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Abstract

Widespread acceptance of concurrent object-oriented programming in the field can only be expected if
smooth integration with sequential programming is achieved. This means that a common language base has
to be used, where the concurrent syntax differs as little as possible from the sequential one but is associated
with a "natural" concurrent semantics that makes library support for concurrency superfluous. In addition,
not only should sequential classes be reusable in a concurrent context, but concurrent classes should also be
reusable in a sequential context. It is suggested that concurrency annotations be inserted into otherwise
sequential code. They are ignored by a sequential compiler, but a compiler for the extended concurrent
language will recognize them and generate the appropriate concurrent code. The concurrent version of the
language supports active and concurrent objects and favours a declarative approach to synchronization and
locking which solves typical concurrency problems in an easier and more readable way than previous ap-
proaches. Concurrency annotations are introduced using Eiffel as the sequential base.

Key words

Concurrent object-oriented programming, reusable concurrent code, concurrency annotations, Eiffel, CEiffel

Institut fu
..
r Informatik lohr@inf.fu-berlin.de

Fachbereich Mathematik
Freie Universita

..
t Berlin

Nestorstr. 8-9
D-1000 Berlin 31



- 1 -

1 Introduction

The recent surge of concurrent object-oriented languages indicates the lively interest of the
research community in the subject, but is still far from being practically relevant. This is
partly due to the immaturity of the subject; but another reason is that having a good
language, although important, is not sufficient for practical software development: there is
also a vital need for a stable programming environment comprising extensive libraries and
powerful tools.

Now it is certainly too early for a generally accepted language of this kind to emerge,
along with libraries and tools. But then, even with concurrent variants of well supported
sequential languages like Smalltalk [Yokote/Tokoro 87] or C++ [Gehani/Roome 88], there
remains the problem of reusability of classes across the boundary between sequentiality
and concurrency: reusing sequential code in a concurrent system frequently requires a
substantial amount of modification, involving special syntax and/or features from a "con-
currency library"; and reusing concurrent code in a sequential context is not even con-
sidered.

A look at functional programming languages reveals that this need not be so. Slight
changes in the semantics of a functional language, such as replacing eager evaluation with
lazy evaluation, can suggest a concurrent execution model rather than a sequential one, in
addition to enhancing the expressiveness of the language. In a similar vein, the ideal
object-oriented language would come with a syntax that would allow either a sequential or
a concurrent interpretation, depending on the compiler (or compilation switches) being
used.

Our goal is approximation, if not attainment, of this ideal. In particular, it is important that
the concurrent semantics blend well with inheritance, as a key to reuse. According to the
terminology in [Papathomas/Nierstrasz 91], the approach reported here is heterogeneous
and supports concurrent objects and proxies: i.e., objects may be active, may be threaded,
may synchronize incoming requests and may support asynchronous service execution.
Two languages known for similar properties are SINA [Tripathi/Aksit 88] [Aksit et al. 91]
and ACT++ [Kafura/Lee 90]. The emphasis here, however, is less on concurrent language
design and more on a common language framework accomodating both sequentiality and
concurrency.
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Our approach does not hinge on a particular language. Obviously, though, not all
languages are equally well suited. We have chosen Eiffel [Meyer 88] as our experimenta-
tion vehicle, for reasons that will become evident below. Examples will be based on ver-
sion 3 of the language [Meyer 91].

Eiffel has been used as the basis for concurrent programming before. A system called Eif-
fel// [Caromel 90] uses a slightly modified compiler and a library class PROCESS; con-
current objects are not allowed. Another system [Colin/Geib 91] relies completely on li-
brary classes; it is more flexible, but at the expense of cumbersome programming and poor
reusability. A considerably modified version of Eiffel, called Distributed Eiffel, is
described in [Gunaseelan/LeBlanc 91].

The system described here relies heavily on annotations to be inserted into otherwise
sequential Eiffel text. These "concurrency annotations" have the form of Eiffel comments
which are ignored by the (sequential) Eiffel compiler. They become "concurrently
significant", however, if interpreted by a compiler supporting a concurrent semantics. In
addition, the concurrent interpretation of a given program text occasionally is different
from the sequential interpretation even if no annotation is directly involved. The annotat-
ed version of the language is called CEiffel.

Section 2 motivates and describes the concurrency annotations, their interdependence and
their interplay with inheritance. Delayed execution of operations on objects and its rela-
tion to exceptions is the subject of section 3. Contention on access to objects raises
scheduling questions; how to implement, inherit and redefine non-standard scheduling
strategies will be discussed in section 4. Our work on concurrent object-oriented program-
ming is part of a larger effort to support the distributed execution of object-oriented pro-
grams in a heterogeneous network (project HERON). This context and the status of the
project will be described in section 5. Comparison with related work can be found
throughout the paper. For an overview on current trends in concurrent object-oriented pro-
gramming see [Papathomas/Nierstrasz 91] and [Agha et al 91].

2 Concurrency annotations

Before turning to Eiffel we introduce an informal object model together with some basic
terminology, trying to capture most of the commonly used notions for object-oriented con-
currency while avoiding a bias towards any specific language.
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2.1 Operations, activities and active objects

Each class has a set of operations: they define possible state transitions of any given object
of that class from one abstract state to another; they also provide for information flow
between the object and its environment. How this is accomplished depends on the
representation (the concrete state) and is described by the code of the class. For the
present discussion we do not distinguish between "class" and "type". Remember, however,
that the notions of inheritance and subtyping are not identical [Cook et al. 90]
[America/van der Linden 90] [Meyer 91]. It should also be kept in mind that it is crucial
for the development process not only to distinguish between a class and its signature, but
also to clearly identify its specification.

