaces of VC�dimension one are completely characterized�

In order to carry this characterization to higher VC�dimension� we should at
least require that in a geometric range space �X�R� the subspace Rfxg �coming
from the subarrangement on the hyperplane x� is geometric for all x � X� and
apply this property recursively until we reach the just settled one�dimensional case�
This should also make sense if the arrangement in question actually consists of
pseudohyperplanes �which coincide with hyperplanes in the one�dimensional case��
based on this property we will de
ne pseudogeometric range spaces� As mentioned
above� the question whether the following de
nition really describes the range spaces
coming from arrangements of pseudohyperplanes� will become an issue only in the
last section� For the time being it su�ces to have a formal de
nition we can work
with� along with the intuition that it describes arrangements�

De�nition 
 A complete range space S � �X�R� of VC�dimension d is called
pseudogeometric if either

�i� d � �� or
�ii� d � � and D��S� is a path� or
�iii� d � 	 and Sfxg is pseudogeometric for all x � X�

It is interesting to observe that the 
rst example of a complete range space we had
�take as ranges all sets of up to d elements� is as non�geometric as possible� For
example� for d � � this gives a range space where the distance���graph is a star�

We will now proceed by exhibiting �probably easier to grasp� equivalent con�
ditions for a complete range space to be pseudogeometric� While the necessity of
these conditions will be quite obvious �from the geometric intuition�� it is somewhat
surprising that they are already su�cient�

Duality and characterization via small subspaces�

De�nition � For a range space S � �X�R� the complementary dual �S of S is
de�ned as

�S � �X��R�� where �R �� 	X �R �
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We will prove that the complementary dual of a complete range space of VC�
dimension d with n elements is again complete of VC�dimension n�d��� Similarly�
we get for pseudogeometric range spaces�

Theorem �� A range space is pseudogeometric if and only if its complementary
dual is pseudogeometric�

In particular� this implies that if S � �X�R� is pseudogeometric of VC�dimension
d� and jXj � d � 	� then �S is pseudogeometric of VC�dimension � and so its
structure is completely determined� which � vice versa � implies that the structure
of S is completely determined �we will be more speci
c about this later�� This is
the range space version of the fact that � with respect to combinatorial type � there
is only one simple d�dimensional arrangement of d� 	 �pseudo��hyperplanes�

We can also prove that for determining whether a complete range space of VC�
dimension d is pseudogeometric� it su�ces to look at all the �d � 	��element sub�
spaces� This can be summarized to give

Theorem �� Let S � �X�R� be complete of VC�dimension d� The following state�
ments are equivalent	

�i� S is pseudogeometric�
�ii� SjY is pseudogeometric for all Y � X� jY j � d � 	�
�iii� SjY is geometric for all Y � X� jY j � d� 	�

Characterization via cardinality of boundary� The number of unbounded
cells in a simple hyperplane arrangement of n hyperplanes in d�space is 	�d���n�
��� This can easily be seen by choosing one of the hyperplanes� call it h� and
considering two hyperplanes parallel to h on either side� su�ciently far away so
that all unbounded �and only unbounded� cells are intersected� In terms of the
corresponding range space� the labels associated with these unbounded cells are
those where also the complementary label appears�

De�nition �� For a range space S � �X�R� the �complementary� boundary is
de�ned as

�S � �X� �R�� where �R �� fr � R jX � r � Rg�

Similar as in Lemma � we can prove an upper bound for j�Rj� namely j�Rj �
	�d���n � �� for a range space �X�R� with jXj � n and dim�X�R� � d� Again
simple hyperplane arrangements give rise to range spaces which attain this bound�
and actually we get�

Theorem �� A complete range space �X�R� of VC�dimension d � � is pseudogeo�
metric if and only if j�Rj � 	�d���jXj � ���



 

Correspondence to oriented matroids� In order to relate pseudogeometric
range spaces to simple arrangements of oriented pseudohyperplanes we exploit the
representation theorem of Folkman! Lawrence 
FL� that relates such arrangements
to oriented matroids� so actually we want a correspondence between pseudogeometric
spaces and oriented matroids� To this end we need to introduce a new class of
range spaces� called pseudohemispherical range spaces� This is due to the fact that
pseudogeometric spaces come from arrangements in Euclidean space while oriented
matroids correspond to arrangements in Projective space� the pseudohemispherical
property is the �projective version� of the pseudogeometric one�

De�nition �	 Let S � �X�R� be a range space� The �complementary� closure of
S is the range space

S � �X�R�� where R �� R � fX � r j r � Rg�

S is called closed� if S � S�

De�nition �
 Let S � �X�R� be a range space of VC�dimension d � �� S is called
pseudohemispherical if there exists a pseudogeometric space T �� S with S � T � T
is called an underlying space of S�

In order to get an intuitive idea what this de
nition means� recall that the d�
dimensional Projective space can be visualized as the sphere Sd with hyperplanes
being great �d � ���spheres� and we can get from a Euclidean hyperplane arrange�
ment to its corresponding projective one as follows� think of Ed as the tangential
hyperplane touching Sd � Ed�� in the north pole� Ed can be mapped bijectively
to the open northern hemisphere of Sd using central projection� This transforma�
tion takes a hyperplane h of Ed to a relatively open great halfsphere of dimension
d � �� This halfsphere can be continued to a full great �d � ���sphere in Sd� so an
arrangement of hyperplanes in Ed induces an arrangement of great spheres in Sd�
hence a Projective arrangement � the equator plays the role of the �line at in
nity�
�Figure 	�� Moreover� if we have positive and negative halfspaces associated with the
hyperplanes� this information in an obvious way determines positive and negative
hemispheres associated with the great spheres� so that we obtain an arrangement of
hemispheres in Sd� since an antipodal cell has been generated for every cell in the
underlying hyperplane arrangement� the corresponding description of cells �de
ned
in the obvious way as for halfspace arrangements� is the closure of a geometric range
space and will be called a hemispherical range space� Consequently� we will call the
closure of a pseudogeometric range space pseudohemispherical�

Under the closure operation we lose information� since di�erent pseudogeometric
range spaces can have the same closure� This corresponds to the fact that depending
on where the equator is chosen in an arrangement of hemispheres� the underlying
Euclidean arrangement generating it changes� This� however� is hardly a nuisance �
by �
xing� the equator we get a one�to�one correspondence�
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Figure 	� From halfspaces to hemispheres

De�nition �� For a range space S � �X�R� and e �� X� the range space

"S � �X � feg� "R� with "R �� R � f�X � feg�� r j r � Rg

is called the extended closure of S�

It is not surprising from the intuition that the extended closure of a pseudogeo�
metric range space is pseudohemispherical as well� without proof we state

