
Realizing the Corporate Semantic Web:
Prototypical Implementations

Technical Report TR-B-10-05

Adrian Paschke, Gökhan Coskun, Dennis Hartrampf, Ralf Heese,
Markus Luczak-Rösch, Mario Rothe, Radoslaw Oldakowski, Ralph

Schäfermeier and Olga Streibel

Freie Universität Berlin
Department of Mathematics and Computer Science

Corporate Semantic Web

28 February 2010

Realizing the Corporate Semantic Web:

Demonstrators

Adrian Paschke Gökhan Coskun Dennis Hartrampf
Ralf Heese Markus Luczak-Rösch Mario Rothe

Radoslaw Oldakowski Ralph Schäfermeier
Olga Streibel

Freie Universität Berlin
Department of Mathematics and Computer Science

Corporate Semantic Web
Königin-Luise-Str. 24-26
14195 Berlin, Germany

paschke,coskun,hartramp,heese,luczak,mrothe,
oldakowski,schaef,streibel@inf.fu-berlin.de

28 February 2010

Abstract

In this technical report, we present prototypical implementations of innovative
tools and methods developed according to the working plan outlined in Technical
Report TR-B-09-05 [23].

We present an ontology modularization and integration framework and the
SVoNt server, the server-side end of an SVN-based versioning system for on-
tologies in the Corporate Ontology Engineering pillar. For the Corporate Se-
mantic Collaboration pillar, we present the prototypical implementation of a
light-weight ontology editor for non-experts and an ontology based expert finder
system. For the Corporate Semantic Search pillar, we present a prototype for
algorithmic extraction of relations in folksonomies, a tool for trend detection
using a semantic analyzer, a tool for automatic classification of web documents
using Hidden Markov models, a personalized semantic recommender for multi-
media content, and a semantic search assistant developed in co-operation with
the Museumsportal Berlin.

The prototypes complete the next milestone on the path to an integral Cor-
porate Semantic Web architecture based on the three pillars Corporate Ontol-
ogy Engineering, Corporate Semantic Collaboration, and Corporate Semantic
Search, as envisioned in [23].

Contents

1 Introduction 3

2 Corporate Ontology Engineering 5
2.1 Modularization and Integration Framework 5

2.1.1 Efficient Using and Reusing Ontologies 6
2.1.2 Architecture . 6
2.1.3 Realizing the System . 8
2.1.4 The Tool . 8

2.2 SVoNt - An SVN-based versioning approach for ontologies 10
2.2.1 Ontology Versioning Fundamentals 11
2.2.2 SVoNt Basics . 11
2.2.3 SVoNt System Architecture 12
2.2.4 SVoNt Commit Workflow 13
2.2.5 Prototype Implementation of the SVoNt Server 13

3 Corporate Semantic Collaboration 17
3.1 Light-weight Ontology Editor . 17

3.1.1 Domain Model . 18
3.1.2 Architecture . 19
3.1.3 Managing the RDF Data 20
3.1.4 User Interface . 20

3.2 ExpertFinder for Wikis . 21
3.2.1 Expert Model . 22
3.2.2 Architecture of the Prototype 23
3.2.3 Prototypical Implementation 23

3.3 Link Recommender . 24
3.3.1 Automatic Approach . 24
3.3.2 Semi-Automatic Approach 24

4 Corporate Semantic Search 26
4.1 Algorithmic extraction of semantic relations out of folksonomies . 26
4.2 Supporting knowledge based trend detection using Semantic An-

alyzer . 29
4.2.1 Trend ontologies . 30

4.3 Automatic classification of web document structure using Hidden
Markov Models . 33

4.4 Personalized Semantic Recommender for Multimedia Content . . 34
4.4.1 Representing Domain Knowledge and User Preferences . . 34

1

4.4.2 Preference Matching . 35
4.4.3 Architecture . 35

4.5 Semantic Search Assistant for the Museumsportal-Berlin 36
4.5.1 Searching the Portal - Current Approach 37
4.5.2 Enhancing the Portal with Semantic Web Technologies . . 38
4.5.3 Architecture . 41
4.5.4 Related Work . 42

5 Conclusion and Outlook 43

A Work Packages 44

B Acknowledgment 45

2

Chapter 1

Introduction

The project Corporate Semantic Web (CSW) aims at establishing semantic
technologies in enterprises.

After the Corporate Semantic Web project took up its work in February
2008, we introduced our initial vision of a Corporate Semantic Web as the next
step in the broad field of Semantic Web research. Starting from interviews with
regional industrial partners, we were able to develop a number of real world
application scenarios and to identify requirements of the corporate environment
and gaps between current approaches to tackle current problems facing ontology
engineering, semantic collaboration, and semantic search.

In the second phase of the project runtime, we were able to enforce our out-
reach to and scientific cooperation with Berlin and Brandenburg based enter-
prises with the aim to establish a knowledge transfer channel between scientific
institutions and enterprises in the local area. The results from the applicability
studies and requirement analysis from the first project phase yielded a sound
and robust architecture for the upcoming Corporate Semantic Web.

In this technical report, we present prototypical implementations of innova-
tive tools and methods developed during the third phase from March 2009 to
March 2010. The prototypes complete the next milestone on the path to an
integral Corporate Semantic Web architecture based on the three pillars Corpo-
rate Ontology Engineering, Corporate Semantic Collaboration, and Corporate
Semantic Search, as envisioned in [23].

In chapter 2 we present our ontology modularization and integration frame-
work which helps improving efficient using and reusing of ontologies for the
Corporate Ontology Engineering pillar. Then we introduce a server-side end of
an SVN-based versioning system for ontologies called SVoNt.

In chapter 3 we present the results achieved in the Corporate Semantic
Collaboration pillar which comprise a light-weight ontology editor for mod-
eling non-experts, a prototype implementing a novel ontology aided method
for finding experts in corporate wiki systems, and a wiki system enhanced by
semi-automatic and automatic link recommendation aid, both for authors and
readers.

Chapter 4 covers the results in the Corporate Semantic Search pillar. We
present a prototype for algorithmic extraction of relations in folksonomies, a
tool for trend detection using a semantic analyzer, a tool for automatic classifi-
cation of web documents using Hidden Markov models, a personalized semantic

3

recommender for multimedia content, and a semantic search assistant developed
in co-operation with the Museumsportal Berlin.

4

Chapter 2

Corporate Ontology
Engineering

Bringing ontologies into a running enterprise environment requires an ontology
management framework which allows for a seamless introduction into the ongo-
ing business processes as well as the existing IT infrastructure with its running
enterprise applications. The influence of the ontology development and main-
tenance process on the work flow of domain experts have to be minimized to
avoid negative influence on their productivity.

The main principle we followed is to keep as many established tools and
methodologies as possible to allow a familiar environment. We implemented
new functionalities necessary to manage ontologies on the basis of well known
systems from software engineering. The Ontology Management and Integra-
tion framework presented in Section 2.1 is based on Eclipse and the versioning
framework described in Section 2.2 is an extension of the Subversion versioning
system.

2.1 Modularization and Integration Framework

Component-based development of large and complex software systems by small
well defined building blocks improves the comprehension as well as the man-
agement and leads to reusable software modules and a scalable overall system.
Accordingly, designing ontologies in a modular way is intuitively promising in
order to benefit from the same advantages. However, the state of the art in
ontology engineering is the usage of monolithic ontologies. For that reason the
number as well as the size of available ontologies has increased with the grow-
ing utilization during the last years. In order to improve the efficient usage
(e.g. through scoped reasoning for reasoners), to simplify the maintenance (e.g.
through refactoring support) and to allow reusable components (e.g. through in-
creased human understandability) there is a need to modularize large ontologies
into well-sized building blocks in a (semi-) automatic way. Especially from the
viewpoint of the Semantic Web reusability is a crucial issue because an agreed
common semantic model allows easy data integration and interoperability.

Considering ontologies as networks of concepts connected through properties,
network analysis techniques are a promising approach to analyze and modular-

5

ize ontologies. As a very well established discipline in science there are a lot of
sophisticated methods and tools for network analysis available. We believe that
these methods can be modified and applied to ontologies, so that the ontology
structure can be used to analyze the content and to identify regions, which can
be seen as network “communities” and can be extracted as modules. Further-
more, we are convinced that structure analysis enables a first evaluation of the
usability by allowing different views, so that existing ontologies can be easier
comprehended by ontology engineers. This is very important because refactor-
ing and reusing of existing models assume that these models are understood.

2.1.1 Efficient Using and Reusing Ontologies

During the last two decades the interest in using ontologies has increased. Ac-
cording to the last few years this trend was mainly driven by the vision of
the semantic web. Defined as a problem-relevant, explicit and formal specifi-
cation of a shared conceptualization, the importance of ontologies lays in the
deep problem and domain analysis to create them. Because a good analysis
clarifies the structure of the domain knowledge [12]. But a good analysis as
only one part of the overall ontology creation process is a very cumbersome and
time-consuming activity. In order to provide some structural guidance for the
ontology creation process some ontology engineering methodologies have been
proposed (e.g. Cyc Method, Uschold and Kings, Gruüninger and Fox, KAC-
TUS approach, Methontology[17], SENSUS-based Method, On-To-Knowledge,
and NeOn).The newest trend in ontology engineering is to build ontologies with
a community in a collaborative manner (e.g. Joshi[19], DILIGENT[25], Dogma,
HCOME, RapidOWL, Ontology Maturing). In most methodologies ontology
reuse is recommended, because it is expected to reduce engineering costs by
avoiding re-building already existing conceptual models. Apart form reducing
costs, reusing existing ontologies increases interoperability from the viewpoint of
the Semantic Web, where ontologies are considered as shared knowledge [15, 7].

Even though most of these approaches mention the reuse of existing ontolo-
gies as possible starting point, none of them describe in detail how to discover
and analyze candidate ontologies. This is very important, because reusing on-
tologies presumes availability of already existing ontologies and discovery of
potential candidates for the particular use case. Even though RDF and OWL
files are based upon the XML syntax, which is declared to be human readable,
it takes some time to comprehend the content and the main structure and to
understand the main idea and purpose of the model. In case of ontologies with
hundreds and thousands of concepts it is nearly impossible for the human mind
to overview the whole model. But this is essential to decide if a candidate on-
tology is really usefull and whether it needs some customization, which in turn
presumes the ability to comprehend the existing.

For that reason we propose a framework which supports the user by analyz-
ing the content of ontologies and allows to semi-automatically extract needed
portions as modules.

2.1.2 Architecture

As a very well known integrated development environment Eclipse allows to
implement functional extensions through plugins. In this regard we have iden-

6

tified functional components which can be implemented as Eclipse plugins so
an Ontology Modularization and Integration framework can be realized. Figure
2.1 illustrates the architecture of this framework.