An activation of an operation is called an activity. At any given time, an object is either
idle, i.e., with no current activity, or busy, i.e., there is one activity or multiple concurrent
activities. Note that concurrent activities of an object may have a combined effect that
cannot be achieved by any serial execution of those activities. If a class imposes no restric-
tions on multiple activities for its objects, it is called a concurrent class; an object of that
class is called a concurrent object. If multiple activities are not allowed the class is called
atomic (and so are the objects).

An activity starts when a corresponding request has arrived and is accepted by the object.
There are two ways of how requests are generated:

1. A so-called autonomous operation issues a request for itself as soon as the object
has been created and initialized. When the activity terminates the request is re-
issued. An autonomous operation has an empty signature. A class or an object
that has autonomous operations is called autonomous as well.

2. Requests for non-autonomous operations are issued by other objects through
operation invocation. The originator of the invocation is called the client of that
invocation, the invoked object is called the server.

A request that has been issued but not been accepted yet is said to be pending. When an
activity terminates it generates a reply (if the operation has no result, the reply carries no

value)1.

Invocation raises the issue of how the client activity and the server activity are related.
Sequential semantics postulates nested execution: after having generated the request the
client activity waits for the reply. But in a concurrent environment the client may also be
������������������������������������

1 We exclude the possibility of sending a reply before termination, for reasons to be explained
later.
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allowed to proceed after the acceptance - or even immediately after the invocation - and to
synchronize with the reply later, if necessary. This is commonly known as client/server
asynchrony. If asynchrony is declared a property of the operation (as opposed to being
caused by the client), the operation is called asynchronous, as is the corresponding class
and its objects. Note that a class/object can be both autonomous and asynchronous.

An object that is autonomous or asynchronous is called an active object; the others are
called passive. Active objects are sources of a varying number of concurrently executing
activities in a running system. Note that we treat passiveness vs. activeness on the one
hand and atomicity vs. non-atomicity on the other hand as independent issues (in contrast
with other approaches known from the literature). We avoid notions like "process" or
"thread" and defer the question of how to implement active objects until later.

There are ways to simulate autonomy by asynchrony, but it is not natural to do so, espe-
cially when inheritance is involved. Autonomy makes it possible to model autonomous
entities which need not be triggered from the outside in order to become active. Asyn-
chrony is mainly used to achieve speedup, which of course depends on the underlying sys-
tem architecture. Autonomy causes horizontal concurrency whereas asynchrony causes
vertical concurrency (within a functional hierarchy).

2.2 Asynchrony

In Eiffel an operation is represented by an exported feature, i.e., a routine or an attribute.
Functions and attributes deliver results, procedures do not. The two classes involved in a
client/server relationship between objects are called client class and supplier class. As Eif-
fel is sequential, there are no autonomous or asynchronous operations, and consequently
no active objects.

An obvious way to interpret Eiffel code as concurrent code is to consider all exported rou-
tines asynchronous and to use lazy synchronization: upon invocation of a function a result
is returned immediately, but this result is just a proxy for the expected reply; later on, the
first operation on that proxy implies a synchronization with the delivery of the real result
upon termination of the corresponding activity. Similar techniques are known from other
languages [Papathomas/Nierstrasz 91]; Eiffel// uses the term wait-by-necessity [Caromel
90].

Now while it is certainly possible to write meaningful concurrent programs in such a vari-
ant of the language, serious objections remain. First, due to the rather fine-grained con-
currency caused by a plentitude of small routines, efficiency will most likely be so poor as
to defeat the very purpose of introducing concurrency in the first place. Secondly, and at
least as important, writing programs that behave correctly under the concurrent interpreta-
tion will not be easy. The programmer has to be very careful to avoid unplanned interfer-
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ence between the concurrent activities. Such interference looms everywhere, even if the
system does not contain concurrent objects. The innocent-looking code

r := server.computation1(y); -- asynchronous --
computation2(z);
r.p; -- synchronization --
r.q;

may have weird effects if server or y are involved in computation2. The most
important point, however, is that the concurrent semantics of this code may be so different
from its sequential semantics that we miss our goal - reuse across the sequential/concurrent
boundary.

Rejecting implicit asynchrony for CEiffel, we attach an asynchrony annotation to a routine
that is to be executed asynchronously under concurrent interpretation. The annotation is

written as a comment --v-- which is ignored under sequential interpretation2. The v
may be read as a downward arrow or as "vertical concurrency". The following example
demonstrates the use of the annotation:

computation1(y: T1): T2 is --v--
do ..... end; -- computation1 --

Both the class and the objects are said to be asynchronous in this case. After an invocation

of computation1 the client proceeds immediately, even before the request is accepted3.
Lazy synchronization is used in claiming the result. - The annotation is ignored in local
calls of the routine.

Note that asynchrony is not just an implementation property of an operation. The client
must know about asynchrony in order to avoid undesirable interference with the asynchro-
nous activity. There are other (rare) cases where client and server have to cooperate to
achieve a common goal which means that "interference" is mandatory rather than unwant-
ed. This is why asynchrony is introduced as a property of an operation rather than the ef-
fect of a fork operation. In any case, asynchrony must be considered part of the
specification of a class.
������������������������������������

2 We pretend that an Eiffel comment which starts with -- also ends with --. This is not
so; it ends with the line end. But observing this would force us to use a poor layout in the exam-
ples below.

