
Point�sets with few k�sets

Helmut Alt� Stefan Felsner� Ferran Hurtadoy Marc Noyy

Abstract

A k�set of a �nite set S of points in the plane is a subset of car�
dinality k that can be separated from the rest by a straight line� The
question of how many k�sets a set of n points can contain is a long�
standing open problem where a lower bound of ��n log k� and an upper
bound of O�nk���� are known today�

Under certain restrictions on the set S� for example� if all points lie
on a convex curve� a linear upper bound can be shown� Here� we will
generalize this observation by showing that if the points of S lie on a
constant number of convex curves� the number of k�sets remains linear
in n�
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� Introduction and de�nitions

Let S be a set of n points in the plane� A k�set �� � k � n��� is a subset of
S of cardinality k that can be separated from the rest by a straight line� The
simple and natural question of how many k�sets a set of n points can contain
has been considered for more than �� years and has inspired considerable
research� Nevertheless	 it is still not solved completely and remains one of
the most prominent open problems in combinatorial geometry�

The 
rst upper bound is due to Lov�asz �� who showed that the number of
k�sets can be at most O�n

p
k� which is O�n����� Erd�os et al ��� constructed a

family of sets having ��n log k� k�sets which is ��n logn� for suitable values
of k� For a long time the gap between lower and upper bound could not be
narrowed until Pach	 Steiger and Szemer�edi ��� showed an upper bound of
O�n

p
k� log� k�� More signi
cant progress was made only recently by Dey ���

who proved an upper bound of O�n �
p
k� which is O�n�����
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Various generalizations of the k�set problem or its dual formulation	
namely determining the number of cells at the k�level of the arrangement
of a set of n straight lines	 have been considered� Among them are k�sets
in higher dimensions or k�levels of curves in two dimensions and surfaces in
three dimensions ��	 ���

Under certain restrictions on the set S it is possible to prove better
upper bounds on the number of k�sets� For example	 if all points of S lie on
a straight line	 there are only � k�sets� If all points of S lie on a convex curve	
S contains at most n k�sets� Here	 we will generalize the latter observation
by showing that if the points of S lie on a constant number of convex curves	
the number of k�sets remains linear in n�

In the following let S be a 
xed set of n points in the plane and let
k � n � �� An oriented straight line l is called a k�line of S exactly if the
open halfplane right of l contains k points of S� As easily can be seen	 to
any k�set M of S there exists either a corresponding k�line incident to two
points p� q � S nM or a �k� ���line incident to points p �M and q � S nM
having M nfpg as its corresponding �k����set� Let us call any line segment
pq with the former property a k�segment of S �a segment with the latter
property	 then	 is a �k� ���segment�� The idea is to obtain an upper bound
on the number of k�segments and �k����segments and	 thus	 on the number
of k�lines� We will make use of a powerful lemma	 due to Lov�asz	 that was
shown in the classical articles ��	 ��

Lov�asz� Lemma� Let S be a set of n points and l a straight line containing

no points of S and dividing S into two subsets of m and n � m points�

respectively� Then for any k � n� � the number of k�segments intersecting

l is at most �minfm�n�m� k � �g�
A simple consequence of Lov�asz Lemma is that the number of k�segments

intersecting a straight line l is O�n� �in fact	 it is at most n�� The lemma is
proven by giving a procedure that enumerates all k� and �k � ���segments�
For convenience we brie�y review Lov�asz procedure�

Let l be an oriented line and let Sl be the set of points of S on the
�open� right side of l� Assume without loss of generality that no two points
in S have the same y�coordinate� Then there is a unique horizontal line l�
containing a point p� of S such that Sl� is of cardinality exactly k	 i�e�	 there
are k points of S below l�� Let l � l� and repeat the following step� rotate
l counterclockwise around pi until it hits a point pi��	 let li�� be the line
through pi and pi�� and increment i� This is done until the line returns into
the initial horizontal position	 i�e�	 li � l�� Let l�� l�� � � � � lz be the di�erent
lines generated by this process� Each line li contains a segment pi��pi	 we
call these segments the L�segments of the process� Lov�asz observed the
following fact�

Fact �� The L�segments are the union of the �k� ��� and the k�segments�
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Figure �� Curve � and sets A	 C and I

So 	 by the observation above	 any upper bound on the number of L�segments
will be one on the number of k�sets�

� The main result

In the following we will consider point sets lying on a 
xed collection of
curves in the plane� Each curve can be closed or not	 bounded or unbounded�
We call a curve convex exactly if it lies completely on the boundary of its
convex hull� Our main result is stated in the following theorem�

Theorem Consider a �xed� �nite collection of p pairwise disjoint convex

curves in the plane� Then there is a constant cp � � such that any set S of

n points� each lying on one of the curves has at most cpn k�sets�

We 
rst observe that without loss of generality we may assume that the
points in S are in general position in the sense that no three of them lie on
a straight line� In fact	 let K � S be a k�set� Then there exists a line l not
containing any point of S which separates K and SnK� Consequently	 under
slight perturbations of the points in S any k�set K still remains a k�set� So
the points of S can be brought into general position without decreasing the
number of k�sets�

The main step towards the proof of the theorem is the following propo�
sition which considers one 
xed convex curve and gives an upper bound on
the number of k�segments with at least one endpoint on the curve�

Let � be a convex curve	 i�e�	 the boundary curve of some convex set �
in the plane� Partition the n points of S into the subset C of points on �	
the subset I of points in the open interior of � and the subset A of points
outside �	 i�e�	 A � S n �C � I�� Figure � illustrates the situation�

Proposition � Let r be the number of k�segments of S with at least one

endpoint in C and let rA be the number of k�segments with one endpoint in
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A and one in C� Then

r � jCj� �rA�

Proof� Let us apply Lov�asz� procedure to the set S and let p�� � � � � pz be
the sequence of points and l�� � � � � lz the sequence of lines traversed� We
will enumerate all L�segments containing a point of C� For any straight
line l intersecting � we call the 
rst intersection point of l with � when
following its orientation its entry�point � We will prove an upper bound on
the number � of L�segments where the entry�point is one of the endpoints
of the segment	 i�e�	 on the number of oriented L�segments pipi�� with pi in
C� For reasons of symmetry this same bound holds for the L�segments with
the dually de
ned exit�point in C�

Let L�� L� � � � L� be the subsequence of l�� � � � � lz of those lines Li with
entry�point qi � C� Let � be oriented such that the convex region � is to
the left of �� The orientation of � induces a cyclic ordering of the points in
C� If during Lov�asz� procedure every line L between Li and Li�� intersects
� we call the pair Li� Li�� a standard step�

Claim �� If Li� Li�� is a standard step then either qi�� is the point imme�
diately preceding qi in the cyclic order on C or qi�� is the point immediately
following qi or qi�� � qi�

Proof� During Lov�asz� procedure the entry�point describes a continuous
movement on curve �� �

We classify types of standard steps� A standard step Li� Li�� is a trivial

step if it corresponds to a rotation around the entry�point qi � qi��� Note
that every second step is a trivial step� A non�trivial standard step is called
a forward step if qi�� is the point following qi in the cyclic order on C else	
i�e�	 if qi�� � qi or if qi�� is the immediate predecessor of qi in the cyclic
order on C	 the step is called a backward step� A step which is not standard
is called a special step� If s is the number of special steps	 a the number
of forward steps and b the number of backward steps	 then we have for the
total number � of steps