Figure 2.1: Architecture of the Modularization and Integration Framework

There are two basic components, the Ontology Backend and the Graph Anal-
ysis component. The Ontology Backend provides basic functionality to load and
parse RDF and OWL documents. It allows to access different parts within the
document, e.g. subject, predicate and objects of RDF statements. The Graph
Analysis components provides means to anaylse the graph structure. Different
algorithms for various graph metrics are part of this functional components.

The Discovery component allows to find existing ontologies. It is connected
to different online ontology search engines and libraries. Basic terms of the
target domain can be used to search for candidate ontologies for reuse. If the
connected search engines provides meta information about the found ontologies,
they are also downloaded by the Discovery component. These information are
very helpful for the first decision, if a deeper analysis of the ontology is necessary.
If an ontology is chosen it is downloaded and loaded through the Ontology
Backend.

The Visualization component represents the chosen ontology as a graph,
so its content and structure is easier to comprehend by the user. It accesses
the ontology through the Ontology Backend and obtains its network structure.
Through the Graph Analysis component, the Visualization component is able
to get structure-based metrics about the graph. This information can be used,
to optimize the visualization. E.g. centralitiy values about nodes allow to find
nodes which are important according to the structure. These nodes can be
highlited with the Visualization component.

The Modularization component is able to access the ontology through the
Ontology Backend and to obtain information about the network structure of the
ontology through the Graph Analysis component. Based upon these information
the Modularization component is able to propose ways how to decompose the
ontology into modules. With the Visualiaztion components this proposition can
be represented visually.

7

The User Interface allows the user to interact with the under-laying compo-
nents. Together with the visualization component it allows to navigate through
the ontology and to choose different network visualization layouts and perspec-
tives on the ontology, which highlight different aspects of the graph, e.g. the
class hierarchy. It is possible to zoom into different parts of the ontology to
better understand relations between concepts.

2.1.3 Realizing the System

Based upon the architecture from Figure 2.1, we made the decision to reuse the
SONIVIS:Tool1 to realize the targeted system. The SONIVIS:Tool is a network
analysis software which is based upon Eclipse and allows easy extension through
the Eclipse Plugin system. It provides already Graph Analysis and Visualization
features and makes use of the Eclipse User Interface. Figure 2.2 represents the
architecture by highlighting the SONIVIS:Tool components with blue boxes, the
Eclipse platform as a green box and our extensions as orange boxes.

User Interface

Discovery Visualization Modularization

Ontology Backend

Discovery Visualization

Graph Analysis

Modularization

Ecplise

Figure 2.2: SONIVIS:Tool based Architecture

The SONIVIS:Tool is designed in a modular way and makes use of the R
Project 2 for graph analysis with its implementations for calculation of the
different metrics and uses Prefuse3 for the visulization of the network for ex-
ploratory analysis. In order to realize the architecture we implemented the
Discovery, Modularization and Ontology Backend as a plugin. It extends the
SONIVIS:Tool and provides the necessary functionalities for the Ontology Mod-
ularization and Integration Framework.

2.1.4 The Tool

Figure 2.3 represents the Ontology Discovery Wizard which allows to search
for ontologies. It represents the search result as a list and provides additional
meta information obtained from the search engines. It is possible to choose to
which search engine the key words should be sent. At this moment Watson and
Swoogle are supported. But additional search engines can be added to this list.

1http://www.sonivis.org
2http://www.r-project.org/
3http://www.prefuse.org/

8

Figure 2.3: Ontology Discovery Interface

If an ontology in the list seems to be useful, it can be chosen for a deeper
analysis. It will then be downloaded and represented as a network as shown in
Figure 2.4.

There are two different ways to highlight concepts in the graph. The first one
is to modify the size of the node, and the second one is to use different colors.
Visualizing central concepts with bigger boxes enables the human eye to detect
those central components easier. On the other hand, coloring similar nodes with
the same color, simplifies the observer to detect those groups. Applying these
two different highlighting methods based on the values of the graph properties of
the nodes simplifies the exploratory analysis of the ontology. The class hierarchy,
the concepts and their position within the whole graph can be understood faster.
By reducing the cost to decide whether a candidate ontology is suitable for the
targeted domain or not an efficient way to analyse an existing ontology lowers
obstacle of ontology reuse.

9

Figure 2.4: Visualization of the FOAF Ontology

2.2 SVoNt - An SVN-based versioning approach
for ontologies

The SVoNt system is a versioning system for the collaborative development of
ontologies based on the Subversion system. Formal knowledge is driven by a
process, because it’s being changed by the evolution of mankind corresponding
to naturally evolutionary processes. This change of the knowledge base also
concerns ontologies which are therefore not to be considered static. Examples
for this can be found in medicine, where the knowledge base is altered steadily by
new diseases, rapidly mutating viruses and changing healing methods. For this
reason maintenance of ontologies is fundamental for the realization of schemes
of a knowledge base.

Up to now user friendly approaches which take account of the evolutionary
process of ontology engineering were missing. The aim of SVoNt is to provide
a lightweight tool for versioning of ontologies to ease the development of evo-
lutionary ontologies and in this way lower the inhibition threshold for using
semantic technologies. Subversion is used as basis and is extended and adapted

10

for the use with ontologies. Thus it is guaranteed that you have recourse to
existing knowledge bases of a user and also non-experts can participate in the
development of ontologies.

2.2.1 Ontology Versioning Fundamentals

Klein and Fensel[1] define the versioning of ontologies as “Possibility to handle
changing of ontologies by creating and maintaining different versions”. Thereto
it is necessary to monitor and save changes between different versions. They see
the reason for changing an ontology in the changing of the domain, the changing
of the common conceptualization, and the changing of the specification. For
SVoNt a concept-based versioning is used to track changes of the concept level
of an ontology. The lifecycle of a concept begins with its creation. In the course
of the evolution of the ontology changes occur time and again, which concern
this concept. These can have different reasons like modifications of annotations,
changes of the taxonomy, or renaming of the concept. In the end of the lifecycle
the concept is deleted, whereas its version history is preserved.

Ontologies consist of a set of elementary statements which are called axioms
or triples. The structural difference between two ontologies is a set-theoretic
symmetric difference of the axioms. As opposed to the generation of a structural
difference the logic of a statement is considered for a semantic diff to determine
changes of the semantic. Therefore the complexity of a semantic diff exceeds the
complexity of a structural diff. According to Völkel and Groza [31] a semantic
diff is independent of the power of the used ontology language. Therefore there
is no universal algorithm to calculate the semantic diff of an ontology that is
independent of the language. For the versioning of ontologies it must be possible
to merge two versions of an ontology, which evolved in different development
branches. This happens among others for every update command of a versioning
system where changes to a local copy must be merged with a revision committed
by another developer. The easiest way of merging two ontologies is the structural
merge. This means that the set of triples of both ontologies are merged by a
set-theoretical union. In doing so structural and semantic conflicts may arise
which must be detected and treated.

2.2.2 SVoNt Basics

The SVoNt system consists of an extendable Subversion server and a special
SVoNt client. The extension of the server uses functionality like logging, au-
thentification and versioning features of Subversion as far as possible. This way
it can be addressed by classic SVN clients, whereas the ontology specific func-
tionality is not available. These can only be used by a modified client. Thereby
the SVoNt server can be integrated into an environment in which Subversion is
already used for versioning of ontologies without much effort. In the SVoNt sys-
tem the Web Ontology Language (OWL) is used as basis for versioning. Each
SVN repository represents the evolution of an ontology. This ontology is located
in a specific OWL file in the repository.

Regular versioning of Subversion is very unsuitable for the use of versioning
ontologies because changes of an ontology can be tracked only partly by file
based versioning. An evolving history only leads to an overview of the changes

11

of the whole ontology but does not express changes of the structure or the se-
mantic of an ontology. For this reason an additional versioning mechanism is
used, which versions the ontology file with the Subversion system and uses a sep-
arate system for concept-based versioning of the ontology. For that conceptual
changes of the ontology must be created on the SVoNt server, because Subver-
sion only submits changes of the file lines to the server. These semantic changes
are generated on the server by performing a diff between the updated ontology
and the base ontology. This way of generating a difference is not trivial and
only works if the ontologies are syntactical and semantical consistent. Therefore
the updated ontology must be checked for that. These changes are deposited
persistently in the conceptual change log and are provided via an additional
external interface. An SVoNt client can use this specific information to perform
version specific tasks on the ontology level.

2.2.3 SVoNt System Architecture

Because Subversion uses a client-server-architecture, SVoNt does as well. The
overall system consists of an extended SVN server and a special SVoNt client.
The server stays connectable with a regular SVN client, because the extended
SVN interface of the SVoNt system is fully compatible with Subversion.

SVoNt Client

Classical
Change
Detector Ontology

Diff

SVN
Commands

SVN ClientsSVN Clients

Change
Selector

Diff

Commit

Working Copy
Revision
R llb k

Revision
C l l t

Ext. SVN Interface

Working Copy RollbackCalculator

SVoNt Server classical SVN commands
Command Handler

Ch

Class. SVN Interface

Classical SVN Server

ext. SVN commands

Change
Detector

Ontology
Diff

Consist.
Check

Ext. Precommit

Metadata
Rep.

Change Log
SVN Workflow

Figure 2.5: Design of the SVoNt System Architecture

Let’s have a look at the server of the SVoNt system, which is depicted in
Figure 2.5. It is an extension to the SVN server, offering additional functionality
for versioning ontologies. E.g. there is a check done through a precommit-
hook to see, if an ontology was changed and needs to be handled in the special
ontology versioning. This process follows a specific procedure running through
the following modules:

1. Consistency Check: Checking the updated ontology for its syntactic va-
lidity and semantic consistency

12

2. Change Detector/Ontology Diff: Detecting the changes done to the ontol-
ogy by calculating the difference between the updated ontology and the
current version in the repository

3. Change Log/Metadata Repository: Writing the changes to the change log
to create a concept-based history of the ontology

To allow access to the additional versioning information generated by this
process, the interface of the server was extended. That way an external access
apart the classic SVN interface is granted.

There are two kinds of clients in the SVoNt system. The classics like Tortois-
eSVN, RapidSVN and Subclipse stay untouched and can use the regular SVN
information of the SVoNt server only. The extended client on the other hand is
a specialized software tailored for versioning ontologies. In addition to the clas-
sic SVN revision information it uses ontology-based concept changes from the
change log of the SVoNt server. This information is used to display versioning
specific metadata in the concept view. A rollback module checks, if a particular
revision of concepts can be undone without generating incompatibilities.

Furthermore the client keeps a local change log. Changes done since the
last update of the ontology are stored in it. These, in common with the SVoNt
server, are detected by a local Change-Detection module. The Change-Selector
module allows for the user to choose specific changes to either undo or commit
them to the versioning server.