3 As opposed to a "synchronous send" or a rendezvous-like interaction between client and
server this requires buffering of requests but is better suited for distributed implementation (cf. sec-
tion 5).
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2.3 Autonomy

There is no satisfying way of automatically identifying autonomous operations under a
concurrent semantics. Viewing non-exported routines with an empty signature as auto-
nomous is about the closest we can get. But this would sometimes force us to introduce
dummy signatures and thus would also hamper reuse of existing sequential classes.

Our choice for CEiffel is again using an annotation. The autonomy annotation is written
-->--. The annotation can only be attached to a routine with an empty signature, as in

action is -->--
do ..... end; -- action --

Autonomous routines are usually not exported; occasionally, though, export may be useful,
e.g., for testing purposes in a sequential environment. The concurrent semantics of an au-
tonomous routine is exactly as explained in 2.1, although with a special proviso: the invo-
cation of an exported autonomous routine has no effect.

A class may feature several autonomous routines. Also, there may be both asynchronous
routines and autonomous routines. Each routine, however, is either synchronous or asyn-
chronous or autonomous. Let us consider the example of a class Moving which cap-
tures properties of moving bodies in two-dimensional space; it might be used in a simple
animation system. The velocity of a Moving object can be "remotely controlled". The
given code ignores the actual display programming and any alignment with real time.

class Moving
creation create
feature -- interface --

position: Vector;

setVelocity(v: Vector) is
do velocity.set(v.x,v.y) end;
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feature {} -- hidden --
velocity: Vector;

step is -->--
do position.set(position.x + velocity.x*stepTime,

position.y + velocity.y*stepTime) end;

create(startingPoint: Vector; timeUnit: Real) is
require timeUnit > 0
do position := startingPoint;

stepTime := timeUnit end;
end -- Moving --

Note that Moving must be atomic (it is atomic indeed, as explained in 2.4 below). If it
were concurrent, overlapping setVelocity activities could have nasty effects: con-
currently setting the velocity to (0,1) and (1,0) might produce the velocity (0,0)
(depending on the implementation of Vector). However, we might consider declaring
setVelocity compatible with step and position. One can readily see that exe-
cution of setVelocity while step is in progress causes only a minor irritation in the
movement which we might find acceptable. Concurrently reading position and chang-
ing it by step produces an equally acceptable result. - The class is of course fit for
sequential interpretation, except that it would not be of much use without exporting
step.

Asynchronous and autonomous operations offer several advantages over more traditional
concepts such as a "body" describing the lifelong behaviour of an active object (see, e.g.,
POOL [America 87] [America 89], ABCL/1 [Yonezawa et al. 87] or Eiffel//). First, as a
body constitutes a permanent thread of control, concurrent activities within an object are
either excluded or have to be created explicitly by the body (by a mechanism similar to the
detach in SINA). Secondly, every request must be explicitly accepted by the body (ex-
cept if the body is omitted - but then the object cannot be autonomous). This is not only
cumbersome for the programmer, it is incompatible with multiple inheritance, because the
body has to be redefined; even with simple inheritance, redefinition is almost always re-
quired. A further disadvantage is the fact that functional hierarchies of such objects are
prone to the same pitfalls as known from nested monitors.

Autonomous operations do not suffer from these problems. Note that the semantics of an
autonomous operation is not identical to that of a body containing a corresponding loop. It
is also beneficial that asynchrony is not tied to the presence of a body because asynchrony
and atomicity are independent issues.
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2.4 Concurrent classes and controlled objects

Under sequential interpretation all classes are de facto atomic. This property should be
maintained under concurrent interpretation unless concurrency is explicitly allowed. De-
claring two operations compatible allows them to be executed concurrently. Compatibility
is declared by means of compatibility annotations --||...-- attached to the relevant
routines. E.g., we might find the following declarations in a class Queue written in CEif-
fel:

enqueue(x: T) is --|| dequeue, length --
do ..... end;
dequeue: T is --|| enqueue, length --
do ..... end;
length: Integer is --||--
do ..... end;

These annotations express that the class has been implemented in such a way that a certain
overlapping of activities (e.g., of an enqueue activity and a dequeue activity) can
safely be allowed, i.e., does not violate the specification of the class. Compatibility is al-
ways a symmetric relation; redundant compatibility information can be omitted in the an-
notations. If no name is given in an annotation, the routine is compatible with itself and all
other routines annotated in this way. An operation implemented as an attribute is "impli-
citly annotated" with --||--. The explicit --||-- is typically used for read-only opera-
tions which do not change the state of the object.

Compatibility annotations are of course independent of asynchrony annotations. E.g., we
might add --v-- to the declaration of enqueue (although it is probably not worth the
effort, given the simplicity of the operation).

A general compatibility annotation --||-- can be attached to the class head; this is short-
hand for expressing that everything is compatible, i.e., the class is fully concurrent. If no
compatibility annotation and no exported attributes are present, the class is atomic. A
class that is neither atomic nor fully concurrent is said to be semi-concurrent.

The compatibilities of an atomic or semi-concurrent class are relevant in those cases only
where a fully concurrent version of the class could lead to unwanted overlapping of activi-
ties. The programmer has to decide whether or not an object should be subject to con-
currency control according to the compatibilities stated in the class. The control annota-
tion, written --!--, can be attached to a declaration, as in

q: Queue[Message] --!-- ;
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It affects the creation of q, declaring that the object is to be controlled4. For our semi-
concurrent Queue, appropriate locking mechanisms are automatically built into the ob-
ject. If Queue were atomic, q would refer to an atomic object (which is akin to a moni-
tor or a sequential process). The control annotation is a type qualifier: type conformance is
violated if one type is annotated and the other is not.