Theorem �� The mapping S 
� "S forms a bijection between the pseudogeometric
range spaces on X and the pseudohemispherical range spaces on X � feg�

It turns out that a pseudohemispherical space S � �X�R� of VC�dimension d

with jXj � n attains the maximum number of ranges that a closed range space
of this VC�dimension can have� namely jRj � 	�d���n � �� �this is the bound of
Therorem ���� Moreover� the pseudohemispherical spaces are already characterized
by this property� a fact that is not apparent from their rather clumsy de
nition� As
a consequence we obtain a new and simple characterization of the uniform oriented
matroids� and this will 
nally give us the relation to arrangements �details are given
in the last section��

Theorem �
 For a set X of cardinality n there exists a natural �one�to�one� cor�
respondence between the uniform oriented matroids of rank n� d � � on X and the
closed range spaces �X�R� of VC�dimension d with jRj � 	�d���n� ���
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� Basics and Complete Range Spaces

This section will make the reader familiar with the necessary range space termi�
nology� at the same time it presents basic properties of complete range spaces� In
particular� we will introduce minors �or subspaces� of range spaces and prove the
fundamental lemma of VC�dimension theory as well as the related bound on the
number of ranges in the boundary of a range space� We give equivalent charac�
terizations of completeness and discuss the structure of the distance���graph for
complete range spaces�

Basics on range spaces�

De�nition �� For a range space S � �X�R�� Y � X� we de�ne

S � Y � �X � Y�R � Y �� where R� Y �� fr � Y j r � Rg�

SY � �X � Y�RY �� where RY �� fr � R j r � Y � �� r � Y � � R 
 Y � � Y g�

S�Y and SY are the minors of S with respect to Y � S�Y is said to arise from
S by deletion of Y � while SY arises by contraction of Y � In a natural way S�Y and
SY generalize S � fxg and Sfxg� as introduced in De
nition �� If S is geometric�
S�Y is obtained by deleting the hyperplanes in Y from the generating arrangement�
while SY corresponds to the subarrangement induced by the remaining hyperplanes
in the #at

T
h�Y h�

If Y is nonempty and y�� ���� yk is any ordering of the elements of Y � then clearly
S � Y � �����S � fy�g�� ����� fykg� Via an easy induction part�i� of the following
lemma also implies SY � �����Sfy�g�����fykg�

Lemma �� Let S � �X�R� be a range space� x� y � X�Y � X�

�i� �RY �fxg � RY �fxg� for x �� Y �
�ii� jRj � jR� fxgj� jRfxgj�
�iii� R � Y � RjX�Y �
�iv� Rfxg � fyg � �R � fyg�fxg�
�v� dim�S� � d � � implies dim�S � fxg� � d� dim�Sfxg� � d � ��

The proof requires only elementary set manipulations and is omitted for the sake
of brevity� Now we are able to show the fundamental lemma of VC�dimension theory
that establishes a bound of jRj � �d�n� for any range space �X�R� of VC�dimension
d with jXj � n elements�

Proof of Lemma �� We proceed by induction on d and n� The assertion is
easily seen to be true for d � � and for n � d � �� since in this case jRj � 	d �Pd

i��

�
n

i

�
� �d�n��

Now assume d � �� n � d� by hypothesis the bound holds for S � fxg and Sfxg�
x � X� Using the preceding lemma this immediately yields

jR� fxgj � �d�n � �� and jRfxgj � �d���n� ���



Vapnik�Chervonenkis Dimension and �Pseudo��Hyperplane Arrangements ��

so
jRj � jR � fxgj� jRfxgj � �d�n� �� � �d���n� �� � �d�n��

S � �X�R� is maximal if dim�X�R � frg� � dim�X�R� for all r � 	X � R� By
the fundamental lemma every complete space is maximal� but the converse is not
true in general� As a counterexample consider the range space �X�R� with

X � f�� 	� �� �g�

R � ff�g� f	g� f�g� f�� �g� f	� �g� f�� �g� f�� 	� �g� f�� �� �g� f	� �� �g� f�� 	� �� �gg�

It is straightforward to check that S is maximal of VC�dimension 	 but not complete�
since jRj � �� � ����� � ���

The fundamental lemma helps to prove another bound of a similar #avor we
have already mentioned� namely the one on the maximum number of ranges in the
boundary of a range space �De
nition �	�� We obtain

Theorem �� Let �X�R� be a range space of VC�dimension d � �� jXj � n � ��
Then j�Rj � 	�d���n� ���

Proof� Fix x � X and de
ne R� �� fr � �R j x �� Rg� It is easily seen that if
Y � X � fxg is shattered by R�� then Y � fxg is shattered by �R� so dim�X �
fxg� R�� � d � �� which by the fundamental lemma implies jR�j � �d���n � ���
Finally observe that j�Rj � 	jR�j�

Characterizing complete range spaces� The extremal property de
ning com�
plete range spaces �De
nition �� does not give immediate insights into the structure
of these range spaces� so it seems appropriate to look for equivalent characterizations
that reveal more of it� For example� one can show that the completeness property is
inherited by the minors� a fact that is the basis of many subsequent inductive proofs�
Another useful property is that completeness is maintained under duality �De
ni�
tion ��� Before we give a list of equivalent statements most of which characterize
completeness via certain properties of minors� let us brie#y discuss the relation be�
tween the two minor operations of deleting and contracting elements �De
nition ����
the point we want to stress is that although they look like very di�erent operations
at 
rst glance� they aren�t� On the contrary� they should be considered as having
equal rights with respect to all concepts in this paper� The reason is that deletion
and contraction change their roles under duality�

Observation �� Let S � �X�R� be a range space� Y � X� Then

�i� ��R � Y � � ��R�Y �
�ii� ��RY � � ��R�� Y �
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As it will turn out� we are only concerned with classes of range spaces that
are closed under duality� so in any context referring to the structure of a range
space the minor operations will appear in a completely symmetric way� if one of
them is preferred in an argument� this is merely due to technical convenience� The
symmetry already appears in the next theorem which will be the major tool to
handle and manipulate complete range spaces�

Theorem �� Let S � �X�R� be a range space� d � � a natural number with
jXj � n � d� The following statements are equivalent	