2.2.4 SVoNt Commit Workflow

The server-sided extension of Subversion consists of an ontology specific pro-
cessing of the commit of an ontology, which runs through the three modules
sequentially as it is depicted in Figure 2.6. On a commit to the SVoNt server
a precommit hook is executed on the server to check, if the commit contains
an ontology. In such a case the versioning process is triggered. For that the
ontology is passed on to an OWL validator, which scans the ontology for spe-
cific properties. If that is not the case the execution of the commit is cancelled
and the client receives a specific error. In a positive case the Change-Detection
module is activated, which generates the difference between the basis ontology
and the updated ontology. If no changes between the ontologies are detected,
the precommit is succeeded and the ontology is being versioned in Subversion.
This is possible if textual comments in the ontology or the order of concepts are
changed, leaving the semantic of the ontology untouched. In the case of detect-
ing changes with the ontology diff, these changes are passed to the Change log
module, which writes them to the change log of that revision. With that the
ontology specific processing is completed and the ontology can be added to the
SVN repository and being versioned.

2.2.5 Prototype Implementation of the SVoNt Server

The implementation of the server is largely done in Java. A reason for that is
among others the widely spread libraries being available for the processing of
semantic technologies while being matured to a certain degree. Thereby many
existing implementations can be built on, keeping the degree of in-house devel-
opment low. As ontology backend the OWL-API was used. Figure 2.7 shows

13

Client
SVoNt Extension

commit

Consistent Error

consistent

Ontology
File

no
yes

changes
yes process

Commit

Precommit
Hook

Consistency
Check

Change
Detection

Change
Writer

Change
Log

SVN Server
SVoNt Server

process
Commit

no

Figure 2.6: Workflow of the SVoNt Commit Operation

14

the rough structure of the server implementation. The SVN and precommit
side are coloured light blue, the Java parts of the server green. The connection
to the SVN server is done via precommit hook scripts provided by Subversion,
what enables to interfere with the commit process. The SVoNtRunner, whose
run() method triggers the ontology specific versioning process, is the heart of
the implementation. For the standard implementation of the validation module
Pellet with the OWL-API is used. Pellet is an OWL reasoner, which historically
supports the OWL-DL specification and to large parts the OWL2 specification.
Thereby the syntactic and semantic validity of the ontology is checked.

Interfaces

Precommit
Hook

Configurator

Precommit
Hookscript

SVN

Commit
Examine

SVoNtRunner

init()
run()

Java

Hook
Communicator

writeErrorsToFile()

initLogging()
loadProperties()

errors

log4j

Diff
Executer

ChangeLog
WriterValidator

validate() diff() writeCL()

Pellet
Validator CEX-Diff OWL-API

CL-Writer

svont

Change
 Log

WebDAV

Figure 2.7: Implementation of the SVoNt Server

The Change-Detection (Diff) module implements algorithms of the OWLdiff
library, which can be used in adapted form.

1. Basic Ontology Comparison Algorithm

2. CEX Logical Diff

The first algorithm is a native implementation of an axiomatic difference
generation, which detects the structural changes between the ontologies and re-
turns those axioms that were added or removed. With an entailment checking
with Pellet it is possible to determine the semantic equivalence of both ontolo-
gies. The OWLdiff implementation of the CEX Logical Diff Algorithm is based
on the work of Boris Konev, Dirk Walther and Frank Wolter [21] and is able
to detect pervasive changes in the semantic of both ontologies. This implemen-
tation is used to identify concepts as being changed in marking all concepts as

15

semantically changed, which are returned by CEX-Diff. The semantic changes
of the ontology being recognized are brought into a persistent state by generat-
ing a file in the Ontology Metadata Vocabulary (OMV) format for each commit,
which represents a revision.

16

Chapter 3

Corporate Semantic
Collaboration

In this section we give details about three demonstrators being developed in the
work package “Corporate Semantic Collaboration”. The first one considers the
collaborative development of ontologies in the form of a light-weight ontology
editor as it is outlined in [23]. The other two demonstrators are located in the
area of wikis: The first illustrates how the edit history of a wiki site can be
exploited to identify domain experts. The other, supports authors in linking
their content to other sites of the wiki by recommending link targets.

The ontology editor is described in Section 3.1 while the wiki demonstrators
are described in Section 3.2 and Section 3.3, respectively.

3.1 Light-weight Ontology Editor

The development of the light-weight ontology editor is the following scenario
occurring in a company: A company wants to improve some functionality of an
application by using semantic technologies. Typically, such a scenario includes
the development of an ontology modeling the application domain. Since the
development of an ontology is a complex process – comparable to processes in
software engineering – a first version of the ontology has to be constructed by
ontology engineering experts in collaboration with domain experts. A domain
ontology is generally not static but has to be adapted to changes in the appli-
cation domain, e.g., an ontology on chemistry has to be modified periodically
due to new research results. In most cases, the changes at a time will be rather
small, e.g., rename a concept or add a new concept, and, thus, the costs of a
hiring an ontology engineer will be out of all proportion. As a consequence, an
employee of the company should be responsible for keeping the ontology up-to-
date. However, in the absence of appropriate tools for non-experts it is currently
a challenge for the employee to handle this task. With the light-weight ontology
editor we address the need for a simple and easy-to-use ontology editor which
can be operated by non-experts1.

1We refer to non-experts as people who are domain experts but do not have knowledge in
semantic technologies

17

In [23] we give an overview of operations on ontologies. Developing the ontol-
ogy editor we decided to focus primarily on basic operations such as searching,
adding, removing, and editing concepts and relationships. Additionally, we
planned to provide tagging and discussing mechanisms to users.

In the following we first give a short introduction to the domain model on
which the editor is based. Afterwards, we describe the architecture and their
functionalities. The last two sections cover requirements on the management of
RDF data and the user interface.

3.1.1 Domain Model

Figure 3.1 shows the key entities of the domain model of the ontology editor and
the relationships between them. For the orange entities, e.g., User and Tag, we
omitted the relationships because these are related to almost any other entity.
In the following we shortly explain each entity of the domain model.

A repository contains a collection of projects which describe the model of
an application domain; we refer to this model as the ontology of that domain.
There may exist multiple repository in an RDF store, i.e., multiple ontologies. A
project, in turn, contains concepts and relationships of a part of the application
domain. Thus, we refer to it as a sub ontology or an ontology module. To
facilitate the reuse of (sub) ontologies a project can import another project and
make use of its concepts and relationships. Within a project, concepts and
relationships are the smallest entities of an ontology and are identically defined
as in the Semantic Web.

The afore mentioned entities form the basics for modeling an ontology. More-
over, we implement concepts of design patterns, discussions, and tags. A design
pattern is a template for modeling a certain aspect of an ontology, e.g., some-
thing has an location. Thus, it can be interpreted as a small reference ontology.
Design pattern are modeled using a controlled vocabulary and are managed also
as RDF in a project. In the context of the ontology editor, a discussion is an
exchange of opinions about the modeling of projects, concepts, relationships,
or design patterns. They may be useful to decide on the representation of a
part of the application domain and later document the rationale of the model-
ing. Finally, we included tags into the domain model as simple and easy means
for describing the contents of repositories and projects as well as the meaning
of concepts, relationship, and design pattern with arbitrary terms (e.g., not
necessarily originating from some controlled vocabulary).

Tag

User

1 n m n

1 n

1

n

1

n

Repository Project
Concept/

Relationship

DiscussionDesign Pattern

1

n

m

Figure 3.1: Domain model of the editor

18

Last but not least, the domain model contains the entity user which is
a person who is allowed to access the ontology editor and (s)he may execute
certain operations on repositories, projects, etc. depending on the granted access
rights (e.g., an employee of a company).

3.1.2 Architecture

Having introduced the domain model we now give an overview of the compo-
nents involved in the currently developed ontology editor (cf. Figure 3.2). In
the figure we omitted standard components such as user administration and
authentication.

At the lowest level of the architecture an RDF store is responsible for storing
and querying the data produced by the ontology editor. Accessing functionality
of the component repository and project manager a person with some knowledge
in semantic technologies, e.g., an ontology engineer, can setup the ontology ed-
itor for the use by domain experts. For example, he has to create and configure
a repository containing the projects belonging to an ontology and import the
initial ontologies and design patterns. The component design pattern manager
supports the administrator of the ontology editor to create, delete, or modify
design patterns. Moreover, it generates input forms for inserting data by or-
dinary users based on a design pattern. The discussion manager handles user
discussions about concepts and relationships of the ontologies, keeps track of ar-
guments, and supports the process of decision-making. The discussion process
will be structured according to a well-known methodology, e.g., DILIGENT [26]
supports controlled discussions besides others. Finally, the component ontology
support helps the user to edit an ontology appropriately, e.g., avoiding inconsis-
tencies and redundancy or placing a new concept in the ontology. For example,
inconsistencies may occur if a user deletes some concept of a project which is
needed by other ones and redundancy if he creates a concept that already exists
in the project with a similar label (e.g., “alcohol” vs. its German translation
“Alkohol”).

Ontology EditorOntology Editor
User Interface

Discussion Discussion
Manager

Design Pattern Design Pattern
Manager

Repository/
Project Manager

Repository/
Project Manager

OntologyOntology
Support

(incl. Versioning)
RDF Store

(incl. Versioning)

Client
Server

Figure 3.2: Components of the editor

19

3.1.3 Managing the RDF Data

In our implementation, we use Sesamé2 as RDF store. We chose Sesamé, because
it is open source software and offers a good performance, even for larger datasets.
Moreover, it supports named graphs and the management of multiple RDF
repositories. Both are very useful for managing several ontologies easily within
a single Web application. Another possibility was to use a SPARQL endpoint
at this point, but we did not, because the update language of SPARQL is still in
the process of standardization and is not supported by Sesamé at the moment.

Within Sesamé, a project is realized as a named graph in a repository. Thus,
any project is identified by an URI and it is possible to make statements about a
project itself, e.g., to handle access rights on projects. Since any project exactly
belongs to a repository, we decided that all project URIs share the same prefix
and, thus, can be easily queried. Concepts and relationships, in turn, reside in
a project. All newly created concepts and relationships within a project also
share the same, project specific URI prefix which is generally different to the
one of the corresponding project. At the moment the local part of a concept is
randomly generated.

3.1.4 User Interface

The design of the user interface has a great influence on the usability of the
ontology editor. Thus, we tried to transferred principles of interaction design
proposed by Bruce Tognazzini [30] to the ontology editor, namely anticipation,
autonomy, efficiency for the user, consistency, and track state. In the following
we shortly describe how we applied them.

Anticipation means that the application attempt to anticipate the user’s
wants and needs. Thus, the editor hides the complex and technical issues of
semantic technologies from the user. For example, the user will not see URIs if
it is not necessary (e.g., for administrating repositories and projects). Moreover,
the component ontology support instead of the user decides if a concept is a
class or an instance, because non-experts will not be aware of the differences.
In contrast, the system aims at presenting all information on a site that a user
needs to perform a task, e.g., the complete hierarchy of concepts is not shown
if not needed.