Locking in CEiffel is a generalization of read/write locking as employed in Distributed
Eiffel [Gunaseelan/LeBlanc 91]. When an atomic or semi-concurrent object is busy, re-
quests that are incompatible with existing activities remain pending as defined in 2.1. As
soon as the termination of an activity causes requests to become eligible for acceptance a
standard scheduling strategy applies: pending requests are accepted in arrival order
(FCFS). Non-standard scheduling can overcome this; for details see section 4.

Controlling is rare. Most objects are not controlled, in particular the vast amount of
sequentially used objects in a program. Also note that there is not even a need to control
every object that is shared among concurrent activities. E.g., a controlled semi-concurrent
object may have component objects that are shared, yet uncontrolled. The usage pattern of
a shared object ultimately determines whether control is necessary or not. E.g., if a
Queue object serves as a buffer between only one producer and one consumer, --!--
can be omitted.

Repeated invocations of an asynchronous object may lead to multiple activities. For this
reason, asynchronous objects are always controlled, even if not annotated. Analogously,
autonomous objects are always controlled. Thus, active objects that are not fully con-
current are always furnished with built-in locking mechanisms.

Controlled objects may not be read or written (i.e., compared, copied, assigned to), due to
the possible interference with their exported operations. It is, of course, allowed to
read/write references to such objects. These read/write operations are indivisible, as are all
read/write operations on objects of the basic types (Boolean etc.). The library class
Array[T] is concurrent; item/put operations behave like reads/writes on uncon-
trolled T objects.

If a concurrent class inherits from other classes, its routines are compatible with the inher-
ited routines, in addition to being compatible among themselves. However, no new compa-
tibilities among the inherited routines are introduced. With multiple inheritance, any rou-
tine of a parent is compatible with any routine of another parent.

������������������������������������

4 Note that if Queue is an "expanded type" the creation is implicit and q denotes the object.
If Queue is not expanded, the object must be created explicitly and q denotes a reference to the
object.
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2.5 Asynchrony, autonomy and inheritance

Inheritance works for asynchronous and autonomous routines as for any other feature. Let
us look at a simple example. Imagine a class Beeping that captures the property "re-
peatedly generating a beep sound" where the beeping can be turned off and on. A simple
version is

class Beeping
creation create
feature -- interface --

on(b: Boolean) is
do beepon := b end;

feature {} -- hidden --
beepon: Boolean;
sound: Speaker;

beep is -->--
do if beepon then sound.beep end end;

create(s: Speaker) is
require s /= Void
do sound := s end;

end -- Beeping --

Now if we want to capture the properties of objects both moving and beeping we can use
multiple inheritance. The resulting class has several synchronous routines and two auto-
nomous routines. By introducing additional attributes we can design, say, a class Mouse
that captures the properties of a - still rather abstract! - rodent:

class Mouse
inherit Moving rename create as mcreate end;

Beeping rename create as bcreate end
creation create
feature .....
end -- Mouse --

Feature adaptation (like renaming, redefinition, changing the export status etc.) applies to
asynchronous and autonomous routines as to any other feature. Redefinition and effecting
(of a deferred function), collectively known as redeclaration, deserve special mentioning.
Changing the concurrency property in a redeclaration is allowed, although rare. Typical
cases are:
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- A deferred routine carries no annotation. The corresponding effective routine is
marked --v-- .

- An effective routine is marked --v--. A major reorganization of some features
allows the former routine to be redeclared as an attribute (which never carries a
--v--).

- A descendant reduces the amount of autonomy inherited from an ancestor by
redefining an autonomous routine auto as auto is do end .

Attaching a concurrency annotation to a deferred routine is not prohibited, although it is of
mere declamatory value. E.g., the asynchrony annotation would specify that the routine
has to cooperate with the client, as mentioned in 2.2.

Note that an inherited routine can have different concurrency properties in different heirs.
E.g., let C be a parent of A and B, with a deferred routine op. A might declare op
asynchronous while B might not. Due to the polymorphism we cannot tell (and do not
care) whether the call c.op (with c of type C) will generate a synchronous or an asyn-
chronous activity.

3 Delayed requests

3.1 Preconditions and delays

An operation with a non-empty precondition represents a partial function with a domain
characterized by the precondition. A precondition can state consistency requirements for
parameters or may restrict the states in which the operation can meaningfully be executed;
it may also involve both parameters and state.

A violated precondition should raise an exception in a sequential environment. For a
shared object in a concurrent environment, a precondition involving the state should some-
times act as a guard rather than a source of exceptions: an incoming request should be de-
layed if, and as long as, the precondition is violated and can be satisfied by changing the
state. A delayed request is pending (as defined in 2.1) and cannot be accepted until the
precondition is satisfied. The rationale for delaying is that if state is involved the precon-
dition might become satisfied through the effects of other activities. Of course, there is no
guarantee for this, and the issue has to be studied in more detail. We will come back to
this in a moment.
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A classical example is the finite queue. Overflow or underflow of a sequential queue
should raise an exception. But under concurrent interpretation, a shared queue should act
like a message buffer where delays prevent overflows and underflows. A generic Eiffel
class Queue might look like this:

class Queue[T]
.....

feature
enqueue(x: T) is require length < maxlength
do ..... end;

dequeue: T is require length > 0
do ..... end;

maxlength: Integer is ...;

length: Integer is
do ..... end;
.....

end -- Queue --

This class has both a sequential and a concurrent interpretation, the only difference being
exceptions vs. delays. Note that if we wanted to declare enqueue (or even dequeue)
as asynchronous we could do so, but, as mentioned in 2.4, it is probably not of much use.

