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Abstract— We show how to compute the extrinsic parameters
of a video camera from the optical flow measured in consecutive
video frames. We assume that the camera is mounted on a car
or a robot which move forward and sideways on a flat area
to acquire the images used for the calibration. The vanishing
points of the optical flow lines provide enough information to
compute the camera rotation matrix. We also show how the
flow lines on the ground together with the vehicle’s velocity
provide enough information to compute the camera position.

I. INTRODUCTION

Our objective is to determine the orientation and position
of a video camera from video frames alone, given the internal
camera parameters. We assume that the camera is mounted
on a vehicle or a robot, pointing more or less forward. The
canonical position of the camera is such that the image plane
is orthogonal to the direction going from the back to the front
of the vehicle and also orthogonal to the ground, see Fig. 1.

The optical flow obtained in consecutive video frames is
basic information we use to estimate the external parameters
of the camera. Our main assumption is that the vehicle is
moving on a flat area, so that a subset of the segments
defined by the optical flow are the projection of parallel line
segments of the world coordinate frame. This set of parallel
lines intersect in the image plane at a common point, called
the vanishing point. If the vehicle moves sideways when
capturing the video frames, then the set of vanishing points
define the horizon, which is also known as the vanishing line.

We will show how to estimate the direction and position
of the camera, if we know the slope of the horizon line and
the coordinates of the vanishing point of lines parallel to the
forward movement of the vehicle.

II. BASsIiC CONCEPTS AND RESULTS

We will first introduce some useful concepts and results
of projective geometry [2] that will facilitate our analysis.

Finding the external orientation and position of the camera
consists in estimating the rotation matrix R and the translation
vector t of the transformation

x = K[R[t]W, (1)

which maps a world vector W to a image vector x in the
image plane. see Fig. 1.

The internal camera matrix K represents the internal
orientation of the camera and transforms the projected space
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Fig. 1: Canonical camera position. The vehicle moves in the
direction D. The ground plane y = h is orthogonal to the
vector N.

vectors into the camera coordinate frame. If R = I and the
t = 0, we say that the camera is in its canonical position.

Actually, the transformation (1) is a linear mapping be-
tween homogeneous vectors. An homogeneous vector X =
(X1,...,Xn41)" in the projective space P" represents a
vector X = (z1,...,2,)" in R", where z; = X;/X, 41,
X,41 # 0 and i = 1,...,n. The notation (x',1)T is
homogeneous representation of the inhomogeneous vector
x. The world vector W belongs to P? and the image vector
x to P2,

A line Liz + loy + I3 = 0 in R? is represented with the
homogeneous vector 1 = (I1,15,13) T in P2, Note that the
point x = (x,y,1) T belongs to the line, if and only if x "1 =
0.

The points at infinity are represented in homogeneous
coordinates as (d',0)". Geometrically, parallel lines and
parallel planes in IP? intersect in points and lines formed with
points at infinity. Thus, the point D = (d",0)" represents
the direction of parallel lines.

Proposition below is the main result we use to calculate
the extrinsic parameters of the camera. This result describes
how parallel lines and parallel planes in the world coordinate
frame are transformed in the camera plane.

Proposition 1: The camera matrix K[R|t] maps the inter-
section of parallel planes with a common normal vector
N = (n",0)" to the vanishing line I = K~ "Rn. The camera
matrix also transforms the intersection of parallel lines in the
direction D =(d",0)" to the vanishing point v = KRd.

Next section shows how to compute the camera orientation



if we know the horizon line defined by planes parallel to the
ground plane and if we know the vanishing point of lines in
the direction of the forward movement of the car. See Fig. 1.

III. EXTERNAL CAMERA ORIENTATION AND POSITION

Without lost of generality, we assume that camera coor-
dinates are normalized. This assumption means that K = I
and t = 0, so that (1) is simplified to a rotation

X = Rw, 2)

where w is the inhomogeneous representation of the world
vector W = (w ', 1)". Note that we can always normalize
the image vectors x by multiplying both sides of (1) with
K1

A. Camera Orientation

We will represent the camera rotation R as the product

R =R.(7)Rs (O‘)Ry (B), (3)
where

1 0 0

Rz(a) = 0 Co —Sa ) (4)
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are the rotation matrices around the coordinate axis, and cy
and sy are the cosine and sinus of the angle 6.