The next principle, autonomy, has the goal to keep the user informed by
presenting up-to-date status information in their visual field. In the context of
the ontology editor it means that the user gets immediately feedback about the
result of performing an operation, e.g., in form of flash messages.

Efficiency of the user aims at improving the productivity of the user. For
example, we try to reduce mouse movements by providing shortcut keys or
placing the action elements (buttons and links) for the next click at the place
of the previous one. We also eliminate any element of the application that is
not helping the user. Last but not least, we keep messages short and precise.

In this context, we have to mention consistency of the user interface. For a
user it is important that the application behaves in a way he is used to, e.g.,
shortcut keys maintain their meanings. Often it is referred to as look & feel.
But it also means to be visually inconsistent when things act differently, e.g.,
to use different icons for different operations.

2http://www.openrdf.org/

20

http://www.openrdf.org/

Finally, we realize functionality that a user can resume his work on the
ontologies quickly when he logins next time (track state). This feature is im-
plemented as dashboards showing the recent changes on all projects which the
user has access to. Moreover, we also maintain a dashboard for each project,
e.g., showing recently changed concepts and relationships. To enable a user to
continue his work his changes are highlighted respectively displayed separately.

Figure 3.3 gives an impression of the realized user interface. It depicts the
website for editing the properties of a concept.

Figure 3.3: Screenshot of the website for editing a concept

3.2 ExpertFinder for Wikis

Wikis have emerged as important collaboration and knowledge management
tools in large, locally distributed communities and corporate environments.
However, not all knowledge can be documented. Especially tacit knowledge
which enables individuals to solve complex problems, and which is the result of
personal experience and training, is hard to make explicit. Moreover, a number
of studies conducted among co-workers in medium-sized and large companies
suggest that people often prefer talking to an expert rather than referring to a
document when they need help with coping with a task [18, 16].

Besides the above mentioned reasons, social aspects play an important role.
A person can, for instance, act as an intermediary to other important persons
by directly introducing the two parties to each other or by revealing information
about the other person that helps lowering the barrier to initiate communica-
tion [16].

In general, a person with expertise can deliver more practical knowledge
than a document can do because persons with expertise can apply their general
experience to broader classes of problems, while documents tend to remain
focused on a rather tight problem context or completely lack such context [35].
Most importantly, a person with expertise can adjust her or his vocabulary to
that of the inquirer who may only have basic knowledge (or even none at all)
about the problem domain and the appropriate terminology, making person-to-
person knowledge transfer more efficient than document-to-person knowledge
transfer.

The following sections describe a prototypical system that identifies experts
among wiki authors using formalized domain knowledge in the form of a light-

21

weight domain ontology. The system has been developed as part of a diploma
thesis at the Corporate Semantic Web working group. It has been tested and
evaluated using the project wiki of the Eclipse Foundation3 and the Software
Engineering Ontology (SEOntology) developed at the Digital Ecosystems and
Business Intelligence Institute (DEBII), Curtin University of Technology, Perth,
Australia [33].

3.2.1 Expert Model

The expert model developed in this work is based on the cognitive model of ex-
perts described by Bransford [8]. According to Bransford, experts store knowl-
edge in a way that enables them to recognize basic structures and relevant di-
mensions of a problem, enabling them to find a more efficient approach to solve
the problem than laymen. Likewise, experts are able to name concepts from the
problem domain using domain specific terminology. The underlying assumption
in this work is that wiki users who are experts in a specific topic write about
this topic, either by using topic specific vocabulary, or by contributing content
to topic specific wiki sections denominated by corresponding vocabulary.

Relevant feature extraction is backed by a domain ontology denoting terms
in natural language using rdfs:labels4. While this yields a significant re-
duction of the features vector, domain concepts are hierarchically ordered by
owl:subclassof5 relations and otherwise semantically related by rdf:Properties6,
which in turn allows for augmenting the features vector with further relevant
terms that are not explicitly used by the author. The relevance of additional
terms is computed using ontology based similarity measures like node distance
or self-information based measures until a defined threshold is reached (see figure
3.4), and each value in the features vector for a revision is weighted accordingly.

16

ef:related_to

ef:related_to

Programming
Language

Object Oriented
Language

Java C++ Objective COracle

Database System

MySQL

Relational
Database System

Database
API

ODBC

JDBC

+1
+0,1

+0,4

+0,1+0,2 +0,2

+0,2+0,1

Figure 3.4: weighting of detected and related features

3http://wiki.eclipse.org/Main_Page
4http://www.w3.org/TR/rdf-schema/#ch_label
5http://www.w3.org/TR/owl-ref/#subClassOf-def
6http://www.w3.org/TR/rdf-schema/#ch_property

22

http://wiki.eclipse.org/Main_Page
http://www.w3.org/TR/rdf-schema/#ch_label
http://www.w3.org/TR/owl-ref/#subClassOf-def
http://www.w3.org/TR/rdf-schema/#ch_property

According to Ehrlich, reputation is another important factor when it comes
to judging experts [14]. In this work, the reputation of an author with respect
to a certain expertise topic is assessed using the quality control processes ac-
complished by peer wiki users. When authors contribute content to the wiki,
their contributions become subject to a perpetual revision process by other wiki
authors. This process is reflected in the wiki’s revision history. The wiki prin-
ciple encourages authors to change or even delete passages they object to. In
turn, if a reviser considers a contribution to be relevant and correct, he can
decide to keep or restore it if it has been deleted before. The contributions
that survive over time can be considered public consensus. The expertise model
developed in this work takes this revision process into account by considering a
person the more as an expert the more revisions his or her contributions have
survived, i. e. the more persons presumably have agreed with what the person
has contributed. Algorithms calculating the overall reputation of wiki authors
have been proposed by Chatterjee et al. [13] as well as by Adler and de Alfaro
[2]. As an analysis of the Eclipse project wiki revealed, contributions that have
survived five or more revision can be considered stable and will probably not be
deleted later on. Thus, a trust index function is deployed which converges on
one very quickly after the first revisions (see figure 3.5).

0 1 2 3 4

1

lifetime l
(n° revisions)

trust

Figure 3.5: growth of trust in a user contribution over time

3.2.2 Architecture of the Prototype

The architecture of the prototypical expert finder system is depicted in figure
3.6.

The system connects to an external wiki system using a unified API that
makes the system independent of a special wiki type. For each wiki page version,
wiki markup must be identified and textual content must be extracted by the
wiki parser. The authorship component relates contributions to their authors,
and the concept matcher identifies relevant terms by referring to the external
domain model and build the feature vectors accordingly.

3.2.3 Prototypical Implementation

The system was implemented using the Java language. The text analysis work-
flow was implemented using the Apache Unstructured Information Management
(UIMA) framework 7. Because the internal diff algorithm used by the Mediawiki

7http://uima.apache.org/

23

http://uima.apache.org/

system is insufficient in accurately detecting authorship down to word level, a
superior diff algorithm has been implemented.

3.3 Link Recommender

In companies wiki systems are increasingly used for knowledge management
because they allow creating websites in the Internet and intranet fast and col-
laboratively. An important feature of wikis is that they allow authors to insert
links to other pages to point to related pages or to indicate missing content.
However, current wiki systems fail to support authors in creating these links,
e.g., the author needs to know the title of the target page. As a result, the
authors have to be familiar with the whole content of the wiki in order to create
useful links to related pages. If they do not know the wiki then they are unable
to provide useful links and the wiki is less beneficial as a knowledge management
tool. Moreover, it may happen that authors create two pages on the same topic
without knowing of each other.

We developed two extensions to existing wiki systems that offer authors
seamless support for creating links between wiki pages. As a basis, we followed a
fully automatic and a semi-automatic approach being explained in the following.

3.3.1 Automatic Approach

With the automatic approach, links are created on the fly, as a wiki page is
rendered. The developed wiki extension uses an OWL ontology where each rele-
vant domain concept is annotated with one or more corresponding rdfs:labels.
Then, based on a similarity metric (see section 3.2.1), similar terms are identi-
fied. Then a link is inserted, leading to the wiki’s search page, using all identified
relevant terms as search terms (see figure 3.7).

3.3.2 Semi-Automatic Approach

The automatic approach has several downsides. For pages that contain many
relevant terms wrt. the domain model, many links are created, distracting
the reader from the important related pages. Furthermore, authors have no
control over the creation of links. Thus, we developed a second semi-automatic
approach. With this approach, relevant links are suggested to the author on
demand. While an author edits a page, she can select a term or phrase and
request link recommendations for that phrase (see figure 3.8).

The approach is based on a search index constructed of domain relevant
terms that are used in page titles and section headings. Each term is extended
by further relevant terms in the same way is described in section 3.3.1. When the
author of a page request a link recommendation for a selected phrase, the index
is searched for terms contained in the phrase, and links to the corresponding
pages are recommended.

A demonstrator is available at http://demo.corporate-semantic-web.

de/xwiki/bin/view/Main/.

24

http://demo.corporate-semantic-web.de/xwiki/bin/view/Main/
http://demo.corporate-semantic-web.de/xwiki/bin/view/Main/

NLP/preprocessing
components

expertise modeldomain model

external
wiki system

Expert Finder
System

wiki
API

frontend

concept
matcher

wiki
parser

authorship
component

Figure 3.6: high level architecture of the expert finder system

Figure 3.7: automatic link creation

Figure 3.8: semi-automatic link recommendation while editing

25

Chapter 4

Corporate Semantic Search

Following sections give an overview over the implementation of concepts devel-
oped in the previous phases of the research pillar Corporate Semantic Search.
In our research, we first explored the many possibilities of applying semantic
search approaches to the corporate context theoretically and then concentrated
on few of them in order to accomplish the proof-of-concept for our approaches.
Most of the methods demonstrated below are the result of our work under the
industrial cooperation. Many of them are work in progress and serve as bricks
that will be put together in the next months of research and development in
order to fullfill our concept of corporate semantic search.1

4.1 Algorithmic extraction of semantic relations
out of folksonomies

Problems with “Semantics” based on Tags[28] There are two main prob-
lems that emerged in social tagging: Ambiguity- which means having more
than one meaning for a tag- reduces the precision of a keyword based search in
folksonomy tags. Therefore users searching for atlas retrieve relevant resources
to world atlas, as well as results for Atlas Mountains in Africa. Synonymy-
which means equal or similar meaning of tags- reduces the quantity of the re-
sultset of a keyword based search in folksonomy tags. Users searching for titan
should retrieve atlas as well, since due to mythology Atlas is an examplar of
a titan. In addition to folksonomies, our concept of Extreme Tagging Systems
(ETS) as an extension of common folksonomy allows to tag tags and to tag
emerged relations between tags X,Y: ‘X 〈is− tagged− with〉 Y’. Extreme tag-
ging extends folksonomy graphs by adding semantics to tags. It enables the
use of user’s own concepts in description of the meaning, e.g. the use of their
“subjective” synonyms. This is useful for generating personal ontologies from
the ETS graph. However, these advantages bring obstacles in realizing ETS,
which are: the high user interaction in the tagging process and the user-
specific language used for tags and relation descriptions like users’ synonyms.
To address the problems described above, different methods for the algorithmic
extraction of semantic relations have been developed. Many of these methods

1In the sections: 4.1, 4.2 we use excerpts from our publications. Names of contributors are
given in footnotes and bibliography.