Since the class is atomic, operations on a controlled Queue object behave like condition-
al (better "delayed") critical regions and the object behaves like a delayed monitor with
standard scheduling: acceptable requests are served in arrival order. In this case, the
favourable moment for reevaluating the preconditions of delayed requests is when an ac-
tivity terminates. We also use this technique for non-atomic objects, for efficiency reasons.
Remember that the cost of reevaluation can be kept low by appropriate compilation tech-
niques [Schmid 76].

It should be kept in mind that in non-atomic objects all the usual interference problems are
compounded by the fact that precondition evaluation may overlap with other activities.
This may even cause different values to be observed for an attribute that is referred to
several times in a precondition. But also remember that sensible non-atomic implementa-
tions of objects do exist and that highly parallel data structures are an active research sub-
ject [Herlihy/Wing 90] [Herlihy 90]. In fact, the above Queue has a straightforward
semi-concurrent implementation as suggested by the compatibility annotations in the ex-
ample in 2.4.
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Preconditions can favourably be used in conjunction with autonomous operations. Actual-
ly, they are the primary means for controlling autonomous operations. E.g., the auto-
nomous operation beep in the class Beeping is much better expressed as

class beep is -->--
require beepon
do sound.beep end .

In some concurrent languages an activity can send a reply before it terminates; this allows
the client to continue while some "postprocessing" is performed by the server. Ada is an
early example for this, POOL is another one. We cannot support this because it is incom-
patible with the Eiffel style of returning a result (by assignment to the predefined entity
Result). But we can easily simulate it by splitting the operation into a replying opera-
tion and a delayed autonomous operation. Admittedly, this amounts to misusing horizon-
tal concurrency for vertical concurrency, and it negatively affects reusability: the sequen-
tial interpretation is unusable without a redefinition of the replying operation.

A typical example is a Repository object resembling a cloak-room: items can be
deposited in exchange for a "ticket"; the item is actually "stowed" after handing out the
ticket. When picking up the item later, the ticket has to be presented (and is invalidated).

class Repository[C]
.....

feature deposit(item: C): T is
require spaceAvailable and place = Void
do place := item;

Result := getTicket end;

stow is -->--
require place /= Void
do ..... -- stow contents of place --

place := Void end;

pickup(ticket: T): C is
require ticket.valid
do ... -- hand out item and invalidate ticket -- end;

.....
end -- Repository --

For a shared Repository object it is obvious that the preconditions of deposit and
stow, referring to the object’s state, must cause delays if violated. It is equally obvious
that violation of the precondition of pickup must raise an exception.
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3.2 Delays vs. exceptions and the delay annotation

A problem arises with a private Repository object: violation of the precondition of
deposit should raise an exception if not spaceAvailable or else should cause a de-
lay if not place=Void.

A similar problem occurs with a slightly different version of Repository where not
even autonomy is involved:

deposit(item: C): T is
require spaceAvailable
do ..... end;

pickup(ticket: T): C is
require valid(ticket)
do ..... end;

Tickets are not reused; a ticket is invalidated by the very act of picking up (i.e., removing)
the corresponding item. The precondition of pickup is state-dependent: the routine
valid checks for the presence of an item associated with the given ticket. If this check
fails, an exception has to be raised, regardless of whether the object is private or shared.
So with a shared object deposit must produce delays while pickup must produce ex-
ceptions - although both preconditions refer to the state.

The examples demonstrate that the search for a completely automatic decision for delays
vs. exceptions is futile. This motivates the introduction of a delay annotation, written --

@--, which can be inserted into a precondition, between two assertion clauses5. It divides
the precondition into two parts, the exception part and the delay part. The exception part
of an autonomous routine must be empty. An object invocation that violates the precondi-
tion causes an exception if an assertion clause in the exception part is violated; otherwise,
a delay occurs.

As a consequence, several preconditions in the above examples have to be annotated us-
ing --@-- . Specifically, a variant of enqueue might read

������������������������������������

5 Remember that the keyword require is followed by a sequence of assertion clauses
separated by semicolons which represent semi-strict "and then" operators.
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enqueue(x: T) is
require x /= Void;

--@-- length < maxlength
do ..... end;

The precondition of the first version of deposit may be written either

require
--@-- spaceAvailable and place = Void

or

require spaceAvailable;
--@-- place = Void

depending on the desired semantics.

3.3 Redeclared preconditions

Redeclaration of a routine may involve weakening the precondition. If an inherited rou-
tine with precondition

require A1;...;An

is redeclared with

require else B1;...;Bm

the effective assertion for the routine is

B1;...;Bm or else A1;...;An .

If this assertion turns out to be violated, the request is delayed if at least one of the dis-
juncts satisfies the criterion for delaying given above.

As an example, consider a class that manages printers of different types. There is a fast
"standard" printer and a slow "special" printer that has special capabilities (say, colour) but
includes the capabilities of the normal printer. An operation

get(needspecial: Boolean; size: Integer): Printer is .....
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asks for a printer which is chosen on the basis of availability, capabilities and the size of
the printing job. The precondition is

require size > 0;
--@-- specialidle or standardidle;

needspecial implies specialidle .

If we want to accomodate a third printer, say a slow standard printer, we use inheritance
and redefine the get routine. The precondition is weakened by

require else size > 0 and size < 5000;
--@-- not needspecial and thirdidle .

Only size<=0 raises an exception, both with the original and with the redeclared get.

4 Scheduling

The sharing of atomic and semi-concurrent objects raises the question of how the accep-
tance of concurrent requests is to be scheduled. The default scheduling strategy is FCFS:
acceptable (i.e., non-delayed) requests are accepted in the order they were issued. This
strategy prefers a delayed request, as soon as it becomes acceptable, over a new acceptable
request. It cannot, of course, prevent indefinite delays.

