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Abstract

Java is commonly considered the ideal language for implementing software for the In-
ternet. A closer look, however, reveals that distributed programming is poorly supported
in Java. This is because the very design of the language rules out distribution-transparent
remote invocation. It is shown that Sun’s technology for distributed Java programming,
RMI, makes things worse by allowing two different invocation semantics to hide behind
an object variable. The consequences of using CORBA instead of RMI are investigated.
Various options for changing either RMI or Java itself are considered, so that language
platforms supporting a high degree of distribution transparency could be built.
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1 Introduction

Java [Gosling 96] is being heralded as the ultimate language for internet—based distributed
programming. But when it comes to actually writing distributed applications, a serious
flaw in the basic design of the language becomes apparent: Java’s type system, together
with its mechanism of parameter passing, leads to problems with remote method invoca-
tion.

The current version of Java does not allow for a distributed implementation where
remote method invocation would have the same semantics as its local counterpart. The
problem is also not adequately addressed in RMI [Sun 97], Sun’s proprietary technology
for distributed Java programming. As a result, semantic deviations from the intended
program logic can occur in distributed programs written in Java/RMI. It is therefore
questionable whether Java in its current form is a suitable platform for distributed pro-
gramming.

The problem is explained in section 2, which is followed by a discussion of RMI in
section 3. Section 4 explores the combination of Java and CORBA [OMG 95]. Our
observations suggest that revising the language itself may be the only satisfactory solution.
Several options for this are discussed in section 5, and our preferred option is presented.

2 Remote parameters in Java

Java’s method invocation mechanism is not suitable for distributed programming based
on remote invocation. To show this, we will first sketch the syntax and semantics of purely
local invocations, focussing on parameter passing, and then look at the consequences of
extending this invocation semantics to the distributed case.

2.1 Java parameter passing
An ordinary Java method is invoked using the familiar notation
objectRef .methodName (argl, ...,argn);

Java, like C, has only one parameter passing mode: pass—by-value. For primitive types
such as integer, character, etc. this means that the method receives a copy of the actual
value. If any changes are made to such a copy during the execution of the method, these
changes are not visible in the calling context.

If an actual parameter has a reference type, a reference to an object is copied, causing
the object to be shared among caller and callee. Any changes the method makes to the
object are visible in the calling context. In Java, all instances of classes have reference
types, including strings which are instances of the library class String and arrays (for
which no library class exists). Java provides no parameter passing mode that would
dereference a parameter and deliver a copy of the object (as, e.g., Eiffel does, using
expanded types [Meyer 97]). We say that Java “passes objects by reference, not by value”.

It is important to note that since the only way of constructing user—defined types is
by writing new classes, all user—defined types are reference types. Thus, there is no way
of passing an object of a user—defined class by value.



2.2 Parameters in distributed programs

In a distributed program, object invocation may cross machine boundaries. If the caller
and the callee reside on different machines, invocation must be implemented as remote
method invocation which is the object—oriented analog to remote procedure call (RPC).
Instead of passing the arguments in processor registers or on the stack, the caller must
pack them into a network message and the callee must unpack them. This is called
marshalling (or serialization) and unmarshalling of the parameters.

A problem arises when references are involved in passing parameters remotely: a
reference is usually represented as a virtual address in the caller’s address space; it makes
no sense to dereference it in a different address space. So the reference has to be passed
in a network—wide representation which can in turn be used for remotely invoking the
object it refers to.

How does this apply to Java? The first observation is that there is no obstacle to
implementing remote invocation for programmer—defined classes. Reference-type param-
eters can be passed in a network—wide representation; embedded references can be taken
care of in the same manner.

A closer view, however, reveals that the resulting programming platform is of little use.
Generally speaking, it is alright to distribute servicesin this way, i.e., passing references to
objects that are invoked infrequently so that the increased latency of remote invocations
is negligible. But what about distributing data, i.e. passing arrays and records (= objects
without methods)? If an array of, say, 100 000 numbers is passed to a remote method
for processing, the receiver just gets the reference. Processing the array may then require
100 000 remote accesses; given the latency of each individual access, this approach is
plainly prohibitive (not to mention the problem of compiling array indexing into remote
access). The same problem is encountered with records where — while not as drastic
— it is still annoying. With strings, fortunately, the problem disappears. Strings are
immutable objects in Java, so passing a string by reference can be implemented as pass—
by—value because the semantics is the same.