26

are restricted to only one type of semantic relation. From the users point of view
both relation types have an equal strong influence on the retrieval experience.
Also as these methods were developed for folksonomies they do not take into
account the special characteristics of ETS. Hence, we focused on an integra-
tive method that considers both types of relations and benefits from the ETS
concept.

Algorithmic extraction of tag semantics (aETS) aETS is based on a
four-stepped process. Using the data contained in a folksonomy, our method
develops an ontology built upon semantic relations between folksonomy tags. In
the preparation phase the Jaro-Winkler-algorithm is used on the set of tags
to unify the spelling of the tag occurrences via gathering all different spelling
forms of each tag. In the disambiguation phase, a bipartite graph is estab-
lished for each tag that should be disambiguated (dis-tag). The bipartite graph
contains users: u and entities: e as vertices. Tagging of an e with the dis-tag
by u is represented by an edge in the graph. Applying one-mode projection
to the bipartite graph results in a new graph where vertices are represented by
entities e and edges between them are transformed from tagging edges of the
bipartite graph. The transformation reduces the graph by omitting u (entities
tagged with the dis-tag by the same user are connected with the edge). It al-
lows for representing tagged entities as a network of vertices due to users who
tagged these entities with the dis-tag. Applying the Girvan-Newman-algorithm
for cluster determination to the transformed graph determines clusters in the
graph; hence it determines possible meanings of the dis-tag. Entities that are
included in one cluster are considered as possible synonyms. In the synonym
extraction step the cosine similarity between each of the tags is used to de-
termine synonyms. In the generating ontology step the extracted semantic
relations are recorded as a Semantic Web ontology.

Figure 4.1: TagSenses application

27

TagSenses demonstrator The aETS method has been prototypically imple-
mented in Ruby and tested relying on Delicious2 user tags. The first evaluation
of aETS shows very promising results of extracting semantic relations out of
tags. In order to validate the quality of retrieved relations and the usability
of the generated ontology, we additionally evaluated the aETS results with a
test user group. The manual approach has shown that aETS is a very promis-
ing method for determining user-generated, language independent polysemes
and synonyms. TagSenses generates synonyms and polysemes out of a given
folksonomy. Therefor it uses an import adapter to get data from an external
folksonomy. Each generation step is separated from the others to enable the
user to optimize the results. The import uses Delicious.com as external folkson-
omy to get real data. To import Delicious.com data a user has to simply select
an RSS feed from the Delicious site containing tagged resources with a specified
tag(eg. Tag Wifi). Also setting the size (good values are between 100 and 2000
entities) of the importset and the feed size (at around 10 to 50), determines how
much entries should be received for each entity. If you want a different feed size
than 15 entries you have to specify it in the start feed with the parameter count
(eg. Tag Wifi with 30 entries). To have a unique identificator the user has to
give each import set a unique name. In the import interface one should also set
all thresholds for the following generation steps. Each threshold is between 0
and 1 (with . as separator). Good generation results have been retrieved with
the following values:

• preparation:0.9

• disambiguation:0.6

• synonymy:0.85

After importing a certain amount of data, it has to be sanitized. In this step
entities are removed and user who didn’t got any annotations (because the im-
port broke down or was completed). Additionally users have the possibility to
delete any given import set.
For data preparation simply an import set has to be selected and the prepara-
tion can start. The generated data for a selected import set is displayed in the
second half of the screen. For each entity it contains its similar entities. If one
wants to completely restart the preparation for an already prepared import set
he first needs to undo this preparation through the third form as the prepara-
tion changes values inside the database and is not repeated.
The disambiguation step can be run after the preparation step or without prepa-
ration. The results are typically better after a preceeding preparation. The
import set to be disambiguated can simply be selected and the process starts.
This can be a long process depending on the processor speed and the available
memory. There is currently no process indicator so one has to be patient. After
a disambiguation the complete triple store is written on the lower half of the
page. It contains the generated synonym sets and the words of each set with all
spelling variations generated by the preparation step.
To start the synonym generation the import set can be selected and run. It has
a very long runtime and there is no process bar given at the moment. It outputs
the complete triplestore after the generation with the generated synsets and the

2http://delicious.com/

28

http://delicious.com/

containing wordsenses for each synset.
The complete ontology inside the triple store can be exported as rdf/xml, n3
or as svg image. Additionally one can clear the complete triple store for an-
other generation process. TagSenses has been developed under Mac and de-
ployed on Ubuntu Jaunty Jackalope with kernel 2.6.28-15-generic using WE-
Brick 1.3.1 and ruby 1.8.7 (2008-08-11 patchlevel 72), Postgresql 1.8.4 database,
Redland RDF Store (http://www.librdf.org) + Ruby Bindings. Screencast of
the demostrator can be viewed on: http://www.corporate-semantic-web.

de/algorithmic-extraction-of-tag-semantics-40aets41.html

4.2 Supporting knowledge based trend detec-
tion using Semantic Analyzer

Knowledge based trend detection[29] In order to realize the knowledge
based trend mining, trend knowledge has to be identified and formalized. Re-
ferring to the Semantic Web ontology approach, we proposed the usage of trend
ontology as knowledge base for the automatic trend mining. A trend, in terms
of market research, is the evolution of a customer opinion referring to a specific
topic that can be described by its categories or labels. Customer opinion is
strictly conjoined with sentiments used by customers to express linguistically
their emotional viewpoint on specific issues. In general, the automatic trend
mining as for market research should allow the enhancement of process efficiency
in the analysis of textual market research data that is generated in primary and
secondary research described in the former section. This includes the automatic
categorization and valuing process of open ended questions, the filtering of rel-
evant information, and trends identification. A trend ontology should support
the analysis process by providing knowledge regarding main market research
concepts that occurs in texts of the market research project (e.g. what is image
in terms of market research, what is product quality). This also includes:

• main keywords and terms used by customers in order to describe their
opinion (substantives, verbs, adjectives, “This brand fits to me”, “I like
the nice logo”),

• customer opinion categories in terms of market research studies (overall
satisfaction, level of commitment),

• categorization of customer opinions based on a given list of categories that
are relevant for the respective project,

• knowledge about trend indicating features of any given keyword or term
(positive, negative and neutral description keywords).

Considering the requirements, the trend ontology has to be defined as a knowl-
edge model that contains: (i) the meta-level knowledge about market research
concepts (commonly used in the market research), (ii) common keywords used
in the market research projects (based on market research specific projects) and
(iii) knowledge about trend indicating terms and relations in market research.
Furthermore, the trend ontology should be used as a knowledge base that can
be applied in different phases of the trend mining process: feature extraction,
selection and learning stage of the trend mining process (cf. 4.2).

29

http://www.corporate-semantic-web.de/algorithmic-extraction-of-tag-semantics-40aets41.html
http://www.corporate-semantic-web.de/algorithmic-extraction-of-tag-semantics-40aets41.html

Figure 4.2: Trend ontology embedded in machine learning approach

4.2.1 Trend ontologies

Keyword/concept based trend ontology Relying on the experience of ex-
perts from the market research domain, we identified and modeled with Protégé
using RDFS an initial keyword set categorized by the main concepts of the mar-
ket research (our case considered only high tech market). The main set cate-
gories are: Image (image), Produktqualität (product quality), Kundenbeziehung
(customer relation), Service (service), Stimmungsbild/Wahrnehmung/Entscheidung
(public opinion/customer view/decision).
Each category is implemented as a class consisting of relevant concepts that de-
scribe the category. For the product quality category, the concept set consists of:
e.g. Zuverlässigkeit (realiability), Performanz/Leistung (performance/power),
etc. We defined the class property included-in, in order to express semantically
the category membership of the given keyword/concept. In addition to the cat-
egorized concept sets, we modeled synonyms for several keywords/concepts and
added the trend-indicating property to each concept that had been classified by
experts as trend indicating. A keyword/concept based trend ontology is built
on a very simple schema and can be easily applied, for instance, in order to
extend the word based feature vector creation as for machine learning methods.

Figure 4.3: Concepts in meta ontology

30

Term field based trend ontology Extending the keyword-based trend on-
tology we observed the emergence of so-called term fields in market research,
which correspond to the semantic fields from the Semantic Field Theory. Re-
lying on the semantic field idea, the extension of concept definition by adding
term fields to the concept seemed reasonable. However, defining which term
belongs to the concept field and whether a given term is trend indicating or
not is the more difficult the more terms are used for the term field definition;
we searched for the exact definition of trend indicating features in the texts of
market research. Applying statistical methods (e.g. term frequency in docu-
ments) supported by manual expertise, we identified adjectives that, according
to experts, were significant for the description of customer opinion. The most
relevant adjectives were: vertrauenswürdig (reliable), kompetent (competent),
vielseitig (all-round), aktuell (up-to-date). Conducting the search for semantic
fields of these adjectives and their relevance to the main concepts of the market
research domain, we detected the appearance of so called satisfier, disatisfier and
sensitive. We defined each main concept as a category with its semantic field
and its own identifier that consists of diversificators. Identificators are adjec-
tives belonging to the concept and describing its features, i.e. entertainment has
entertainment identifier which is described by the adjectives: abwechslungsreich
(varied), ansprechend (attractive), entspannend (relaxing), etc. A diversificator
defines satisfier, disatisfier and sensitive which are adjectives grouped by the rel-
evant meaning that refers to the positive, negative and neutral customer opinion
about a given concept. Each identifier consists of a diversificator that refers to
a more or less positive customer opinion. The customer (dis)satisfaction refers
to a (negative)/positive trend indication. Trend ontology based on term fields
adds the meta-level concepts identifier, diversificator, sensitive, satisfier and dis-
atisfier to the keyword based trend ontology and extends concept sets in term
fields.