Concurrent objects, although not subject to scheduling, can exhibit a "scheduling anoma-
ly" when an activity causes the precondition of a delayed request to become satisfied: since
the precondition is only reevaluated when the activity terminates, a new request with the
same precondition may be accepted immediately, thus overtaking the delayed one and
maybe even causing it to be delayed further. The danger of starvation lurking here is one
of the pitfalls of concurrent objects the programmer has to be aware of.

If non-FCFS scheduling is required it must be programmed explicitly. This task can be al-
leviated considerably by special language support which by its very nature exceeds the
realm of a sequential programming language. Annotations cannot do the job any more.
We suggest an approach that allows to refer to pending requests either in preconditions or
in special scheduling routines.
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4.1 The request list

We have to look at the semantics of shared and active objects in more detail. Associated
with every such object is a request list which at any time contains the pending requests for
that object. For each class, the predefined identifier Request denotes the type of the re-
quests associated with that class. Data of a Request type cannot be passed between ob-
jects. A Request type is akin to a variant record type, with operations corresponding to
the variants, signatures to the record fields and actual parameters to the actual record com-
ponents.

In addition, every request has a component Rank of type Integer. Rank is the virtu-
al arrival time of the request relative to the object’s creation time: 1 for the first request, 2
for the second, etc. Rank can be used like a formal parameter.

When a request arrives at an object and is not immediately rejected (exception) it enters
the request list. If the compatibilities allow a corresponding activity to be started, the ac-
tivity is tentatively started, evaluating the precondition; if the precondition is satisfied, the
request is removed from the request list and the activity continues; if not, the activity is
aborted and the request remains in the request list (delay). When an activity terminates the
pending requests are scanned in arrival order, and each request is treated as described for
an arriving request.

Explicit modification of the request list is not possible, but the concurrent version of the
language has several constructs for iterating over the request list, viz. a statement and
three expressions:

for all Feature_name do Compound end
all Feature_name sat Boolean_expression
some Feature_name sat Boolean_expression
that Feature_name sat Boolean_expression

The for all iterator executes the given Compound for all requests for an operation
with the given Feature_name. The all iterator is the universal quantifier ranging over all
requests with Feature_name; some is the existential quantifier. that refers to the least
recent request satifying the given Boolean_expression. sat means "satisfy(ing)". Within
the Compound or Boolean_expression, the Feature_name denotes the iteration variable (!)
which refers to the different requests; argument names and dot notation allow to refer to
the arguments of a request. E.g., if a class has an operation get(n: Integer) the fol-
lowing expression is legal:

all get sat get.n > 1 .
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4.2 Scheduling routines

The concurrent version of the language knows about a predefined routine identifier
Scheduler, and a class may contain a routine

Scheduler: Request is do ..... end .

If the request list of an object of that class is non-empty, an activity of the object is au-
tomatically extended with an execution of Scheduler (so the Scheduler is some-
what similar to an autonomous routine). The scanning of the pending requests is then
started with the request produced by the Scheduler (if not Void) rather than with the
least recent request.

A typical example for non-FCFS scheduling is "smallest-request-next" for a collection of

identical resources6:

class SRNresources
feature get(n: Integer) is

require n>0;
--@-- n<=available

do ..... end;

put(n: Integer) is do ..... end;

feature {}
Scheduler: Request is
local min: Integer
do min := MaxInt;

for all get do
if get.n<min then

min := get.n;
Result := get end end end;

.....
end -- SRNresources --

Note that adding a scheduling routine does not modify the conditions for delaying re-
quests. It just makes the class text explicit about the order that acceptable requests are ac-
cepted. Typically, inheritance will be used for adding a specific scheduling routine to a
class. Imagine a generic class Resources[T] which might be used for managing, say,
������������������������������������

6 This happens to be an example that is easier solved with a by clause à la SR [Andrews et al.
88]. However, by is suitable for a limited class of problems only.
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storage units in a sequential program. The same class can be used in a concurrent program,
with no changes whatsoever, using standard scheduling. If some non-standard scheduling
is required, say SRN, a class SRNresources[T] would be designed as an heir to
Resources[T]:

class SRNresources[T]
inherit Resources[T]
feature {}

Scheduler: Request is ..... end;
end -- SRNresources --

More complex inheritance hierarchies may necessitate redefinition and/or renaming of
Scheduler routines, but the operations and their preconditions are usually not affected.

4.3 Scheduling through preconditions

There are cases where a specific scheduling strategy cannot be expressed by a
Scheduler routine. Consider a class Resources (as above) with standard scheduling.
As the FCFS strategy is applied to the acceptable requests, large requests may suffer
indefinite delays, as mentioned before. If we insist on strict FCFS handling for the get
requests we have to delay such a request if delayed get requests are already present, re-
gardless of n<=available. We can have the precondition reflect this:

get(n: Integer) is
require n>0;

--@-- n<=available;
all get sat get.Rank>=Rank

do ..... end

One may argue that preconditions involving the state of the request list are more elegant
than a Scheduler routine. E.g., SRNresources is readily implemented like this:

class SRNresources
feature get(n: Integer) is

require n>0;
--@-- n<=available;

all get sat get.n>=n
do ..... end;
.....

end -- SRNresources --
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This technique, however, does not blend well with inheritance. Modifying the scheduling
strategy would require redefinition of get, but this is only possible with weakening the
precondition. Besides, the above solution is less efficient than the Scheduler solution
in 4.2. So while it is certainly possible to implement SRN as shown above (and even
necessary to implement the FCFS example in this way), making a precondition refer to the
request list is not generally recommended.