3 RMI

Sun’s Remote Method Invocation (RMI) system aims at providing mechanisms for “seam-
less remote invocation on objects in different virtual machines” [Sun 97] and tries to “inte-
grate the distributed object model into the Java language in a natural way while retaining
most of the Java language’s object semantics”. It turns out that the keyword is “most”.

3.1 RMI tries...

RMI does preserve the regular Java invocation syntax, but parameters of remote oper-
ations are treated different from those of local operations. Remote passing is done as
follows: If an actual parameter has a primitive type it is passed by value. If an actual
parameter has a reference type and its class implements the Remote interface, it is passed
by reference (the local reference being replaced with a network reference). If the class
does not implement Remote but rather implements the Serializable interface, the ob-
ject is passed by value (using serialization). If the class implements neither Remote nor
Serializable an exception is raised. Arrays are serializable by default.



While this seems to solve the main problem by not promoting arrays to full remote
objects and allowing for records to be passed by value rather than by reference, this
approach has its own pitfalls. Consider the following example: Let RemoteStack denote a
class for remotely invokable stacks of integers (implementing Remote). A stack stores its
values in an array int[] cells. In addition to the usual stack operations such as push,
pop, top it exports an operation

public int[] dump() {
return cells;
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delivering the values currently stored in the stack. There are several stacks in our
distributed system, registered in a StackDictionary object. Our demonstration program
plays with two stacks listed in the dictionary:

public class RMItest {

static RemoteStack sl null;

static RemoteStack s2 null;

static StackDictionary stacks =
new StackDictionary();

public static void main(String[] args)

{

// stacks are created at
// different sites and
// registered with dictionary

sl = stacks.get("that");
s2 = stacks.get("this");
s1.push(3);

s2.push(3);

int[] there = s1.dump();
int[] here = s2.dumpQ);
there[0] = 100;

here[0] = 100;

System.out.print ("there: "+si.top());
System.out.print("here: "+s2.top());

3.2 ...but fails

As dump() delivers an array and arrays are Serializable by default, the result of a
remote invocation will be a copy of the stack’s array. So the output of the program
should be



there: 3 here: 3
— but be also prepared to see
there: 3 here: 100!

Why is this? It is possible that one of the stacks, s2 in this case, happens to be
local to the caller, which causes the standard parameter passing semantics to take effect
(ves!). So a reference to the array will be delivered, causing the assignment here [0]=100
to effectively modify the stack.

The example shows that not only can two seemingly alike objects have different be-
haviour but, worse, there is no way to tell them apart. This is because it is impossible to
find out whether an object with a Remote interface is indeed remote — or actually local
to the caller.

If we — inadvertently and not knowing — use a Remote object locally, as in the
example, the operation semantics may be different from what was expected. Note that
we are not referring to a different “exceptional” semantics in the face of network latency
or failure, but to the successful execution of an operation.

Also note that there is indeed no way of telling remote from local objects, even if we
knew that taking one for the other might cause problems: both objects have the same
type and we have no way of tracking down every single object reference in a system. RMI
turns out to be dangerously confusing: it gives the programmer the false impression that,
although Remote and Serializable parameters are treated differently, at least all objects
of a certain class, whether implementing Remote or not, behave alike. As we have seen,
this may not be the case.

3.3 Fixing RMI?

The problem illustrated above arises because with RMI, Remote objects can in fact be
accessed locally as well, and in this case they exhibit a subtly different behaviour.

One approach to correct this is to draw the distinction between local objects and
remote objects in a more consequent fashion. For example, we might disallow local access
to Remote objects completely. Implementing Remote would then mean that objects of
the class can only be called from a remote machine. This would clearly eliminate the
unpleasant behavior of the example — but seems very restrictive.

As an alternative, we could force every call to a Remote object, whether it is a local call
or a true remote call, to have the same semantics — that of the remote case. Parameters
that would have to be serialized for a remote call must also be passed by value if the call
is actually local. Thus we should always get the same semantics when calling a particular
object, although, just as before, we have to deal with two sets of semantics in general: a
“local semantics” for local objects and a “remote semantics” for objects that are (even
potentially) remote. If we want to make an existing class remotely accessible, we may
have to change both the method implementations and the calls to those methods from
other classes. If we forget any of these changes, there is no way the compiler could warn
us.