Figure 4.4: Examples of concepts in middle ontology for market research

31

(Temporal) invariant scheme based trend ontology The adjective groups
used as satisfier, disatisfier and sensitive are important for the proper senti-
ment interpretation of a given set of texts. The sentiment interpretation helps
for trend detection. However, the validity of diversificators often expires after
some time. Assuming that adjectives used for describing customer satisfaction
change with time, we searched for an invariant part of trend knowledge. The
semi-automatic analysis of relevant market research news done by experts re-
sulted in a structure that seemed to be valid for a long period of time and
intuitively used by experts for analysis of market research texts. This (tempo-
ral) invariant scheme based trend ontology consists of three meta-level classes:
general, quantification and classification. The class includes groups of the most
important concepts like supplier and companies. Suppliers, which are important
extraction features, are always used in market research projects (regarding our
case study) in order to classify the relevance of the texts. The quantification
part of our structure contains the idea of identifiers and diversificators, and it
adds the amplifier1 as a new meta-concept. Classification consists of different
categories that define the context for the quantifier. Its character is dynamic
since it strongly depends on the context at a given point in time. The interest-
ing subcategory of classification is the so-called structure that defines the basic
structure for the context. We observed that this category particularly refers
to the economic model of the given market. Even if we know that the trend-
indicating keywords and concepts are changing in time, and that their positive
or negative value differs and depends on the context, we assume that there is an
invariant trend structure which contains the three main trend detection parts:
general concepts, the trend value concepts, and the classification structure that
models the context of the trend (cf. Fig 4.4,4.3).

Figure 4.5: Semantic Analyzer Service

Semantic Analyzer Demonstrator Our Semantic Analyzer component has
been developed as a web service with an interface for a cluster method and al-
ternatively for a feature extraction method. The main component of Semantic
Analyzer are the trend ontologies with an ontology management module and
with the semantic similarity function. For computing the semantic similarity
we used the simple least common ancestor approach. Regarding the trend recog-
nition process based on any statistical learning approach, Semantic Analyzer can

32

be used for enhancing the feature extraction step and for the simple cluster re-
finement. Using tomcat 6.0.20, Axis 1.4 and a very simple GUI based on ruby
1.8.6, thanks to its semantic proximity function Semantic Analyzer generates 2
WSDL files for trend ontologies: finance and mafo (cf. Fig 4.5).

4.3 Automatic classification of web document
structure using Hidden Markov Models

Structure classification problems The work on Hidden Markov Models
in document structure classification presents3 a general approach for partition-
ing web page documents. In search engine environments, the outlined con-
tent based partitions are used to overcome problems encountered when ex-
tracting information from unstructured data sources. The challenging tasks
reducing processing times and developing efficient algorithms for extracting
data are crucial for processing engines. Partitioning web page content is giv-
ing the possibility to enhance the extraction process in considering only rele-
vant page content for extraction purposes. In quality measuring the extracted
data and generated models with cross-validation and precision recall method,
we show the maturity of the presented approach in the information extrac-
tion domain. A demostrator for the HMM Demonstrator can be viewed on
http://www.csw.inf.fu-berlin.de/apps/hmm/Demo

Figure 4.6: HMM demo

3Many thanks to Ivo Koehler and neofonie GmbH

33

http://www.csw.inf.fu-berlin.de/apps/hmm/Demo

4.4 Personalized Semantic Recommender for Mul-
timedia Content

Since the emergence of Digital Video Broadcasting (DVB) viewers are over-
whelmed with a huge number of TV channels (often exceeding 500) covering
various fields of interest. The information about TV programs available in
Electronic Program Guides (EPG) allows only a limited search and filtering
support (e.g. category search). Therefore, there arises a need for more sophis-
ticated personalized search functionality. This can be realized by representing
user preferences and metadata about content using domain ontologies, popu-
lating those ontologies with information from EPGs as well as by integrating
external data sources to further enhance the information quality. Furthermore,
the realization of this scenario requires a matchmaking component for ranking of
the multimedia content with respect to user likes and dislikes. In the following
section we briefly describe the prototypical implementation of a personalized
semantic recommender for multimedia content.

4.4.1 Representing Domain Knowledge and User Prefer-
ences

The prerequisite for an intelligent recommender system is a proper formal rep-
resentation of information it should operate on. In our case this includes the
description of available resources (i.e. TV programs, films, etc.) as well as user
profiles. We represent both of them in RDF [5] using concepts from a common
TV ontology which we have developed in OWL [4]. The T-Box of our TV on-
tology is based on XMLTV4 - an XML format for description of TV-programs
with properties like channel, title, language etc. - additionally relying on the
Time [22] and Wail5 ontologies as well as the Escort20076 specification intro-
ducing further taxonomies for concepts like content and intentedAudience. The
ontology was populated with a sample data set of an Electronic Program Guide
covering a time span of two weeks obtained through TV Movie ClickFinder7.
The sample data provided by the online service was available in the XMLTV
format which we mapped onto our TV ontology. In order to further enhance the
quality of the descriptions of films we integrated additional information from
the Internet Movie Database8 through a dedicated wrapper. The T-Box of the
ontology holding information about users consists of concepts describing static
and a dynamic user characteristics. The former represents personal information
like gender and date of birth for which we utilized the FOAF [9] vocabulary,
the latter captures user preferences (e.g. category, favorite actors, etc.) which
are likely to change over time.

4http://wiki.xmltv.org/
5http://www.eyrie.org/~zednenem/2002/wail/
6ESCORT 2007 EBU System of Classification of Radio and Television Programmes. http:

//tech.ebu.ch/docs/tech/tech3322.pdf
7http://www.tvmovie.de/ClickFinder.57.0.html
8http://www.imdb.com/

34

http://wiki.xmltv.org/
http://www.eyrie.org/~zednenem/2002/wail/
http://tech.ebu.ch/docs/tech/tech3322.pdf
http://tech.ebu.ch/docs/tech/tech3322.pdf
http://www.tvmovie.de/ClickFinder.57.0.html
http://www.imdb.com/

4.4.2 Preference Matching

The task of ranking of multimedia resources with respect to user preferences
belongs to the category of Multi Attributive Decision Making problems, which
are characterized by [34]:

• limited number of alternatives

• limited number of decision criteria based on the values of attributes de-
scribing alternatives to be selected/ranked

• different matching methods for different kinds of attributes (e.g. depend-
ing on the datatype of attributes)

• attribute weights representing the importance of decision criteria, which
are usually normalized to sum to 1,

The process of finding best alternatives for a given user profile is called match-
making. In our scenario the process of matchmaking is carried out in three steps.
First, each attribute of multimedia resources (e.g. hasContent) is mapped to
the semantically corresponding attribute of a user profile (e.g. interestedInCon-
tent). As next, the values of the attributes are retrieved from the underlying
RDF graphs (representing multimedia resources and user profiles) and their
similarity is computed using different matching techniques depending on the
datatype and semantics of the attribute in question. Finally, the attribute simi-
larities are aggregated with the Simple Additive Weighting method, which, due
to its linear form of trade-offs between attributes, generates close approxima-
tions to more complicated non-linear approaches, while remaining far easier to
use and understand, as research results have shown [20]. The ranking of alter-
natives based on the aggregated similarity score is then generated and presented
to the user.

The methods used for the computation of attribute similarities range from
simple string matching (for properties like language, channel, audio) and nu-
meric matching (for contentRatings) to matching approaches for ontology con-
cepts. Since most of attribute values describing multimedia content and user
preferences are represented by taxonomy concepts (see Section 4.4.1) we have
implemented and evaluated four methods [36], [3], [10], [24] for computing con-
cept similarity based on their respective position in a concept hierarchy (indi-
cated by the rdfs:subClassOf -relation). In general, those approaches imply the
specialization assumption meaning that the semantic difference between upper
level concepts is greater than between lower level concepts and the similarity
between parent and child concepts is greater than between brothers.

4.4.3 Architecture

Figure 4.7 shows the architecture of the prototypical implementation of the
personalized semantic recommender system for multimedia content which was
implemented in Java. We utilize the cf2xmltv9 tool to retrieve descriptions of
multimedia resources in xml format which are then complemented with addi-
tional information obtained from the Internet Movie Database through a dedi-
cated wrapper and finally transformed (by means of XSLT) into an RDF rep-

9http://www.koetter.cc/cf2xmltv/

35

User

Profile

Wrapper
RDF Store

RDF

import

IMDB

IMDB API

user API

user

profile

TVMovie Clickfinder

cf2xmltv

web application

TV Ontology

import API

XML2RDF

Transformation

XML

export

matchmaking

ranking of
multimedia content

Figure 4.7: Architecture of the Recommender System

resentation with concepts from our TV ontology. For accessing, manipulat-
ing, and storage of RDF data we use Jena - the Semantic Web Framework for
Java10[11]. The key part of the architecture is the matchmaking component
implemented based on SemMF - the Semantic Matchmaking Framwork11[23]
which we extended with additional attribute matchers for ontology concepts
(see Section 4.4.2). The output of the matchmaker is a ranking of multimedia
resources with respect to user preferences which is passed to the web application
presenting the recommendations to the user.

4.5 Semantic Search Assistant for the Museums-
portal-Berlin

Nowadays most of specialized portals providing information on a certain topic
of interest offer users access to their information via simple keyword search. An
example of such a portal is Museumsportal Berlin12 where users can find infor-
mation about over 200 museums, memorial places, castles, and other cultural
institutions as well as their services and current exhibitions. In this section, on
the example of the Museumsportal Berlin run by our cooperation partner x:hibit
GmbH13, we point out the shortcomings of the keyword search and demonstrate

10http://jena.sourceforge.net/
11http://semmf.ag-nbi.de/
12http://www.museumsportal-berlin.de/
13http://www.xhibit.de/

36

http://jena.sourceforge.net/
http://semmf.ag-nbi.de/
http://www.museumsportal-berlin.de/
http://www.xhibit.de/

how the application of the Semantic Web technologies may lead to improved
search and navigation functionality on specialized portals. The ideas presented
in this section serve as a foundation for a prototypical implementation of a
semantic search assistant.

4.5.1 Searching the Portal - Current Approach

Currently, the Museumsportal Berlin provides its visitors with a simple keyword
based search functionality allowing users to find web pages presenting museums,
exhibitions, or events in which the specified term appears either in the textual
description or among tags associated with a particular page. The main drawback
of the keyword search, in general, is that the results are obtained merely on the
basis of a syntactic match (i.e. the exact occurrence of a given term). This
problem is especially evident in cases of:

• misspelling

• alternative spelling (e.g. Sandro Botticelli vs. Il Botticello)

• aliases (Alessandro di Mariano di Vanni Filipepi known as Botticelli)

• synonyms (words having the same meaning, e.g. fix and repair)

• homonyms (the same word having different meanings, e.g. bank meaning
either a river bank or a financial institution)

Those cases may lead to a situation where the museums of interest to the
user are not found, even though they exist in the portal’s database, simply
because the searched keyword does not exactly match the words used in the
museums’ descriptions.

Another problem arises from the fact, that the search engine does not ’un-
derstand’ the semantics of the search keyword and thereby cannot relate it to
other terms which might also yield a valid query result. In order to illustrate
this, consider the following example (depicted in Figure 4.8): If users of the
Museumsportal Berlin who are looking for museums related to impressionism,
merely perform a search for this particular keyword, they will find only two
entries. There are, however, many more museums presenting paintings of im-
pressionist artists, for example pieces by Claude Monet, Max Liebermann, or
Karl Hagemeister. Unless the user performs multiple iterative searches for all
those related terms, which of course is a tedious task requiring some knowledge
in the arts domain, many museums of interest to the user will not be found.