Precondition scheduling does work fine for the Readers/Writers problem which is an in-
structive example of how requests for non-atomic objects can be scheduled:

class ReadersWriters[T] -- for expanded types T --
feature read: T; -- compatible with itself; see 2.4--

write(t: T) is -- incompatible with read, write --
do read := t end;

end -- ReadersWriters --

The standard scheduling strategy described in 4.1, although basically FCFS, does not
prevent readers from sneaking past writers when reading is in progress, effectively giving
preference to the readers. Writer priority can be achieved by implementing read as a
routine with a precondition:

class RW[T]
feature read: T is --||--

require
--@-- not some write sat true

do Result := data end;

write(t: T) is
do data := t end;

feature {}
data: T;

end -- RW --

Strict FCFS scheduling (with multiple reading allowed) is achieved by

read: T is --||--
require

--@-- not some write sat write.Rank < Rank
do Result := data end;
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Note that this precondition is weaker than that above and stronger than the empty precon-
dition preferring the readers. We may conclude that writer priority is the right choice for a
parent class RW that is to be reusable with modified scheduling strategies. We can even
reconstruct the first version, changing the function read into an attribute by redeclara-
tion:

class ReadersWriters[T]
inherit RW redefine read, write end
feature read: T;

write(t: T) is
do read := t end;

end -- ReadersWriters --

Of course, this is a somewhat sterile exercise, especially since data is not used, yet still
present behind the scenes; but it is nice to see how the redefinition of read fits together
with the weakened scheduling requirement.

4.4 Comparison with other approaches

Guide [Decouchant et al. 91] allows a class to be extended by a control clause which con-
tains activation conditions for the operations. An activation condition acts like a guard. In
addition to the operation’s arguments and the state of the object, it may refer to synchroni-
zation counters associated with each operation, such as number of invocations, of accep-
tances, etc. There is no way to refer to the pending requests (apart from counting). Ac-
tivation conditions can be redefined in subclasses.

The Guide approach mixes up two conceptually different issues: delays, which is a
specification issue, and compatibility, which is an implementation issue. More important-
ly, delaying is mixed up with scheduling. If activation conditions have to be redefined in a
subclass, considerable scrutiny is required to find out which parts pertain to delays, com-
patibilities and scheduling, resp. In addition, as a request cannot refer to the arguments of
other pending requests, there is no easy way to implement non-trivial resource scheduling
strategies.

PCM (for "priority-controlled modules") [Bahsoun et al. 90] uses two separate classes for
the implementation part and the synchronization part of objects; the latter class is called a
synchronizer. Inheritance is used to build synchronized classes. This approach works satis-
factorily only for the simplest examples where the synchronization strategy is independent
of the object’s state and of the arguments of the operations. With Guide it shares the draw-
back that delays, compatibilities and the scheduling proper are mixed up. It has the addi-
tional disadvantage that a synchronizer is imperative (whereas Guide’s control clause is
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declarative7).

PO (for "parallel objects") [Corradi/Leonardi 91] is a language in the Smalltalk tradition.
A class can be extended by a scheduling part; it describes the activity of a scheduler which
gains control when an activity terminates. As in Guide and PCM, everything pertaining to
synchronization is indiscriminately handled by the scheduler. Since programming the
scheduler is cumbersome, declarative "constraints" can be used for abbreviation purposes.
As opposed to Guide and PCM, though, the scheduler can inquire about arguments of
pending requests. The resulting flexibility allows, e.g., to insert two records into a table ob-
ject concurrently if their keys are different. A subclass inherits the scheduling part of its
superclass and may add further constraints.

5 Context and perspective

5.1 Project HERON

Smooth integration of sequential and concurrent object-oriented programming is of partic-
ular importance if distributed execution of programs is to be supported in a distribution-
transparent manner. Basically, we take the view that distribution and concurrency are in-
dependent issues as far as the application programmer is concerned. This attitude is rooted
in the remote procedure call paradigm (RPC) which allows transparent distribution of
sequential programs. But then a slightly different view of RPC, associated with the term
"remote invocation", is that of an inter-process communication facility. This view is tied
to the notion of a server process and, if embodied in the programming language rather
than confined to system-level processes, leads to concurrent application programs. Con-
currency and distribution combined allow us to write parallel programs that exploit both
shared-memory and networking parallelism.

Project HERON is the effort to develop a platform for the distributed execution of object-
oriented programs in heterogeneous networks. It is a language-based approach to what is
called Open Distributed Processing (ODP) by the ISO and the ECMA [ISO 90] and covers
mainly the computation viewpoint and the engineering viewpoint of ODP.

HERON’s basic tenet is that the concurrency structure of an application system is not
necessarily related to its distribution structure. The way different parts of the system are
������������������������������������

7 One might argue that the declarative style is less flexible. Actually, both styles should be
supported - which is exactly what we are doing (see also [Caromel 91]).
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distributed among different address spaces, and where in the network these address spaces
are instantiated as system-level processes (possibly threaded) is not determined by pro-
gramming but by an independent configuration procedure. HERON uses Eiffel and CEif-
fel both as the reference languages for application programming and as the implementation
languages for the run-time support. The project relies on experience gained from
DAPHNE, a module-based system for distributed execution of sequential Modula pro-
grams [Lo

..
hr et al. 88].

5.2 Implementation issues

A CEiffel program can be executed in a threaded address space. But only the most nai
..
ve

implementation would come up with a one-to-one correspondence between activities and
threads. Reusing threads from a common pool is an obvious optimization. But in some
cases the compiler will be able to recognize that several activities can share a thread:

1. Non-remote concurrent passive objects: A server activity shares the client’s thread,
and inter-object communication is implemented as procedure call.