Suppose we know that the skyline is mapped to the line
1 = (I, lg,lg)T in the image plane. Given the vector N =
(0,—1,0,0) T normal to the ground plane, Proposition 1 tells
us that the line intersection of the planes orthogonal to N
will be mapped to the line

R(0,—1,0)" = (CaSy, —Calyy —Sa)- @)

Thus, the slope tan(y) of the line (7) must be equal to the
slope —Iy /Iy of the line 1, because they represent homoge-
neously the same line. So we conclude

~ = arctan(—ly /13). ®)

Now suppose we know that the set of lines parallel to
D = (0,0,1,0) "are mapped to the vanishing point v =
(v1,v2,1)T in the image plane. Proposition 1 tell us that

v o B2 (7)Ra ()R, (8)(0,0,1) 7, ©)
so we conclude that the homogeneous vector
R.(a)Ry(8)(0,0,1)" = (=55, —C35a), Cacs)

will be mapped to

(10)
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Rz_l('y)v = (Ulc'y + V28, V2Cy — U184, 1)_
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Fig. 2: (a) The translation of the vehicle on a flat area can
be described by the optical flow between two consecutive
video frames. (b) The ground plane y = h is orthogonal to
the vector N. The points in the image plane x(*) intersect
the ground plane in the points p(*.

Since the inhomogeneous form of (10) must be equal to (11),
we have:

o =
ﬂ:

Thus, we have found all the angles used by the rotation
matrix.

12)
13)

arctan(vy s, — vacy)

arctan(cq (vicy + v25y)).

B. Camera Position

We will show in this section how to compute the camera
position relative to the ground. The main assumption here
is that the points in the image plane are the mapping of
points that belong to the ground, and that the images are
captured during the forward motion of the vehicle. Under
this assumption, the vehicle motion between two frames is
equivalent to the motion of a world point on the ground
and its motion on the image plane defined with its optical
flow segment, see Fig. 2(a). Thus, if we assume that the
ground plane is represented with the equation y = h, then



the problem of computing the camera position relative to the
ground reduces to computing the value h, see Fig. 2(b).

Remember that, in analogy to the two dimensional case,
a plane hix + hoy + hsz + hy = 0 in R? is represented
in homogeneous coordinates as H = (hy, ho, h3, hy) T, and
that a point X = (z,y, z, 1) belongs the plane if and only if
XTH =0.

The point x in the image plane can be back projected to
the point d = R™!x in the world space [2]. The line joining
the origin with d will intersect the ground plane in the point
P = Ad, so this point fulfills the equation

(AMT,1)7(0,1,0,—h)" =0. (14)

By solving this equation for A, one find the intersection point
of the ray with the ground plane
hdy . hds

P=(—h —).

15
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Now suppose that two points x(¥) in the image plane
define a flow segment and that they are back projected to
d® = Rr"'x(, i = 1,2. We can use (15) to compute the
displacement on the ground in terms of the image points:

@ S0\ 2 ) 1)
0 —p ) = [aly| (- 5 )+ (S5 -2

(16)
where p(*) are the intersection points of the rays defined
by d(¥). This equation relates the horizontal displacement of
the vehicle and the optical flow displacement, so if we know
both displacements, then we can compute the height of the
camera.

In practice we don’t know the displacement on the ground,
however, another quantity that is usually considered is the
instantaneous velocity of the vehicle v. If we know the
velocity v during the time interval At, then the displacement
on the ground can be computed with [|[p® —pM)|| = |v|At
and the height of the camera with the formula

|v| At

2 2
@ a0\ (& ap
d;Q) d(zl) d;2) d(21)

IV. COMMENTS

|h| =

a7)

The method described above also works if we have two
straight parallel lines visible in the camera image which can
be extrapolated up to their vanishing point. In this case we
can orient the car parallel to the stright lines and determine
the position of the vanishing point, without actual movement
of the car. The direction of the parallel lines corresponds to
the optical flow if the car was driving forward.

Finding the vanishing point of the optical flow can be
useful for stereo vision; we can calibrate two cameras
independently of each other and bring them later in corre-
spondence. Note also that cameras pointing backwards can
be calibrated in the same way as explained here, and even
cameras where the vanishing point of the optical flow is not

visible on the chip can be calibrated using the same approach.
Given the position of the camera on the vehicle, the optical
flow can be used as a poor mans IMU. This has been called
“visual odometry”, it can be more than just odometry.

It is also important to point out that optical flow algorithms
are very general. They try to capture any kind of movement
on the image. An optical flow algorithm specialized to
determining the vanishing point could be faster and more
accurate, since we only have to consider radial movement
around the vanishing point. Radial distortion is still an issue,
but at least we could limit the possible angles of the optical
flow lines.
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