Moreover, the keyword search proves rather an inefficient method if users
introduce additional constraints into their queries. For example, if someone is
looking for museums or events related to impressionism, open on Tuesday, with
entrance fee less than 10 and audio guidance in English, the museums of interest
can hardly be found by a simple enumeration of keywords. Instead, a mixed
approach of searching and navigation is required. First, the user has to perform
a query for the key concept (i.e. impressionism), then he or she has to examine
each found museum or event by following links to subpages containing informa-
tion on opening hours, prices, and services. In this concrete example the user of
the Museumsportal Berlin would have to go through a navigation path consist-
ing of 45 clicks, at the same time evaluating and aggregating all the information
’manually’ and memorizing museums satisfying his or her preferences.

37

Figure 4.8: Example of a search expansion. The search for impressionism. is
expanded into multiple searches for artists belonging to this art movement,
like Claude Monet, Max Liebermann and Karl Hagemeister. The blue boxes
represent additional search results.

4.5.2 Enhancing the Portal with Semantic Web Technolo-
gies

The problems associated with keyword search are mainly caused by the fact
that most of the information available on various portals, such as the Muse-
umsportal Berlin, is represented in form of textual descriptions designed to be
read by humans. Although machines can parse web pages for layout processing,
they do not understand the semantics of the data. In this paper, we propose en-
hancements to the portal relying on a formal representation of the information
from the arts domain using Semantic Web Technologies.

Museum Ontology

In oder to capture the semantics of the portal data we developed a museum
ontology (represented in OWL [4]) consisting of two sub-ontologies:

• Museum Description Ontology - defining key concepts used for de-
scribing cultural institutions as well as events and exhibitions offered by
them.

• Arts Domain Ontology - capturing the knowledge from the arts domain
including information on artists, art movements, etc.

38

The former sub-ontology is populated with instances of museums which are
present on the portal. We convert all the available data about each museum
into the schema of our ontology. Since most of the information is provided by
those institutions themselves, through a simple input form, the data is rather
weakly structured. Therefore, we additionally apply Named Entity Recognition
techniques for the extraction of artist names, etc. as well as identify catchwords
belonging to the arts domain. The found names and catchwords are, in turn,
mapped onto concepts from the latter sub-ontology, thereby connecting the
information about museums with a broader knowledge base of semantic relations
from the arts domain.

Since the process of ontology development and maintenance is a rather com-
plex and costly task, especially for such a broad domain as arts, we try to reuse
already existing knowledge provided by other communities such as Wikipedia14.
At this point, it is important to note that we utilize this particular information
source only as a practical example in order to illustrate the potential benefits
resulting from the application of semantic technologies. In fact, there exist sev-
eral classifications and thesauri, for example the Art and Architecture thesaurus
(ATT) or the Union List of Artists Names (ULAN)15, which could be used as a
foundation for our domain ontology as well.

Information Integration

There is, however, one important issue about integrating information from
Wikipedia into Museumsportal Berlin, which is, that Wikipedia itself is a col-
lection of documents represented in textual form, targeted at human readers
and thus can only be queried by keywords. As argued in previous sections, we
need a well-structured and semantically rich representation of data in order to
overcome the limits of keyword search. This is even more important if we want
to automatically integrate the relevant information from Wikipedia into Muse-
umsportal Berlin. Fortunately, owing to the DbPedia Project [6] - a community
effort aiming at extracting structured data from Wikipedia and representing it
with Semantic Web technologies - we can easily perform this integration task.

For each catchword or named entity (e.g. artist name), found either in the
museum description or among its tags, we perform a look up in DbPedia in
order to check if the given concept belongs to the arts domain. This can be
found out based on the category of the DbPedia-resource corresponding to the
concept in question. For example, the catchword impressionism has a corre-
sponding DbPedia-resource dbpedia:Impressionism which is an instance of the
class yago:ArtMovements, as shown in Figure 4.9. If the given catchword was
positively validated, additional information describing this resource (in this ex-
ample: painters associated with this movement etc.) is integrated into our
ontology.

By linking domain concepts on the Museumsportal with DbPedia-resources
(also pointing to human-readable Wikipedia articles) we are able to enrich the
content presented on the portal by embedding additional information on catch-
words and entities found in museum descriptions. Consequently, visitors of the
portal are provided with comprehensive information on the subject of museum

14http://www.wikipedia.org/
15http://www.getty.edu/research/conducting_research/vocabularies/

39

http://www.wikipedia.org/
http://www.getty.edu/research/conducting_research/vocabularies/

Figure 4.9: Excerpt of a semantic representation of the concept impressionism.
Source: http://dbpedia.org/page/Impressionism

exhibitions without the need to leave the Museumsportal in order to consult
other sources for more details on encountered keywords.

Improved Search and Navigation

Apart from enriching the information presented in the front-end of the Muse-
umsportal Berlin, we also use semantic relations between concepts from the arts
domain in order to overcome the limits of keyword search.

Since the domain ontology extracted from DbPedia contains information on
synonyms and alternative spelling for arts concepts, e.g. impressionism and
impressionist art, as well as on aliases of artist names (both indicated by the
property dbprop:redirect), e.g. Sandro Botticelli or Il Botticello, we utilize this
data by applying the mechanism of query expansion. Each search for a keyword
specified by the user is complemented with queries for all its synonyms and
spelling variations from our ontology.

Moreover, this simple mechanism is also applied to provide cross-lingual
search. Although most of the museum and exhibition descriptions, delivered by
those institutions themselves, are available in German as well as in English, there
are still some exceptions where only a German version is available, especially
in the case of tags. However, since the concepts in our ontology are associated

40

http://dbpedia.org/page/Impressionism

with their names in different languages (see Fig. 4.9) we are able to map the
search keyword specified by the user to the same ontology concept, regardless
of the language used, and expand the query into other languages. For example
the search for impressionism (engl.) is realized by mapping this keyword to the
concept dbpedia:Impressionism and performing the search for both the English
and the expanded German (i.e. Impressionismus) term.

The examples so far deal with improving the keyword search for a particular
concept from the arts domain by considering its different lexical representa-
tions (synonyms, alternative spelling, translations in different languages, etc.).
The mechanism of query expansion, however, may go one step further by addi-
tionally taking into consideration semantic relations between different concepts.
For example, based on our ontology, we are able to expand the search for an
art movement into queries for artists belonging to (indicated by the property
dbprop:movement) this particular style, or in the case of artists additionally
search for their style and other artists they are related to in various ways (indi-
cated by properties like dbprop:influencedBy or dbprop:training). As evaluated
in [32] those kinds of semantic relations are the most interesting ones from the
users’ point of view.

Because the expansion of a query into semantically related concepts increases
the recall, it is important to present the search result in such a way that it is
manageable and comprehensible to users. At this point, once again, the semantic
relations used in the process of query expansion might be used for generating
explanations of the result set. One possible way of doing this, is to first list
the exact matches of the searched keyword followed by a dynamically generated
explanations of results obtained through query expansion.

Another advantage of a well-structured ontology-based representation of mu-
seum data is the possibility of the realization of complex queries, such as dis-
cussed in Section 4.5.1. Users can specify their search constraints (e.g. opening
hours, entrance fee, desired services, etc.) through facets corresponding to the
possible values of properties, from the ontology, describing museums and exhibi-
tions. The preferences provided by the visitors of the portal are then translated
into a formal query (i.e. SPARQL [27]). In consequence, the amount of clicks
currently required to find out the desired information can significantly be re-
duced.

4.5.3 Architecture

Figure 4.10 shows the architecture of the prototypical implementation of the
semantic search assistant for the Museumsportal Berlin. The integration com-
ponent retrieves museum descriptions from the portal’s database through a
REST-webservice, applies named entity recognition for the extraction of rele-
vant catchwords from textual descriptions and integrates additional information
on the extracted resources from DbPedia thereby extending the museum ontol-
ogy. The semantic representation of museum data is stored in the RDF backend
realized with Jena Semantic Web Framework for Java16[11]. The query exten-
sion component takes as input keywords provided by the user, maps them to
concepts from the domain ontology and expands the query into related concepts
using a pre-defined set of expansion rules.

16http://jena.sourceforge.net/

41

http://jena.sourceforge.net/

Museum Data

REST-Webservice

Integration Component

Named Entity Recognition /
Catchword Extraction

DbPedia-Lookup

XML2RDF-Transformation

XML

RDF Backend

Museum
Ontology

DBPedia
(SPARQL-Endpoint

SPARQL RDF

RDF
Query Expansion

Expansion
Rules

API

Web Application
(User Interface)

Keyword
Search

Expanded
Query
Results

SPARQL

Figure 4.10: Architecture of the Semantic Search Assistant for the Museum-
sportal Berlin

4.5.4 Related Work

We presented how the application of Semantic Web technologies may improve
search and navigation on a portal providing information on museums and ex-
hibitions. Our analysis, however, is restricted to only this kind of information
which is available on the Musuemsportal Berlin, i.e. descriptions of cultural
institutions, combined with background knowledge from the arts domain.

The benefits of the deployment of Semantic Web technologies to enhance
access to digital collections of museums are demonstrated by the CHIP (Cultural
Heritage Information Presentation) project funded by Dutch Science Foundation
program 17. The researchers collaborating with the Rijksmuseum Amsterdam
developed a content-based recommender system that recommends art-related
concepts based on user ratings of artworks [32]. For example, if a user assigns
the painting Night watch a high ranking, the user will get a recommendation
for its creator Rembrandt.

17http://www.chip-project.org/

42

Chapter 5

Conclusion and Outlook

In this report, we described the progress of our work in the project Corporate
Semantic Web during the last milestone phase. We presented several proto-
typical implementations as a proof of our conceptual Corporate Semantic Web
architecture presented in the last report, covering the three pillars Corporate
Ontology Engineering, Corporate Semantic Collaboration, and Corporate Se-
mantic Search. The prototypes were partially developed in tight co-operation
with our industrial partners.

The upcoming phase of our work will comprise an in-depth evaluation of the
results of our work. Together with our industrial partners, we will assess the
functional correctness and the economic gain induced by our newly developed
methods.