Moreover, the two kinds of method invocations still look exactly the same in the code.
So maybe we should even change the syntax to make it apparent that a (potentially)
remote call is something different, for example:



object.method (argl, ...);
for local semantics

object<-method(argl, ...);
for remote semantics

Using runtime checks, the compiler would ensure that a remotely accessible object is
always called using the <- notation and that a local object is always called using the .
notation. Thus, the programmer would really have to think about each call, especially
when converting existing code — something that seems quite consistent with the overall
design of RMI.

3.4 Beyond RMI

RMI embodies a fundamental assumption about how distributed computing should be
done. The chief designers of RMI take the view [Waldo 94] that remote objects are
intrinsically different from local objects and that this difference must not be hidden by
the distribution technology in use. In other words, they do not subscribe to the idea of
distribution transparency, which has been favored by other researchers and which aims
at just the opposite: to make the distinction between local objects and remote objects
inwvisible for the programmer, so that distribution issues are hidden behind an abstraction
boundary.

Distribution transparency has many facets, the most important of which is access
transparency. We speak of access transparency when the syntax and semantics of object
invocation are identical for both local and remote objects. Ideally, “remote method invo-
cation” should just refer to a distributed implementation of otherwise unchanged (with
respect to syntax and semantics) method invocation. There are numerous programming
languages which achieve this ideal to a high degree, ranging from more experimental ones
[Bal 92, Cardelli 95] to mainstream languages like Ada 95 [Barnes 97].

This is not to say that access transparency is an absolute value. There are areas
where non—transparent technologies like RMI might be appropriate (see also [Kiczales 96,
Lea 97]). RMI in its current form, however, is problematic for two reasons. First, there is
a confusion about the concept of remoteness: RMI regards it as a property of an object to
be “remote”, but in fact remoteness is a relation between objects, as in “A is remote from
B” vs. “A is local to B”. Second, RMI does not, in a sense, live up to its own standards:
it sets out to be deliberately non—transparent, but “pseudo—transparency” lurks in there,
manifest in the strange phenomenon that the syntax of local and remote invocation is
still the same — but not the semantics.

There have been efforts to hide the RMI technicalities behind a smoother facade, in
order to achieve more transparency (see, e.g., [Philippsen 97]). This can, of course, work
only to a limited degree, as the semantics will be invariably those of RMI.

4 CORBA and Java

If RMI is not an appropriate model for a distribution—enabled Java, what is the alter-
native? An obvious candidate for a distributed object model is CORBA, which we will
briefly describe in this section. We will also evaluate the possibility of integrating CORBA
with Java.



4.1 The CORBA object model

The OMG defines an object model for its Object Management Architecture (OMA) in
CORBA [OMG 95] through the definition of the CORBA interface definition language
(IDL). This object model has been designed in order to allow access-transparent dis-
tribution and accomodation of such diverse programming languages as C, C++, Cobol,
Smalltalk, Java and others through language mappings.

CORBA defines the following rules for passing data to and from operations: all base
type values (integers, characters, ...) are passed by value, and so are arrays and records
(structs). All object type values are passed by reference. (CORBA object types are
defined by specifying their interface).

CORBA object references are opaque; they do not betray the locations of objects.
The behavior of an object is independent of whether it is invoked locally or remotely.
CORBA defines three parameter passing modes: in, out and inout. in is pass—by-value
(as described for Java above), out is pass—by-result and inout is pass—by-value-result.

Obviously, the problems with the Java object model described above do not arise in
CORBA as arrays and records are passed by value. The CORBA object model in itself
would allow perfect access transparency. In its present form, however, CORBA lacks
another important concept — passing objects by value. The OMG has acknowledged the
need to pass objects by value by issuing a corresponding request for proposals [OMG 96|
which recognizes that passing an object by reference “is inappropriate for some situations,
such as when an object encapsulates a data structure. In these situations, passing the
object by value provides for greater efficiency.”

4.2 Integrating Java with CORBA

If we integrate the CORBA object model with a “host” language according to an IDL
language mapping, one of its premier values — access transparency — is compromised if
this host language is not simply an extension of IDL. Unfortunately, even in the case of
Java, which is conceptually very close to IDL, a number of object model mismatches arise
[Brose 97].