��� � a� b� s� ���

Let Li� Li�� be a backward step and observe the entry�point when leaving
qi� When the point moves backward on � the rotation of line l is a rotation
around some point p � A� In this case we �charge� the step Li� Li�� to the
L�segment p qi� When the entry�point moves forward on � after leaving from
qi then it must be qi�� � qi and the entry point must move backward and
return eventually� Again this backward motion is due to rotation around
some point p in A and we charge the step to the L�segment p qi��� This
shows

b � rA� ���

We now turn to a closer discussion of special steps� To simplify the
exposition we assume that � has nonvanishing curvature everywhere �this
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Figure �� Rotating from l to l� the nigh�point moves forward on �

can be done w�l�o�g� since we assume that S is in general position�� Suppose
some line L between Li and Li�� has no entry�point on �� Then there is
a moment when the rotating line l leaves �	 i�e�	 l is tangent to �� For a
line with less than two points of intersection with � we de
ne the nigh�point
of l as the �unique�� closest point to l on �� There are two important
observations about the nigh�point�

Fact �� For every line l the entry�point or the nigh�point are de
ned� If they
are both de
ned then they coincide with the tangent point� Hence	 observing
whichever is de
ned during Lov�asz� procedure we obtain a continuously
moving en�point for l on ��

Fact �� While l rotates outside of � the nigh�point always moves forward
in the orientation of �� This is easily seen to be true in both possible cases�
� left of l and � right of l �see Figure ���

As a consequence of Fact � we obtain that the en�point can move back�
wards only when it is the entry�point� Therefore	 if Li� Li�� is a special step
then either qi�� is the point immediately preceding qi in the cyclic order on
C or qi�� � qi or the nigh�point sweeps over a piece of curve � containing
all points of C that are between qi and qi�� in the cyclic order�

We now re
ne the classi
cation and add the attribute backward to special
steps with either qi�� preceding qi in the cyclic order on C or qi�� � qi� The
attribute forward is given to all other special steps� Let sa be the number of
forward special steps and sb be the number of backward special steps	 then

s � sa � sb ���

As in the argument preceding Inequality ��� we 
nd an L�segment in�
volving a point p of A and a point of C for every backward special step�
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This improves Inequality � to

b� sb � rA� ��

The next lemma will show that the winding number of the en�point is ���
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Figure �� The potential locations for the en�point of a line at angle � cover
the part of � parametrized by �� � 	� ���

Lemma � During Lov�asz� procedure the e�ect of the movement of the en�

point is one full rotation around ��

Proof� For a 
xed angle � consider the en�points of all ��oriented lines� These

Figure � Possible

motion of the
en�point�
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points cover one half of � if we parametrize the
curve by tangential�angle �see Figure ���

Consider the lifting�space �� of curve �	 a dou�
bly in
nite spiral where each point ��t� on � has a
copy ���t�k�	� for every integer k� We identify ��

with the reals by t � ���t�� During Lov�asz� pro�
cedure the rotating line sweeps through all angles
� from � to �	� For every � the tangential�angle
of the en�point of l��� is in the interval �� � 	� ���
Lines l��� and l��	� and hence their en�points equal
each other� Therefore in the lifting�space �� the en�
points of l��� and l��	� di�er by multiples of �	�
Together this shows that as a function from the
angle into the lifting�space the en�point starts at
some value x � ��	� ��	 stays in the white area in
Figure  and ends in one of the copies of x� A pos�
sible value for x is indicated by the black triangle
in Figure � the copies of x on the right side are
the white triangles� Since the function stays in the
white strip containing x we know at which of the
white triangles the function ends� It follows that
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in the lifting�space of � the en�point of l moves up exactly one level during
Lov�asz� procedure	 this is another way of saying that the en�point makes
one full rotation around �� �

This lemma will be used next to bound the di�erence between forward
and backward steps during the procedure�

Claim �� If jCj � t then

�a� sa�� �b� sb� � t� ���

Proof� To see this recall three already proven facts� ��� Every forward
step moves forward at least one element in the cyclic order on C� ��� Every
backward step moves backward at most one element in the cyclic order on C�
��� As a consequence of Lemma � the overall surplus of forward steps cannot
exceed jCj� �

We are ready now to come to an end with the proof of Proposition ��

��� � �a� sa� � �b� sb� by ��� and ���
� t� ��b� sb� by ���
� t� �rA by ��

For the number �� of L�segments with exit�point in C the dual argument
shows that �� � �t � rA� With r � �� �� we obtain the bound claimed in
the proposition�

Next we extend the result to sets of nested curves�

A

C

Figure �� Nested convex curves�

Lemma � Let �� � � � � �p be closed convex curves where �i is contained inside

�i��� i � �� � � � � p� The points of S may lie on the curves �subset C	 or
outside of �� �subset A	 see Figure 
� There is a constant cp such that

rC � cp�jCj� rA� when rC denotes the number of k�segments incident to at

least one point in C and rA the number of k�segments with one endpoint in

A and one in C�

Proof� Let ri be the number of k�segments from �i to some �j � j � i� i �
�� � � � � p � � and let r� � rA be the number of k�segments from A to some

 



�i� j � �� � � � � p�

Then by Proposition �
ri � c �n� si�

for some constant c	 where si is the number of segments with one endpoint
in A � �� � � � � � �i�� �the outside of �i� and one on �i�
So si � r� � � � �� ri�� and we have the recursive inequality

ri � c �n�
i��X

j	�

rj� i � �� � � � � p with

r� � rA�

Certainly ri � ti	 i � �� �� � � �	 where the sequence �ti� is de
ned by the same
recursive system	 except that the ��inequalities are replaced by equalities�

We have ti � ti�� � c ti��	 i�e�	 ti � �c � �� ti�� and therefore ti �
�c� ��i��t� � �c� ��i��c�n� rA� is an upper bound on ri�

We want an upper bound on the number of segments with at least one
endpoint on �� � � � � � �p	 i� e� on

pX

i	�

rj � rA � c�n� rA�
pX

i	�

�c� ��i��

� rA � ��c� ��p � ���n� rA�

which proves Lemma ��

Next assume that the points of the set S lie on a 
nite number of closed
convex curves which form p nested �clusters� each of the form described in
Lemma � �see Figure ��� We claim

Figure �� Four clusters of nested convex curves�
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Lemma � If the points of S lie on constantly many �xed nested clusters of

closed convex curves� then there are O�n� k�sets�

Proof� Consider one cluster C of the p clusters and let rC be the number
of segments with at least one endpoint on C� C can be separated from any
other cluster by a straight line	 so by Lov�asz� Lemma there can be only
O�n� segments between the two clusters	 so the number rA of segments with
one endpoint in C and one outside of C is O�n�� With Lemma � we obtain
rC � O�n � rA� which is O�n�� The lemma follows since there are only
constantly many clusters�

Proof 	Theorem
� Let us consider p disjoint convex curves	 which may
contain the points of the set S� Since S is 
nite we can assume that all curves
are bounded� To the curves we add all vertical lines through their endpoints
and all vertical tangents �see Figure  � The vertical lines decompose the

Figure  � Vertical lines added to a set of convex curves�

plane into constantly many slabs where each slab contains constantly many
upward or downward convex segments of curves �see Figure ��� We now add
line segments to the curve segments in a slab as shown in Figure �� If a
downward convex segment lies directly above an upward convex segment we
connect the endpoints of each of them with a line segment� If the topmost
�bottommost� segment is upward �downward� convex we also add the line
segment between its endpoints�

Furthermore	 from each downward convex segment we construct a closed
convex curve by connecting its endpoints by a vertical line segment to the
nearest endpoint below �above� of a line segment constructed in the pre�
vious phase� Thus	 the curve segments obtained by introducing slabs are
transformed into a set of clusters of convex curves � The number of clusters
and the number of curves within each cluster are bounded by constants�
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Figure �� Curve segments and added line segments within a slab�

Observe that	 without changing the point set S	 the curves can be slightly
modi
ed so that they do not touch each other any more� So we can apply
Lemma � and conclude that S has only O�n� k�segments which proves the
theorem�
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