43

Appendix A

Work Packages

Work package 1 Search in non-semantic data 02/08-01/11
WP 1 Task 1.3 Conceptual design of semantic search with

knowledge extraction from non-semantic
data

08/08-01/09

WP 1 Task 1.4 Prototypical implementation 02/09-01/10

Work package 2 Search personalization 02/08-01/11
WP 2 Task 2.3 Conceptual design of personalized semantic

search based on user profiles
08/08-01/09

WP 2 Task 2.4 Prototypical implementation 02/09-01/10

Work package 5 Knowledge extraction by mining user
activities

02/08-01/11

WP 5 Task 5.3 Conceptual design of a semantic collabora-
tive tool for the acquisition of implicit knowl-
edge about employees

08/08-01/09

WP 5 Task 5.4 Prototypical implementation 02/09-01/10

Work package 6 Ontology- and knowledge modeling
supported by collaborative tools

02/08-01/11

WP 6 Task 6.3 Conceptual design of a collaborative tool for
modeling corporate knowledge

08/08-01/09

WP 6 Task 6.4 Prototypical implementation 02/09-01/10

Work package 9 Ontology modularization and integra-
tion

02/08-01/11

WP 9 Task 9.3 Conceptual realization of ontology modular-
ization and integration

08/08-01/09

WP 9 Task 9.4 Prototypical implementation 02/09-01/10

Work package 10 Ontology versioning 02/08-01/11
WP 10 Task 10.3 Conceptual realization of ontology versioning

for a real-world use case scenario
08/08-01/09

WP 10 Task 10.4 Prototypical implementation. 02/09-01/10

44

Appendix B

Acknowledgment

This work has been partially supported by the ”InnoProfile-Corporate Seman-
tic Web” project funded by the German Federal Ministry of Education and
Research (BMBF).

45

Bibliography

[1] M.S. Ackerman, V. Pipek, and V. Wulf, editors. Sharing expertise: Beyond
knowledge management. MIT press, 2003.

[2] B. Adler and L. de Alfaro. A content-driven reputation system for the
wikipedia. In Proceedings of the 16th Intl. World Wide Web Conference
(WWW 2007), 2008.

[3] Troels Andreasen and Henrik Bulskov. From ontology over similarity to
query evaluation. In 2nd CoLogNET-ElsNET Symposium - Questions and
Answers: Theoretical and Applied Perspectives, pages 39–50. Elsevier Sci-
ence, 2003.

[4] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deb-
orah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein.
Owl web ontology language reference. http://www.w3.org/TR/owl-ref/,
February 2004.

[5] Dave Beckett. RDF/XML Syntax Specification (Revised). http://www.

w3.org/TR/rdf-syntax-grammar/, 2004. W3C Recommendation.

[6] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian
Becker, Richard Cyganiak, and Sebastian Hellmann. Dbpedia - a crystal-
lization point for the web of data. Journal of Web Semantics, 7(3):154–165,
2009.

[7] Elena Paslaru Bontas and Malgorzata Mochol. Towards a reuse-oriented
methodology for ontology engineering. In Proceedings of the 7th Interna-
tional Conference on Terminology and Knowledge Engineering TKE 2005,
2005.

[8] J. Bransford. How people learn: Brain, mind, experience, and school, chap-
ter 2, pages 31–50. National Academy Press, 2003.

[9] Dan Brickley and Libby Miller. FOAF Vocabulary Specification 0.97.
Namespace document, foaf project, 2010.

[10] Henrik Bulskov, Rasmus Knappe, and Troels Andreasen. On measuring
similarity for conceptual querying. In FQAS ’02: Proceedings of the 5th
International Conference on Flexible Query Answering Systems, pages 100–
111, London, UK, 2002. Springer-Verlag.

46

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/

[11] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy
Seaborne, and Kevin Wilkinson. Jena: implementing the semantic web
recommendations. In WWW Alt. ’04: Proceedings of the 13th interna-
tional World Wide Web conference on Alternate track papers & posters,
pages 74–83, New York, NY, USA, 2004. ACM.

[12] B. Chandrasekaran, John R. Josephson, and V. Richard Benjamins. What
are ontologies, and why do we need them? IEEE Intelligent Systems,
14:20–26, 1999.

[13] Krishnendu Chatterjee, Luca Alfaro, and Ian Pye. Robust content-driven
reputation. AISec ’08: Proceedings of the 1st ACM Workshop on AISec,
Oktober 2008.

[14] K. Ehrlich. Locating expertise: Design issues for an expertise locator sys-
tem, pages 137–158. In Ackerman et al. [1], 2003.

[15] Robert Tolksdorf Elena Paslaru Bontas, Malgorzata Mochol. Case studies
on ontology reuse. In Proceedings of the 5th International Conference on
Knowledge Management, 2005.

[16] T. Erickson and W.A. Kellogg. Knowledge communities: Online environ-
ments for supporting knowledge management and its social context, pages
299–326. In Ackerman et al. [1], 2003.

[17] Mariano Fernandez, Asuncion Gomez-Perez, and Natalia Juristo. Methon-
tology: from ontological art towards ontological engineering. In Proceedings
of the AAAI97 Spring Symposium Series on Ontological Engineering, pages
33–40, Stanford, USA, March 1997.

[18] M. Hertzum and A. Pejtersen. The information-seeking practices of engi-
neers: searching for documents as well as for people. Information Processing
and Management, 36(5):761–778, Jan 2000.

[19] Clyde W. Holsapple and K. D. Joshi. A collaborative approach to ontology
design. Commun. ACM, 45(2):42–47, 2002.

[20] C.L. Hwang and K. Yoon. Multiple Attribute Decision Making: Methods
and Applications. Springer-Verlag, New York, 1981.

[21] Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. Cex and
mex: Logical diff and semantic module extraction in a fragment of owl. In
Kendall Clark and Peter F. Patel-Schneider, editors, In Proceedings of the
OWLED 2008 DC Workshop on OWL: Experiences and Directions, 2008.

[22] Feng Pan and Jerry R. Hobbs. Time ontology in OWL. W3C working
draft, W3C, September 2006. http://www.w3.org/TR/2006/WD-owl-time-
20060927/.

[23] Adrian Paschke, Gökhan Coşkun, Ralf Heese, Markus Luczak-Rösch, Ra-
doslaw Oldakowski, Ralph Schäfermeier, and Olga Streibel. Realizing the
corporate semantic web: Concept papers. Technical Report TR-B-08-09,
Freie Universität Berlin, April 2009.

47

[24] R. Pázman. Ontology search with user preferences. In P. Návrat, P. Bartoš,
M. Bieliková, L. Hluchý, and P. Vojtá, editors, Tools for Acquisition, Or-
ganisation and Presenting of Information and Knowledge, pages 139–147,
2006.

[25] Helena Sofia Pinto, Steffen Staab, and Cristoph Tempich. Diligent: To-
wards a fine-grained methodology for distributed, loosely-controlled and
evolving engineering of ontologies. In Proceedings of the 16th European
Conference on Artificial Intelligence (ECAI 2004), Valencia, Spain, 2004.

[26] S. Pinto, C. Tempich, S. Staab, and Y. Sure. Semantic Web and Peer-to-
Peer, chapter Distributed Engineering of Ontologies (DILIGENT), pages
301–320. Springer Verlag, 2006.

[27] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for
RDF. Recommentation, W3C, January 2008.

[28] Mike Rohland and Olga Streibel. Algorithmic extraction of tag semantics.
In FIS2009: Proceedings of the 2nd international Future Internet Sympo-
sium, Berlin, 2009, pages –. LNCS, Subseries: Computer Communication
Networks and Telecommunications, Springer Verlag, 2009.

[29] Olga Streibel and Malgorzata Mochol. Trend ontology for knowledge-based
trend mining on textual information. In IEEE Computer Society Proceed-
ings of 7th International Conference on Information Technology : New
Generations, ITNG2010, April 2010 Las Vegas,US, TO APPEAR, pages
00–00. IEEE Computer Society, 2010.

[30] Bruce Tognazzini. First Principles of Interaction Design.
http://www.asktog.com/basics/firstPrinciples.html, 2003. Last accessed
on 30.4.2010.

[31] Max Völkel and Tudor Groza. Semversion: Rdf-based ontology versioning
system. In Proceedings of the IADIS International Conference WWW /
Internet 2006 (ICWI 2006), 2006.

[32] Y. Wang, N. Stash, L. Aroyo, L. Hollink, and G. Schreiber. Using semantic
relations for content-based recommender systems in cultural heritage. In
Workshop on Ontology Patterns (WOP) at International Semantic Web
Conference (ISWC), October 2009.

[33] P. Wongthongtham, E. Chang, and T. Dillon. Software Design Process
Ontology Development. In Proceedings of the 2nd IFIP WG 2.12 and WG
12.4 International Workshop on Web Semantics (SWWS) in conjunction
with OTM 2006, pages 1806–1813, November 2006.

[34] Chung-Hsing Yeh. The selection of multiattribute decision making meth-
ods for scholarship student selection. International Journal of Selection &
Assessment, 11(4):289–296, 2003.

[35] D. Yimam-Seid and A. Kobsa. Expert-finding systems for organizations:
Problem and domain analysis and the DEMOIR approach, pages 327–358.
In Ackerman et al. [1], Jan 2003.

48

[36] Jiwei Zhong, Haiping Zhu, Jianming Li, and Yong Yu. Conceptual graph
matching for semantic search. In Proceedings of the 10th International
Conference on Conceptual Structures (ICCS), pages 92–196, London, UK,
2002. Springer-Verlag.

49

	1 Introduction
	2 Corporate Ontology Engineering
	2.1 Modularization and Integration Framework
	2.1.1 Efficient Using and Reusing Ontologies
	2.1.2 Architecture
	2.1.3 Realizing the System
	2.1.4 The Tool

	2.2 SVoNt - An SVN-based versioning approach for ontologies
	2.2.1 Ontology Versioning Fundamentals
	2.2.2 SVoNt Basics
	2.2.3 SVoNt System Architecture
	2.2.4 SVoNt Commit Workflow
	2.2.5 Prototype Implementation of the SVoNt Server

	3 Corporate Semantic Collaboration
	3.1 Light-weight Ontology Editor
	3.1.1 Domain Model
	3.1.2 Architecture
	3.1.3 Managing the RDF Data
	3.1.4 User Interface

	3.2 ExpertFinder for Wikis
	3.2.1 Expert Model
	3.2.2 Architecture of the Prototype
	3.2.3 Prototypical Implementation

	3.3 Link Recommender
	3.3.1 Automatic Approach
	3.3.2 Semi-Automatic Approach

	4 Corporate Semantic Search
	4.1 Algorithmic extraction of semantic relations out of folksonomies
	4.2 Supporting knowledge based trend detection using Semantic Analyzer
	4.2.1 Trend ontologies

	4.3 Automatic classification of web document structure using Hidden Markov Models
	4.4 Personalized Semantic Recommender for Multimedia Content
	4.4.1 Representing Domain Knowledge and User Preferences
	4.4.2 Preference Matching
	4.4.3 Architecture

	4.5 Semantic Search Assistant for the Museumsportal-Berlin
	4.5.1 Searching the Portal - Current Approach
	4.5.2 Enhancing the Portal with Semantic Web Technologies
	4.5.3 Architecture
	4.5.4 Related Work

	5 Conclusion and Outlook
	A Work Packages
	B Acknowledgment