The first of these is that Java allows the overloading of operation names while CORBA
does not. Secondly, the distinction between Java’s reference type strings and arrays versus
CORBA’s base type strings and arrays cannot be concealed: the difference between a null
reference and an empty value, which can be expressed in Java, cannot be expressed in
CORBA.

The most important point is, again, the difference in the respective parameter passing
modes. Obviously, we cannot have both CORBA and Java parameter passing semantics as
the two are mutually exclusive, so there remains a clear difference between calling objects
in the CORBA and the Java object models. Hence, an access—transparent integration of
CORBA with the Java language is not possible.

5 Revising Java?

We have seen that CORBA provides a suitable object model for access transparency while
Java does not. We will therefore examine how Java might be modified with respect to



parameter passing. We will discuss a number of options for parameter passing techniques
and how the concept of passing objects by value could be realized.

5.1 Passing by reference considered harmful

The suitability of the local parameter passing modes for remote invocation has been
questioned since the introduction of Remote Procedure Call. The reason is efficiency —
an important consideration in a distributed system where communication can become a
serious bottleneck. But then, efficiency has always been scrutinized for local parameter
passing as well. Programmers (and language designers) have often taken to using by—
reference where by—value would have been adequate, just for efficiency reasons. This
misuse, however, works only if the parameter is not modified inadvertently, either by the
receiver or through aliasing. The language should give the programmer the choice to pass
objects either by value or by reference.

A conceptually attractive technique for implementing pass—by-value is copy—on-write:
just a reference is passed, and a copy will be generated on demand, i.e., if and when
the object is modified. Unfortunately, efficient implementation of this techique requires
virtual memory support — unless writing is excluded a priori, i.e., the language treats
value parameters as read-only and prevents the actual parameter from being modified
through aliasing.

Remember that pass—by-reference is a typical device for "low—level” imperative pro-
gramming (as oppposed to, e.g., functional programming) and should be shunned wherever
possible. We should pass an object by reference only if the very job of the receiver is to
modify the object, or to sense changes applied to the object by concurrent activities, or to
serve as a container for object references. For a counterexample, consider array objects.
An array is usually part of the data representation of a larger object. If it is passed as
a parameter of an object invocation, it is usually passed by value. Passing by reference
is confined to local auxiliary procedures of the object. This reasoning is all the more
valid for small, record-like objects and for variables of primitive types (which, in Java,
are passed by value anyway).

5.2 Distributed implementation

What does this imply for remote invocation? To begin with, the efficiency properties of
pass—by—value and pass—by-reference are inverted. Thus, restrictions on pass-by-reference
as suggested above come in handy. Let us make sure that no trouble spots remain:

1. The object in question is a typical server object — heavy-weight and/or immo-
bile and/or infrequently invoked. Pass—by-reference is alright here. If the ob-
ject is mobile and small, a migrational variant such as pass—by—visit/pass—by—move
[Black 87, Achauer 93] may exhibit better performance, depending on the access
pattern.

2. For arrays, pass—by-reference must not be allowed in remote invocations. If this
restriction is not obeyed we would get an error message (e.g. from the stub compiler)
when generating the distributed version. As we have seen, however, the restriction
is not a serious one and barely compromises access transparency.



3. For all other objects, e.g. record-like data objects, passing by reference poses no
conceptual problems. It may not be efficient, but, as argued above, will occur only
rarely. This would even justify not supporting remote access to public attributes
(again producing error messages).

In order to prepare the ground for designing an appropriate modification to Java we
have to have a closer look at pass—by—value for Java objects.

5.3 Passing objects by value
Determining the parameter passing mode

One of the questions connected with passing objects by value is how the parameter pass-
ing mode for arguments of a particular operation is determined. The approach taken
by RMI is to introduce new interfaces like Remote and Serializable and select the pa-
rameter passing mechanism for a particular argument according to this argument’s type:
if it implements Serializable, it is passed by value. A similar approach is taken in
[Netscape 97|, one of the four submissions to the OMG’s object—by—value RFP [OMG 96].
Here, the notion of stateful interfaces is introduced, i.e. interface types that define an ex-
plicit representation for the state of an instance. Instances of stateful interfaces are always
passed by value.