2. Atomic active objects: One thread is used for all activities of an object, and inter-
object communication is implemented as message passing, possibly across machine
boundaries.

HERON will support both single-address-space execution and distribution of programs
among several threaded address spaces which may reside on different machines. Any re-
mote invocation, i.e., an invocation across an address space boundary, will involve dif-
ferent threads. As opposed to Distributed Eiffel, the syntax and the semantics of CEiffel
are not concerned with distribution issues. Regarding class texts and object creation and
invocation, there is no difference between local and remote objects. A configuration tool
takes care of distribution issues like stub generation and construction/placement of load
images on different nodes of the heterogeneous network.

We have implemented a threading library for Eiffel which is based on coroutines and
asynchronous Unix (SunOS) system calls. In order to accomodate heterogeneity, we have
striven for a portable design, isolating a front-end from a system-specific back-end; the
latter can take advantage from operating systems offering a true threading facility to user
programs.

A prototype version of a concurrent Eiffel system is being implemented as a precompiler
which generates threaded Eiffel code. Concurrently, run-time support and a stub generator
are being developed for distributed execution.
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5.3 Conclusion

The usage of concurrency annotations enables us to write classes both representing correct
sequential Eiffel code and allowing for a concurrent interpretation. In most cases, a class
can be used both in a sequential and in a concurrent context, and inheritance causes no
surprises in concurrent programs. The annotations are:

--v-- and -->-- : asynchrony and autonomy
--||...-- and --!--: compatibility and controlling
--@-- : delay on assertion violation

We identified non-standard scheduling as an issue inherently tied to concurrency, justify-
ing the introduction of special language support for referring to the request list.

Inheritance can be employed for reusing a sequential class carrying no annotations in the
design of a modified class fit for usage in a concurrent setting. Non-standard scheduling
can be added.

We noticed that Eiffel’s comment syntax is a minor technical nuisance for the annotations.
We identified another weak point of Eiffel: the technique used for returning the result of a
function - assignation to Result - is incompatible with postprocessing à la POOL.

So why Eiffel? The decisive argument was the availability of assertions and their integra-
tion with inheritance. We emphasized the close conceptual relationship between precondi-
tions and guards and were able to associate delay semantics with an Eiffel precondition by
mere introduction of the delay annotation. This approach is consistent with inheritance
and the weakening of preconditions on redefinition.

5.4 Future extensions

Until now, we have not exploited another important assertion in Eiffel, the class invariant.
One can easily envisage an invariant-related extension of the compatibility properties of a
class towards "weak exclusion" of incompatible activities: when an activity is waiting for a
reply, an incompatible request could be accepted if the invariant holds. This policy is a
generalization of exclusion release at synchronization points in monitors (see also [Ho-
ward 76] [Haddon 77]). In languages without an integrated invariant concept, weak exclu-
sion cannot be introduced in a safe way.

Concurrency control in databases is tied to the notion of transactions. In standard data-
bases, transactions are usually required to be serializable. These notions are also useful in
concurrent object-oriented programming, even if no persistence is involved. The
specification of a class representing a subsystem implementation may postulate serializa-
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bility in the following sense: concurrent invocations of an object of the class shall have the
same effect as some serial execution of the corresponding operations - which play the role
of transactions on the object.

Atomicity as introduced in 2.1 and 2.4 is only one of several possible ways of ensuring
serializability. The implementor of a class may decide to achieve serializability with a

carefully conceived concurrent implementation8. Yet another approach is automatic two-
phase locking, preferably based on semantic locks (as opposed to read/write locks) on seri-
alizable component objects [Fekete et al. 89]. To support this, the compiler must know
which operation pairs commute for each supplier class [Bro

..
ssler/Freisleben 89]. Note that

this information must be given by the specifier, not the implementor, of each supplier
class. In accordance with our reusability goal, the commutativities should be expressed
using commutativity annotations. Given these annotations for the supplier classes of an
atomic class, a compiler switch would determine whether the class would indeed be com-
piled into atomic code or into concurrent code employing strict two-phase locking. Note
that the implementor of the class is responsible for avoiding deadlocks in the latter case.

Serializable classes are built from serializable supplier classes. This nesting gives rise to
nested transactions with possibly different concurrency control mechanisms on different
levels. For each class, the implementor is free to choose any mechanism that seems ap-
propriate; the decision is a purely local one.

It is important not to confuse compatibility (as introduced in 2.4) and commutativity. The
former is an implementation property whereas the latter is a specification property. Two
operations, e.g., enqueue and dequeue of a queue, may commute, yet their imple-
mentations may not be compatible.

A last remark is in order both for compatibility and commutativity. It is desirable that
these properties may refer not only to operations but also to invocations, i.e., including the
parameters (for commutativity in a persistence context see [Bro

..
ssler/Freisleben 89]; for

compatibility cf. the PO facilities mentioned in 4.4). This can increase the potential paral-
lelism considerably and thus may be helpful on certain parallel architectures.

������������������������������������

8 There are examples for classes that must not be serializable and, consequently, must not be
atomic.
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[Meyer 88] B. Meyer: Object-oriented Software Construction. Prentice-Hall 1988

[Meyer 91] B. Meyer: Eiffel: The Language. Prentice-Hall 1991

[Papathomas/Nierstrasz 91] M. Papathomas, O. Nierstrasz: Supporting software reuse in concurrent
object-oriented languages: exploring the language design space. In: D.C. Tsichritzis(ed.): Object
Composition. Centre Universitaire d’Informatique, Université de Genève 1991
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