�i� S is complete of VC�dimension d�
�ii� S � fxg and Sfxg are complete of VC�dimension d and d � ��

respectively� for all x � X�
�iii� dim�S� � d and S�fxg and Sfxg are complete of VC�dimension

d and d� �� respectively� for some x � X�
�iv� dim�S� � d and Sfxg is complete of VC�dimension d� �� for all

x � X�
�v� dim�S� � d and jRAj � �� for all A � X� jAj � d�
�vi� �S is complete of VC�dimension n� d� ��
�vii� dim��S� � n� d� � and S�fxg is complete of VC�dimension

d� for all x � X�
�viii� dim��S� � n � d � � and jRjAj � 	d�� � �� for all A � X�

jAj � d� ��

To see that the the additional dimension requirements in some of the statements
are necessary in order to guarantee equivalence with �i�� consider X � f�� 	� �g and

R � f�� f�g� f	g� f�� 	� �gg with x � � for �iii��

R � f�� f�g� f	g� f�g� f�� 	� �gg for �iv�� �v� and

R � ff�� 	g� f�� �g� f	� �gg for �vii�� �viii��

Such examples exist for arbitrary jXj and d�

Proof� We proceed by showing 
rst the equivalence of statements �i� through �v��
then prove �i� � �vi�� together this yields the missing equivalences�

�i� ��ii� let S be complete of VC�dimension d� x � X� Then

�d�n� � jRj � jR� fxgj� jRfxgj � �d�n� �� � �d���n� �� � �d�n��

This yields jR � fxgj � �d�n � �� and jRfxgj � �d���n � ��� so S � fxg and Sfxg

are complete of VC�dimension d and d� �� respectively� for all x � X�
�ii�� �iii���iv� we only need to show that dim�S� � d� Let d� � d denote dim�S��

and let A with jAj � d� be shattered in R� If jXj � d� then there is y � X �A� and
A is shattered also in R � fyg� since S � fyg is of VC�dimension d we get jAj � d�
If jAj � jXj � d� then R � 	A which implies Rfxg � 	A�fxg for all x � X� so
d � � � dim�Sfxg� � jAj � ��
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�iv�� �i� we proceed by induction on n� If n � d��� let Y be a set of cardinality
d shattered in R� Then R � fxg � RjY � 	Y for x the unique element in X � Y �
and observing that 	d � �d�n� �� we obtain

jRj � jR � fxgj� jRfxgj � 	d � �d���n� �� � �d�n��

Now assume n � d � � and choose x � X� �S � fxg�fyg is of VC�dimension at
most d� � for all y �� x� and applying Lemma 	��iv� we get

�d���n � 	� � j�R � fxg�fygj � jRfyg � fxgj � �d���n� 	��

which holds because Sfyg � fxg is complete of VC�dimension d � � by implication
�i���ii�� But then �S � fxg�fyg � Sfyg � fxg� so �S � fxg�fyg is complete of VC�
dimension d � �� Since this holds for all y� S � fxg is complete of dimension d by
the inductive hypothesis� Finally we get

jRj � jR� fxgj� jRfxgj � �d�n� �� � �d���n� �� � �d�n��

which means that S is complete� The last equation also yields implication �iii��
�i��

�i���v� to see that ��� holds� iterate implication �i���iv� d times� starting from
S� This shows that SA is complete of VC�dimension � for all jAj � d� which implies
jRAj � ���n� � �� If on the other hand jRAj � � then SA is complete of VC�
dimension �� for all jAj � d� Using the fact that dim�S� � d and Lemma 	��v� we
get dim�SB� � d� k for jBj � k� Iterative application of �iv���i� then shows that
S is complete�

�i�� �vi� because of symmetry it su�ces to show ���� we have 	n � �d�n� �
�n�d���n�� so it remains to show that �S is of VC�dimension at most n � d � ��
Assume on the contrary that there is Y � X� jY j � n� d� shattered in �R� Then
jX � Y j � d� and from �i�� �iv� we get that there is a unique range r � RX�Y �
Since r � Y � there is r� � �R� such that Y � r� � r� This implies r� � r and
r� � r contains no element of Y � But then r� is of the form r� � r � Z�Z � X � Y �
which is a contradiction� since r � RX�Y implies that all the ranges of this form are
contained in R�

�vi�� �vii�� �viii� these equivalences are obtained by applying the �dual� equi�
valences �i� � �iv� � �v� to �S� together with Observation 		�

Corollary �	 Let S � �X�R� be complete of VC�dimension d� jXj � n� Then for
all x� y � X

Sfxg � fyg � �S � fyg�fxg�

Proof� For d � � the statement is obvious� and for n � d we have Rfxg � fyg �
�R � fyg�fxg � 	X�fx�yg� In any other case the theorem implies jRfxg � fygj �
j�R� fyg�fxgj � �d���n� 	�� Together with Lemma 	��iv� the claim follows�



��

The distance���graph� As another� more technical tool to facilitate the subse�
quent considerations� we introduce the notion of �swapping� a range space� which in
case of geometric range spaces corresponds to the reorientation of hyperplanes in
the generating arrangement�

De�nition �
 For S � �X�R� and D � X� S swapped D is the the range space

S	D � �X�R	D� with R	D �� fr	D j r � Rg�

Lemma �� For any range space S � �X�R��D � X we have

�i� jR	Dj � jRj�
�ii� dim�S	D� � dim�S��

We have already indicated that the distance�
�graph �De
nition �� captures cru�
cial properties of a range space� in particular� pseudogeometric spaces are de
ned
via a certain property of it �De
nition  �� We will conclude this section by exhibit�
ing a basic feature of the D��graph in the case of complete range spaces� and we
use the fact that swapping does not change the D��graph �strictly speaking� D��S�
and D��S	D� are isomorphic with corresponding edges having the same labels�� for
geometric spaces this re#ects the fact that reorienting some hyperplanes does not
change the combinatorial structure of the arrangement� So whenever we consider
some structural property of D��S� �isomorphism type� connectivity� etc�� we are
free to replace S with some swapped version S	D� and an appropriate choice of D
may result in shorter and more elegant formulations�

The key result on the D��graph of a complete range space is that it is connected�
actually� there holds a stronger property� any two ranges are joined by a path of the
shortest possible length which equals the cardinality of their symmetric di�erence�
For a characterization of such graphs see 
Djo�� First we need a lemma�

Lemma �� Let S � �X�R� be complete of VC�dimension d � � and assume X � R�
Then� for all r � R� r �� X there exists x � X such that r � fxg � R�

Proof� We proceed by induction on n �� jXj� For n � d� any subset of X is a range
so the lemma holds in this case� Now assume n � d and consider r � R� r �� X�
Choose y � X with y �� r� If r � X � fyg then r � fyg � R� Otherwise the
inductive hypothesis applies to r � R � fyg� so there exists z � X � fyg with
r � �R � fyg�fzg � Rfzg � fyg �Corollary 	��� This is equivalent to r � Rfzg or
r � fyg � Rfzg� which implies r � fzg � R or r � fyg � R�

Theorem �
 Let S � �X�R� be complete of VC�dimension d � �� For any two
ranges r� r� � R there is a path of length ��r� r�� �� jr	r�j joining r and r� in D��S��
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Proof� By swapping assume r� � X and iterate the lemma�

In case of dim�S� � �� D��S� is a tree on R with every element of X occurring
exactly once as an edge label� this has been stated in Lemma �� and to prove it is
easy now� from the previous theorem we get that D��S� is connected� To see that
it is acyclic note that x � X occurs exactly jRfxgj � � times as an edge label� On
the other hand it is an easy observation that if x � X occurs as a label in a cycle of
edges then it has to occur at least twice in this cycle� It follows that there can be
no cycle�

� Pseudogeometric Range Spaces

In this section we basically prove the characterizations of pseudogeometric spaces via
duality �Therorem ���� small subspaces �Therorem ��� and cardinality of bound�
ary �Therorem ���� The latter will be based on a version of Levi�s Lemma for
pseudogeometric spaces� Before this we present a characterization theorem similar
to Therorem 	� for complete spaces�

Let us review the de
nition of pseudogeometric spaces� the following is just the
non�recursive version of De
nition  �

De�nition �� A complete range space S � �X�R� of VC�dimension d is called
pseudogeometric if either d � � or d � � and D��SY � is a path for any jY j � d� ��

Observe that for jXj � d� �� any complete space is pseudogeometric� As in the
complete case� we can come up with a list of equivalent statements characterizing
the pseudogeometric property�

Theorem �� Let S � �X�R� be a range space� d � 	 a natural number with
jXj � n � d� 	� The following statements are equivalent	

�i� S is pseudogeometric of VC�dimension d�
�ii� S � fxg and Sfxg are pseudogeometric of VC�dimension d and

d � �� respectively� for all x � X�
�iii� dim�S� � d and Sfxg is pseudogeometric of VC�dimension d���

for all x � X�
�iv� dim�S� � d and SA is pseudogeometric of VC�dimension �� for

all A � X� jAj � d� ��
�v� �S is pseudogeometric of VC�dimension n� d� ��
�vi� dim��S� � n � d � � and S � fxg is pseudogeometric of VC�

dimension d� for all x � X�
�vii� dim��S� � n � d � � and SjA is pseudogeometric of VC�

dimension d� for all A � X� jAj � d� 	�



��

Compared with the corresponding Therorem 	� for complete range spaces� we
lose the characterizations via the minors SA for jAj � d and SjA for jAj � d � � �
they can be pseudogeometric even if S is not� However� if we consider minors on one
element more� i�e� SA for jAj � d � � and SjA for jAj � d � 	 then we can already
recognize the pseudogeometric property�

An analogue of statement �iii� in Therorem 	� cannot be added here� There are
cases where S � fxg and Sfxg are pseudogeometric of VC�dimension d and d � ��
respectively� for some x� but S itself is no more than complete� To get such an
example� let S � � �X�R�� be a pseudogeometric range space� 
x x � X and de
ne
S � �X�R� by R �� R�fxg � fr � fxg j r � R� � R�fxgg� i�e� R arises from R� by
adding x to every range not in Rfxg� We get R� fxg � R� � fxg and Rfxg � R�fxg�
so these minors of R will be pseudogeometric� On the other hand it is not hard to
show that S is again complete� but since for A � X � fxg we have

RA � RA�fxg � fr � fxg j r � R�A �R�A�fxgg�

by chosing x � X and jAj � d � � such that RA �� R�A �which we can do for
jXj � d� we see that SA is not pseudogeometric� so S cannot be pseudogeometric
by de
nition� Observe that we need to require d � 	 � otherwise statement �iii�
only implies that S is complete� the same holds for the requirement jXj � d � 	 in
connection with statement �v��

Proof� The equivalence of �i�� �iii� and �iv� just repeats the two de
nitions of the
pseudogeometric property we had �De
nition  � De
nition 	��� Furthermore� �ii�
implies �iii�� equivalence �v� � �vi� � �vii� is dual to �i� � �iii� � �iv�� so we are
left to prove equivalence �i� � �iv�� where because of symmetry one implication
su�ces� Assume S is pseudogeometric of VC�dimension d� By Therorem 	� �S
is already complete of VC�dimension n � d � �� so by Therorem �� �which we will
prove shortly� it su�ces to show that j���R�j � 	�n�d���n� ��� which by an easy
computation follows from j���R�j � j �Rj � jR� �Rj�

The characterization of the pseudogeometric property via small subspaces �Therorem ���
is now an immediate consequence of the theorem� The requirement �dim��S� �
n � d � �� can be omitted since it is already imposed by the completeness of S�
and the fact that for jY j � d � 	 any pseudogeometric range space SjY is actually
geometric follows by considering the dual range space ��SjY � � ��S�X�Y which
is pseudogeometric of VC�dimension �� its D��graph is a path connecting all the
ranges� so any two pseudogeometric range spaces of VC�dimension � on Y are iso�
morphic� i�e� equal up to swapping and renaming of elements� Of course� this carries
over to the primal setting� so any arrangement of d� 	 hyperplanes in d�spaces has
to generate an isomorphic copy of SjY � which means that this range space has to be
geometric�

We have just mentioned the swap operation �De
nition 	�� in connection with
pseudogeometric spaces� and it is quite clear that swapping does not a�ect the
pseudogeometric property�
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Lemma �� S � �X�R� is pseudogeometric if and only if S	D is pseudogeometric�
D � X�

Levi�s Lemma� After we have already used Therorem �� �the characterization
of pseudogeometric range spaces via the number of ranges in the boundary�� we
are now approaching its proof� It will be based on a variant of Levi�s Lemma
for pseudogeometric range spaces� The original version states that a pseudoline
arrangement in the plane can be enlarged by a new pseudoline containing any two
given points �which do not lie already on a common pseudoline�� Although this
fact is not very hard to prove� it should not be considered trivial� already in three
dimensions� it is not true that every pseudoplane arrangement can be enlarged by
a pseudoplane containing three given points 
GP�� �recently� Richter�Gebert 
RiG�
has shown that there are arrangements that do not even allow a new pseudoplane
containing certain two points�� However� it is still true in all dimensions that any
two points can be connected by a pseudoline� i�e� a curve in space which intersects
�and crosses� every pseudohyperplane exactly once� In the following we de
ne the
range space analogue of such a curve�

De�nition �� Let S � �X�R� be a range space� A segment in S is a set of ranges
which can be enumerated as fr�� ���� rkg such that for � � i � k� ri��	ri � fxig�
x�� ���� xk distinct elements from X� The segment is said to join r� and rk� R� � R

admits a segment if there exists a segment containing R�� The segment is a line if
k � jXj�

Equivalently we could say that a line is a pseudogeometric subspace �X�L��
L � R� of VC�dimension �� Note that Therorem 	 states that in a complete range
space any two ranges admit a segment� Using this fact we obtain

Lemma �� For S � �X�R� complete� ranges r and r� admit a line if and only if
there are ranges t�X � t � R such that r � r� � t and r� � r � X � t�

Theorem �	 �Levi�s Lemma� If S � �X�R� is pseudogeometric of VC�dimension
d � �� then any two ranges r� r� � R admit a line�

Proof� We proceed by induction on d and ��r� r�� � jr	r�j�
The assertion is true for d � �� since in this case R itself is a line� Furthermore�

if ��r� r�� � �� i�e� r � r�� then the preceding lemma shows that it is su�cient to

nd one pair of complementary ranges t�X� t� Such a pair always exists� as follows
by easy induction on d�

Now let S � �X�R� be pseudogeometric of VC�dimension d � �� r� r� � R with
distance $ �� ��r� r�� � � and assume the theorem holds for any pseudogeometric
range space of VC�dimension less than d and any pair of ranges with distance less
than $ in R�

Consider a segment joining r and r� and let u be the range followed by r� on this
segment� After swapping� if necessary� we may assume r� � u�fxg for some x � X�



� 

Since ��r� u� � $ � �� r and u admit a line L by hypothesis� so there are ranges
t�X � t with

r � u � t� u� r � X � t�

If x � X � t then we obtain

r � r� � t� r� � r � X � t�

so we are done� Otherwise x � t� and since x �� r� by traversing L from r to t we
encounter a range s � Rfxg� Sfxg is pseudogeometric� so by hypothesis there is a
line in Rfxg containing s and u� so we have t��X � fxg � t� � Rfxg with

s� u � t�� u� s � X � fxg � t��

which yields
s� r� � t�� r� � s � X � t��

Now observe that r � r� � s � r�� r� � r � r� � s� which follows from the fact that
s� r and u � r� � fxg appear on the original line L in this order� Consequently� we
get

r � r� � t�� r� � r � X � t��

and together with the fact that X�t� is a range in R� this shows that r and r� admit
a line in S�

For any d � 	� there are complete range spaces of VC�dimension d which are not
pseudogeometric� with the property that any two ranges admit a line �let d � 	 �
jXj � 	d and R �

�
X

�d

�
�� For d � 	� however� the largest such example has �

elements �see Therorem �� below�� The question whether this generalizes to higher
VC�dimension is an interesting open problem�

Problem ��� Given d � 	� does there exist a constant C�d� such that for S �
�X�R� complete of VC�dimension d with jXj � C�d�� Levi�s Lemma holds in S if
and only if S is pseudogeometric� If the answer is yes� is C�d� � 	d�

Here is a general characterization that might be helpful�

Lemma �
 Let S � �X�R� be complete� Levi�s Lemma holds in S if and only if

��R�� Y � ��R� Y �

for any Y � X�

Observe that for any range space ��R� � Y � ��R � Y � holds� In case of
contraction we always have equality� i�e� ��R�Y � ��RY ��

We will conclude the discussion by settling the 	�dimensional case�
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Theorem �� Let S � �X�R� be complete of VC�dimension 	� jXj � �� S is
pseudogeometric if and only if Levi�s Lemma holds in S�

Proof� Consider 
rst the case jXj � �� and assume Levi�s Lemma holds� From
��R� � Y � ��R � Y � it follows that �R shatters any two�element subset of X�
With an easy case analysis one can check that this implies j�Rj � 	����� � ��� so
R is pseudogeometric by Therorem ��� For jXj � � observe that if Levi�s Lemma
holds in S then it also holds in SjY for any jY j � �� Consequently SjY is pseudoge�
ometric and from Therorem �� we obtain that S itself has to be pseudogeometric�

Characterization via cardinality of boundary� Nowwe can proveTherorem ���
which states that a complete range space S � �X�R� of VC�dimension d � � and
jXj � n is pseudogeometric if and only if j�Rj � 	�d���n� ���

First suppose S is pseudogeometric� if d � �� R is a line joining the only two
complementary ranges of R� so j�Rj � 	 � 	���n� ��� If n � d� then j�Rj � jRj �
�d�n� � 	�d���n� ���

Now let d � �� n � d and inductively assume that ��R� fxg� and ��Rfxg� have
the right cardinalities for some x � X� Levi�s Lemma holds in S� so we can apply
Lemma �� and obtain

j�Rj � j��R�� fxgj� j��R�fxgj

� j��R� fxg�j� j��Rfxg�j

� 	�d���n� 	� � 	�d���n � 	� � 	�d���n� ���

Now assume j�Rj � 	�d���n � ��� We use induction on d to show that S is
pseudogeometric� if d � �� by Therorem 	 the 	 � 	���n � �� ranges in �R are
joined by a path of length n in D��S�� Since D��S� itself has only n edges it is
identical with this path� so S is pseudogeometric�

Using Therorem 	� we get for d � � and x � X

	�d���n� �� � j�Rj � j��R�� fxgj� j��R�fxgj

� j��R� fxg�j� j��Rfxg�j

� 	�d���n� 	� � 	�d���n� 	� � 	�d���n� ���

which especially shows j��Rfxg�j � 	�d���n � 	�� so Sfxg is pseudogeometric by
hypothesis� Since this holds for any x � X� Therorem �� shows that S is pseudoge�
ometric�

� Relation to Oriented Matroids

We have already introduced pseudohemispherical range spaces �De
nition ��� which
arise as the closure of pseudogeometric range spaces� and the intuition behind this



	�

de
nition was to have a class of range spaces generated by Projective rather than
Euclidean arrangements� Therorem �� states that both classes are in one�to�one cor�
respondence provided we introduce a distinguished �equator� element� This section
will develop the basic properties of pseudohemispherical range spaces � the main
statement will be a characterization via the number of ranges � and relate them
to oriented matroids� it was 
rst shown by Folkman ! Lawrence 
FL� that these
combinatorial objects have natural representations as an arrangements of pseudo�
hemispheres� and vice versa� The oriented matroid approach can handle arbitrary
arrangements� while we are only talking about simple arrangements in this paper�
so we restrict our attention to simple �or uniform� oriented matroids�

Let us start by showing that although the pseudogeometric space underlying
a pseudohemispherical space is not unique� all underlying spaces have the same
VC�dimension�

Lemma �� Let S be pseudohemispherical of VC�dimension d � � with underlying
space T � Then T is of VC�dimension d� ��

Proof� Equivalently we show that if T � �X�R� �T �� T � is pseudogeometric of
VC�dimension d � � � �� then dim�T � � d�

If T �� T � then jXj � d� so T jY is again pseudogeometric of VC�dimension d� �
for jY j � d� We obtain

jRjY j � 	jRjY j � j��RjY �j � 	�d���jY j�� 	�d���jY j � �� � 	�d���jY j � ���

Any range space satis
es RjY � RjY � so

jRjY j � 	�d���jY j � ���

For jY j � d this number equals 	d� so Y is shattered by R� while for jY j � d��
the value is strictly less than 	jY j� which implies that dim�T � � d�

From the lemma it follows that a pseudohemispherical space of VC�dimension
d has 	�d���n � �� ranges� and from Therorem 	� we know that this number is
maximum for closed range spaces �De
nition ���� Taking pattern from the complete
spaces that attain the bound of Lemma � we de
ne the concept of c�completeness
��c� stands for �closed���

De�nition �
 S � �X�R� closed of VC�dimension d � � with jXj � n is called
c�complete if jRj � 	�d���n� ���

Corresponding to Therorem 	� for complete spaces we obtain similar character�
izations also for c�complete spaces �where only some numbers have to be adjusted��

Theorem �� Let S � �X�R� be a closed range space� d � 	 a natural number with
jXj � n � d� Then the following statements are equivalent	
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�i� S is c�complete of VC�dimension d�
�ii� S � fxg and Sfxg are c�complete of VC�dimension d and d � ��

respectively� for all x � X�
�iii� dim�S� � d and S�fxg and Sfxg are c�complete of VC�dimension

d and d� �� respectively� for some x � X�
�iv� dim�S� � d and Sfxg is c�complete of VC�dimension d � �� for

all x � X�
�v� dim�S� � d and jRAj � 	� for all A � X� jAj � d � ��
�vi� �S is c�complete of VC�dimension n� d�
�vii� dim��S� � n � d and S � fxg is c�complete of VC�dimension

d� for all x � X�
�viii� dim��S� � n � d and jRjAj � 	d�� � 	� for all A � X� jAj �

d � ��

The proof is completely similar to the one of Therorem 	�� so we do not repeat
the arguments�

We also get

Theorem 	� Let S � �X�R� be c�complete of VC�dimension d � 	� For any two
ranges r� r� � R there is a path of length ��r� r�� � jr	r�j joining r and r� in D��S��

Again the proof is almost literally the same as that of Therorem 	 �
Pseudohemispherical spaces are c�complete� The surprising fact is that the con�

verse is also true�

Theorem 	� Let S � �X�R� be closed of VC�dimension d � �� jXj � n� S is
pseudohemispherical if and only if S is c�complete�

Proof� We need to show that if S is c�complete space then S is pseudohemispherical�
and we proceed by induction on d� If S is of VC�dimension � with jRj � 	 �
	���n� �� then S � �X� fr�X � rg�� r � X� Now T � �X� frg� is of VC�dimension
� and hence pseudogeometric with S � T �

Now suppose d � �� x � X� Sfxg is c�complete� so Sfxg is pseudohemispherical
of VC�dimension d� � by hypothesis� Let S� � �X �fxg� R�� be a pseudogeometric
space �of VC�dimension d� 	� underlying Sfxg and consider the range space

T � �X�R� � R����

where R�� �� fr � R j x � rg� Obviously S � T � so to see that S is pseudohemi�
spherical it remains to show that T is pseudogeometric of VC�dimension d� ��

The number of ranges of T is

jR�j� jR��j � �d���n� �� � �d���n� �� � �d���n��

Furthermore� T has 	jR�j � 	�d���n��� ranges in the boundary� If we can show that
T is of VC�dimension at most d��� then T is complete and therefore pseudogeometric



		

by Therorem ��� To this end consider A � X� such that A is shattered by R� �R���
we show that this implies jAj � d� �� There are two cases�

�a� x �� A� For r � R� we have r � fxg � R��� and since A� r � A� �r � fxg� we
know that A is already shattered by R��� This implies that A � fxg is shattered by
R� so jA � fxgj � d� i�e� jAj � d� ��

�b� x � A� By intersecting A with the ranges in R�� we only get subsets of A
that contain x� This means� A� fxg is shattered by R�� We get jA� fxgj � d� 	�
so jAj � d� ��

Now that we know that c�complete and pseudohemispherical spaces are the same�
we will use the latter term only in the following because it is more intuitive for our
applications�

To prepare the correspondence to oriented matroids we need the notion of a vertex
associated with a pseudohemispherical range space� Consider a simple arrangement
of hemispheres labeled by X in Sd��� and let A be a subset of d � � hemispheres�
The underlying great spheres intersect in two opposite vertices� and incident to one
vertex are 	d�� cells� their labels in the corresponding description of cells �X�R� of
VC�dimension d are of the form r � A� for any A� � A� where r is the label of the
cell contained in no hemisphere from A� We have r � RA� and r can be identi
ed
with the vertex of the arrangement� Motivated by this we give

De�nition 	� Let S � �X�R� be pseudohemispherical of VC�dimension d � ��
r � R� A � X with jAj � d� �� The pair �r�A� is called a vertex of S if r � RA�

Therorem ���v� shows that any A � X with jAj � d�� de
nes two vertices� just
as in the case of the hemisphere arrangement� Obviously� any cell of a hemisphere
arrangement is incident to a vertex� so the following theorem for pseudohemispherical
spaces is not surprising�

Theorem 	� A pseudohemispherical space S � �X�R� of VC�dimension d is de�
termined by its vertices� i�e�

R �
�

jAj�d��

fr �A� j �r�A� vertex of S�A� � Ag�

Proof� Set R� ��
S

jAj�d��fr �A
� j �r�A� vertex of S�A� � Ag� Obviously R� � R�

On the other hand jR�Aj � 	 for any jAj � d � �� which implies dim�X�R�� � d� so
dim�X�R�� � d and jR�Aj � 	� Therorem �� shows that S� is pseudohemispherical
of VC�dimension d� It follows that jRj � jR�j and therefore R � R��
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Oriented Matroids� We start by introducing the basic oriented matroid termi�
nology and then go straight for the proof of the correspondence between oriented
matroids and pseudohemispherical spaces� We have tried to keep the section reason�
ably short but at the same time self�contained� i�e� readable without any previous
knowledge about oriented matroids� In any case we recommend to study the stan�
dard literature on the subject for a more detailed treatment 
BL�FL�EM�BLSWZ��

Let X be a 
nite set� A signed vector on X is a mapping F � X � f�������g�
F �x� will be denoted by Fx� The support of F is de
ned as the set F �� fx � X j
Fx �� �g� F � �� X � F is called the zeroset of F �

In the context of signed vectors � is the vector satisfying �x � � for all x � X�
�F is de
ned by ��F �x �� ��Fx��

A partial order on signed vectors is de
ned by

F � G �� Fx � � or Fx � Gx for all x � X�

i�e� F results from G by switching some components to zero�
For Y � X� F jY denotes the restriction of F to Y �

De�nition 		 Let X be a �nite set� C a set of signed vectors on X� � �� C� The
pair O � �X� C� is called an oriented matroid if

�OM
� If F�G � C with F � G then F � G�
�OM
� F � C implies �F � C�
�OM�� If F�G � C with Fx � �Gx �� � and F �� �G� then there

exists H � C with Hx � � and Hy � fFy� Gy� �g for all y �� x�

C is the set of circuits of the oriented matroid� We say that O is uniform of rank
d if exactly all subsets of X with cardinality d � � occur as support sets of signed
vectors in C�

Apart from minor di�erences in notation this is the de
nition of Folkman !
Lawrence � 
FL�� as well as Bland ! Las Vergnas � 
BL��� In general the rank of an
oriented matroid is de
ned via the rank of its underlying ordinary matroid� This is
discussed in 
EM�BLSWZ�� See also the original article about matroids by Whitney
� 
Whi���

What follows are the two theorems which construct a pseudohemispherical range
space from an oriented matroid and vice versa� It will be obvious that both con�
structions are inverse to each other� One remark to the reader familiar with oriented
matroids� it would be quite intuitive to relate the ranges of the pseudohemispheri�
cal space to the topes of the oriented matroid� this� however� would require to work
from an axiomatization of the topes or the whole face lattice of the oriented ma�
troid� For the bene
t of the unacquainted reader we have chosen a dual approach
and relate the vertices of the range space to the vertices of the oriented matroid� i�e�
the circuits of the dual oriented matroid� This enables us to work with the standard
axiomatization from 
BL�FL�� After our proof we cite two results from the literature
that yield direct correspondences to the topes�



	�

Theorem 	
 Let O � �X� C� with jXj � n be an oriented matroid� uniform of
rank d � �� For F � C de�ne rF �� fx � X j Fx � ��g� Then the range space
S � �X�R� with

R ��
�
F�C

frF � F
� j F � � F �g

is pseudohemispherical of VC�dimension n � d� and the pairs �rF � F �� are exactly
the vertices of S�

Proof� If d � � then C consists of 	n circuits� two for each singleton support set� and
it is easy to see that R � 	X in this case� which shows that S is pseudohemispherical
of VC�dimension n� d � n with vertices as required�

Now assume d � �� We start by showing dim�S� � n � d� First note that
rF � r�F � RF �

for all F � C� so dim�SF �

� � �� Using Lemma 	��v� and the fact
that jF �j � n� d � � we get dim�S� � n� d�

To see that dim�S� � n � d consider Y � X� jY j � n� d� �� We show that Y
is not shattered by R� Note that jF � Y j � 	 for all F � C� The crucial property is
that if for Y � � Y we have

�rF � F �� � Y � Y � for some F � C� F � � F �� ���

then we can assume without loss of generality that jF �Y j � 	� To prove this choose
F satisfying ��� for some F � � F � with jF�Y jminimal� and suppose jF�Y j � 	� For
x� y � F�Y simplicity implies that there exists a circuitG withG � �X�Y ��fx� yg�
so G�Y � fx� yg� If GjY � F jY �analogously if ��G�jY � F jY � then G satis
es ���
for G� resulting from F � by adding all z � Y for which Fz � �� and Gz � �� Since
this contradicts the minimality of jF � Y j� we can assume Fx � �Gx� Fy � Gy�
Applying �OM�� to F and G yields a circuit H with Hx � � and HY � FY � so H

satis
es ���� again contradicting the choice of F � It follows that F can always be
chosen in such a way that jF � Y j � 	� This also implies jF � � Y j � n � d � �� so
F � � Y � Consequently� to show that Y is not shattered we have to make sure that
there is a subset Y � which is not of the form

Y � � �rF � Y � � F � with jF � Y j � 	� F � � F �� �	�

To construct Y � we proceed as follows� for y� y� � Y� y �� y� choose F � C with
F � Y � fy� y�g� y and y� are called co�oriented if Fy � Fy�� This notion does not
depend on the speci
c F � otherwise there were circuits F�G with F �Y � G�Y �
fy� y�g and Fy � Fy�� Gy �� Gy� � Applying �OM�� to F and G would yield a circuit
H with jH � Y j � �� a contradiction�

Fix x � Y and de
ne

Y � �� fy � Y � fxg j x and y are co�orientedg�

Using �OM�� it is easy to check that y� y� � Y are co�oriented if and only if y �
Y �� y� � Y � Y � �or y � Y � Y �� y� � Y �� of course��
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Let us show that Y � cannot be expressed in the form of �	�� which completes the
proof that Y is not shattered byR� to this end choose any circuit F with jF�Y j � 	�
Suppose F � Y � fy� y�g�

If y and y� are co�oriented� then Y � distinguishes between y and y� but any set
of the form �rF � Y �� F � does not �observe that y� y� �� F ��� If on the other hand y

and y� are not co�oriented then �rF � Y � � F � distinguishes between them while Y �

does not� In either case this implies Y � �� �rF � Y � � F ��

We have shown that dim�S� � n � d� Now it is very easy to see that S is
pseudohemispherical� it is a simple observation that S is closed� furthermore we
have already seen that jRAj � 	 for jAj � n� d � �� From dim�S� � n � d we get
dim�SA� � �� so jRAj � 	 �SA is closed also��

Now Therorem �� shows that S is pseudohemispherical� Obviously the vertices
of S are the pairs �rF � F �� with F � C� as required�

Now the inverse construction�

Theorem 	� Let S � �X�R� with jXj � n be pseudohemispherical of VC�dimension
n � d� For A � X� jAj � n � d � � and �r�A� a vertex of S de�ne a signed vector
F �r�A� by

F �r�A�
x ��

��
�

�� if x � A

��� if x � r

��� otherwise

Then the pair O � �X� C� with

C �� fF �r�A� j �r�A� vertex ofSg

is an oriented matroid� uniform of rank d�

Proof� First note that if O is an oriented matroid then it is uniform of rank d by
de
nition� So it remains to show that O satis
es properties �OM��� �OM	� and
�OM���

�OM�� is obvious by de
nition� To see that �OM	� holds observe that F �r�A� �
�F �r��A� for r� r� the two ranges in some RA� jAj � n� d� ��

To show �OM�� let �r�A�� �r�� A�� be vertices of S such that F �� F �r�A� and
G �� F �r��A�� satisfy the requirements of �OM��� This can be the case only for
n � d � �� De
ne B �� �A � A�� � �r� � r�� B� �� �A� � A� � �r � r�� and set
s �� r � B� s� �� r� � B�� Since B � A and B� � A�� s and s� are ranges in R�
moreover s � RA�B � s� � RA��B�

� For C �� �A�B� � �A� �B�� we have s� s� � RC �
SC is pseudohemispherical� so there is a path of length ��s� s�� joining s and s� in
D��SC�� and the edge labels on the path are exactly the elements from s	s��

If we assume Fx � ��� Gx � �� then x � r� x �� r� and x �� A�A�� which
yields x � s� x �� s�� This means that on the path joining s� s� there is a range



	�

u � �RC�fxg � RC�fxg� By Therorem �� there is a vertex �v�D�� C � fxg � D�
jDj � n � d � � with u � v �D�� D� � D � �C � fxg�� Set H �� F �v�D�� We claim
that H is the circuit required by �OM��� Clearly Hx � � since x � D� To show
that Hy � fFy� Gy� �g for y �� x we consider the following cases �the remaining cases
follow by symmetry��

�a� Fy � Gy � � means y � A�A� and y �� B�B�� so y � C � D� therefore
Hy � ��

�b� if Fy � Gy � �� then y � r � s� y � r� � s�� so y � u� Then either y � v

which means Hy � �� or y � D� � D which shows Hy � ��
�c� for Fy � Gy � �� we have y �� r� r� and because of y �� B�B� we get y �� s� s��

so y �� u � v� This gives Hy �� ���
�d� if Fy � �Gy �� � there are no restrictions for Hy� so there is nothing to show�
�e� if Fy � ��� Gy � � then y � B �� and this implies y � s� s�� Now we continue

as in case �b��
�f� Fy � ��� Gy � � gives y �� r� r�� r	r�� so y �� s� s�� Proceed as in case �c��

The two theorems together give the main Therorem � � By replacing the pseudo�
hemispherical space with its dual for d � � and exploiting the representation theorem
in 
FL� �the reader can 
nd other versions also in 
BLSWZ�EM�� we get

Theorem 	� For d � � there is a natural �one�to�one� correspondence between the
pseudohemispherical range spaces of VC�dimension d on a set X and the simple
arrangements of jXj pseudohemispheres in Sd���

By Therorem ��� pseudogeometric spaces correspond to oriented matroids with a
distinguished element playing the role of the equator� Such objects are called a�ne
oriented matroids� and as shown by Edmonds ! Mandel 
EM� they exactly encode
Euclidean pseudohalfspace arrangements �actually they have been invented just for
this purpose�� Consequently we get the following theorem that 
nally justi
es our
de
nition of pseudogeometric range spaces�

Theorem 	
 For d � � there is a natural �one�to�one� correspondence between
the pseudogeometric range spaces of VC�dimension d on a set X and the simple
arrangements of jXj oriented pseudohyperplanes in Ed�

Related Results� We will brie#y describe results related to our correspondence
and 
gure out how our approach 
ts in there� We basically review two results
from the literature that give alternative proofs for Therorem ��� The 
rst one� by
Lawrence 
Law� is based on the notion of lopsidedness� To remain consistent we keep
on using range space terminology�

De�nition 	� A range space S � �X�R� is called lopsided if for any A � X either

�i� A is not shattered in R� or
�ii� X �A is not shattered in �R�
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It is quite easy to show that not both conditions can hold at the same time� so
S is lopsided if for any A one of them is satis
ed� As it turns out� lopsided range
spaces properly generalize complete range spaces�

Lemma 
� If S � �X�R� is complete� then �X�R� is lopsided�

A lopsided range space that is not complete is given by X � f�� 	� �g and

R � f�� f�g� f	g� f�g� f�� 	g� f�� �gg�

Just from the de
nition it follows that lopsidedness is maintained under duality� i�e�
S is lopsided if and only if �S is lopsided� Lawrence proved the following result that
characterizes the tope sets of uniform oriented matroids �for the notion of topes see
e�g� 
BLSWZ�EM��

Theorem 
� Let S � �X�R� be a closed range space� R is isomorphic to the
tope set of a uniform oriented matroid on X if and only if the range space S� �
�X � fxg� R��� R� �� fr � R j x �� rg is lopsided for any x � X�

It is well�known that the topes uniquely determine the oriented matroid itself�
so the range spaces having the property required in the theorem correspond to the
uniform oriented matroids� This immediately proves that any pseudohemispher�
ical range space determines an oriented matroid� if S � �X�R� with jXj � n

is pseudohemispherical of VC�dimension d then jRj � 	�d���n � ��� which gives
jR�j � �d���n � ��� S� is of VC�dimension d � � and hence complete �and even
pseudogeometric�� Together with Lemma �� the result follows�

The surprising fact about this theorem is that �via our correspondence� the
lopsidedness of each S� already implies the pseudogeometric property�

Another concept closely related to oriented matroids is that of acycloids intro�
duced by Tomizawa 
Tom��

De�nition 
� Let S � �X�R� be a closed range space� S is called an acycloid if for
any two ranges r� r� � R there is a path of length jr	r�j joining r and r� in D��S��

We have seen that pseudohemispherical spaces have this property �Therorem ����
so they are acycloids� Acycloids properly generalize tope sets of oriented matroids�
Fukuda �see e�g� 
Han�� has given an example of an acycloid that is not the tope set of
any oriented matroid� Such examples can also be found as follows� let S be complete
but non�pseudogeometric� such that Levi�s Lemma �Therorem ��� holds in S� Then
the extended closure "S �De
nition ��� is an acycloid �because of Levi�s Lemma� that
is not matroidal �because S is not pseudogeometric�� Actually� Fukuda�s example
can be obtained in this way with jXj � � and S � �X�

�
X

��

�
�� The following theorem

has been proved by Handa 
Han��

Theorem 
� Let S � �X�R� be an acycloid� R is isomorphic to the tope set of an
oriented matroid on X if and only if SA is an acycloid� for any A � X�

Obviously this property holds for S pseudohemispherical� since SA is again
pseudohemispherical for any SA with at least two ranges� As above� via the theorem
we immediately obtain an oriented matroid from a pseudohemispherical space�
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