However, this approach — even if it is applied consistently — is inappropriate. On
the one hand, it is not flexible enough as we cannot pass an object x by reference to an
operation f() and by value to another operation g(), which might be desirable, e.g., if
f () is designed to make a single update to a data structure embedded in x and g() needs
to access this same data structure frequently, e.g. by traversing it 1000 times without
altering it.

On the other hand, it is problematic that an operation cannot rely on the passing
semantics used for its arguments as these may not be known at compile time. A for-
mal parameter type T might have two subtypes T1 and T2, one of which implements
Serializable while the other does not. The actual argument supplied to the method
invocation might be of any of the types T, T1 and T2 as Java allows polymorphism. (This
is not a problem in RMI because RMI, as shown above, uses serialization for remote calls
only. The RMI stub generator complains if a remote interface extends another, non-
remote interface. Thus, it keeps the inheritance hierarchies for remote and non-remote
types separate so that the above problem caused by polymorphism cannot arise. For a
more general approach, though, this remains a problem.)

The underlying misconception of the whole approach is that the mechanism for passing
a parameter to an operation is selected on the basis of the type of the actual argument,
so the semantics of the passing mode is regarded a property of this type while in fact it is
part of the operation semantics. Consequently, it should be expressed in the declaration
of the operation’s formal parameters and its return type, as already argued for the local
case in 5.1.

A new keyword for specifying pass—by—value

We propose the introduction of a new keyword copy which specifies that a parameter is
to be passed by value. Consider the following method declaration:



public copy int[] aMethod (copy A a, B b, int i)

The parameter passing modes for myMethod are as follows: Both the return value of
reference type int[] and the formal parameter a of reference type A, are declared using
copy; this means that the corresponding objects are passed by value. Using copy does
not change the fact that both the formal and the actual parameter are references. The
only effect is that, e.g., a refers to a newly created copy of the actual parameter. Of the
remaining parameters, b is passed by reference and i is passed by value.

It is important to remember that, according to 5.2, omitting the first copy would
cause an error message to be produced during the generation of the distributed version.
Omitting the second copy would produce an error message only if A had public attributes
and the system would not support remote attribute access.

The semantics of copy is similar to the semantics of expanded in the Eiffel language
[Meyer 97]. In Eiffel, expanded is used to declare variable names that denote objects, not
references to objects. It can also be used to specify pass—by—value semantics for arguments
and return values of reference types. However, if a parameter is passed expanded, the
receiver will get a copy rather than a reference to a copy.

Serializing object state

To support object copying in a homogenous environment, a single implicit serializa-
tion/deserialization protocol realized by the distribution platform could be used. RMI,
e.g., provides such a mechanism. This protocol would specify what parts of the object
are to be copied in which order. Such an implicit protocol would not, however, suffice in
heterogeneous environments such as CORBA where interoperability between implemen-
tations and platforms is a major concern. In order to realize object—by—value semantics
in such a setting, the protocol used for serialization/deserialization of objects needs to
be explicitly defined. Alternatively, a negotiation mechanism for selecting a serialization
protocol could be specified. In the following we will assume some reasonable default
protocol.

Copies made as a consequence of passing an object by value are “shallow copies” by
default, i.e. objects contained as references within the object are not copied; instead
those references are automatically replaced by network references. If this behavior is
not appropriate for a particular situation, the class of the object that is passed must
inherit from a special interface and the programmer needs to provide the specific copying
mechanism.

We assume that an implementation for the appropriate object type (a Java class) is
available in the receiving context or can be made available by downloading Java code if
necessary. But which is the appropriate type? In order to support polymorphism properly,
the receiving context needs to be given an object of the most derived type of the actual
argument supplied in the invocation.

6 Conclusion

We have shown that Java, although explicitly designed with the network in mind, exhibits
weaknesses in an important network-related issue and defies access transparency more
fiercely than traditional languages. A number of approaches to solving the parameter



passing problem have been presented, emphasizing the need for a solution that avoids
distribution-related featurism.

A modest modification of Java has been proposed: a new keyword copy for specifying
pass—by—value semantics for reference type parameters. It has been argued that carefully
choosing the semantically appropriate parameter modes makes a program fit for both
centralized and distributed execution. Not surprisingly, the resulting mechanisms are in
line with CORBA’s model of parameter passing. An interesting perspective would be to
evaluate Java as a starting point for designing a CORBA implementation language.
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