
Java Does not Distribute

Gerald Brose� Klaus�Peter L�ohr� Andr�e Spiegel

fbrose�lohr�spiegelg�inf�fu�berlin�de

Technical Report B������

October ����

Abstract

Java is commonly considered the ideal language for implementing software for the In�
ternet� A closer look� however� reveals that distributed programming is poorly supported
in Java� This is because the very design of the language rules out distribution	transparent
remote invocation� It is shown that Sun
s technology for distributed Java programming�
RMI� makes things worse by allowing two di�erent invocation semantics to hide behind
an object variable� The consequences of using CORBA instead of RMI are investigated�
Various options for changing either RMI or Java itself are considered� so that language
platforms supporting a high degree of distribution transparency could be built�

Freie Universit�at Berlin
Institut f�ur Informatik
Takustra
e �
D	����� Berlin� Germany

This report also appears in Proc� TOOLS Paci�c
��� Melbourne� Australia� November
�����

� Introduction

Java �Gosling ��� is being heralded as the ultimate language for internet	based distributed
programming� But when it comes to actually writing distributed applications� a serious
�aw in the basic design of the language becomes apparent� Java
s type system� together
with its mechanism of parameter passing� leads to problems with remote method invoca�
tion�

The current version of Java does not allow for a distributed implementation where
remote method invocation would have the same semantics as its local counterpart� The
problem is also not adequately addressed in RMI �Sun ���� Sun
s proprietary technology
for distributed Java programming� As a result� semantic deviations from the intended
program logic can occur in distributed programs written in Java�RMI� It is therefore
questionable whether Java in its current form is a suitable platform for distributed pro�
gramming�

The problem is explained in section �� which is followed by a discussion of RMI in
section �� Section � explores the combination of Java and CORBA �OMG ���� Our
observations suggest that revising the language itself may be the only satisfactory solution�
Several options for this are discussed in section �� and our preferred option is presented�

� Remote parameters in Java

Java
s method invocation mechanism is not suitable for distributed programming based
on remote invocation� To show this� we will �rst sketch the syntax and semantics of purely
local invocations� focussing on parameter passing� and then look at the consequences of
extending this invocation semantics to the distributed case�

��� Java parameter passing

An ordinary Java method is invoked using the familiar notation

objectRef�methodName�arg������argn��

Java� like C� has only one parameter passing mode� pass	by	value� For primitive types
such as integer� character� etc� this means that the method receives a copy of the actual
value� If any changes are made to such a copy during the execution of the method� these
changes are not visible in the calling context�

If an actual parameter has a reference type� a reference to an object is copied� causing
the object to be shared among caller and callee� Any changes the method makes to the
object are visible in the calling context� In Java� all instances of classes have reference
types� including strings which are instances of the library class String and arrays �for
which no library class exists�� Java provides no parameter passing mode that would
dereference a parameter and deliver a copy of the object �as� e�g�� Ei�el does� using
expanded types �Meyer ����� We say that Java �passes objects by reference� not by value��

It is important to note that since the only way of constructing user	de�ned types is
by writing new classes� all user	de�ned types are reference types� Thus� there is no way
of passing an object of a user	de�ned class by value�

�

��� Parameters in distributed programs

In a distributed program� object invocation may cross machine boundaries� If the caller
and the callee reside on di�erent machines� invocation must be implemented as remote
method invocation which is the object	oriented analog to remote procedure call �RPC��
Instead of passing the arguments in processor registers or on the stack� the caller must
pack them into a network message and the callee must unpack them� This is called
marshalling �or serialization� and unmarshalling of the parameters�

A problem arises when references are involved in passing parameters remotely� a
reference is usually represented as a virtual address in the caller
s address space� it makes
no sense to dereference it in a di�erent address space� So the reference has to be passed
in a network	wide representation which can in turn be used for remotely invoking the
object it refers to�

How does this apply to Java� The �rst observation is that there is no obstacle to
implementing remote invocation for programmer	de�ned classes� Reference	type param�
eters can be passed in a network	wide representation� embedded references can be taken
care of in the same manner�

A closer view� however� reveals that the resulting programming platform is of little use�
Generally speaking� it is alright to distribute services in this way� i�e�� passing references to
objects that are invoked infrequently so that the increased latency of remote invocations
is negligible� But what about distributing data� i�e� passing arrays and records �� objects
without methods�� If an array of� say� � numbers is passed to a remote method
for processing� the receiver just gets the reference� Processing the array may then require
� remote accesses� given the latency of each individual access� this approach is
plainly prohibitive �not to mention the problem of compiling array indexing into remote
access�� The same problem is encountered with records where ! while not as drastic
! it is still annoying� With strings� fortunately� the problem disappears� Strings are
immutable objects in Java� so passing a string by reference can be implemented as pass	
by	value because the semantics is the same�

� RMI

Sun
s Remote Method Invocation �RMI� system aims at providing mechanisms for �seam�
less remote invocation on objects in di�erent virtual machines� �Sun ��� and tries to �inte�
grate the distributed object model into the Java language in a natural way while retaining
most of the Java language
s object semantics�� It turns out that the keyword is �most��

	�� RMI tries���

RMI does preserve the regular Java invocation syntax� but parameters of remote oper�
ations are treated di�erent from those of local operations� Remote passing is done as
follows� If an actual parameter has a primitive type it is passed by value� If an actual
parameter has a reference type and its class implements the Remote interface� it is passed
by reference �the local reference being replaced with a network reference�� If the class
does not implement Remote but rather implements the Serializable interface� the ob�
ject is passed by value �using serialization�� If the class implements neither Remote nor
Serializable an exception is raised� Arrays are serializable by default�

�

While this seems to solve the main problem by not promoting arrays to full remote
objects and allowing for records to be passed by value rather than by reference� this
approach has its own pitfalls� Consider the following example� Let RemoteStack denote a
class for remotely invokable stacks of integers �implementing Remote�� A stack stores its
values in an array int�	 cells� In addition to the usual stack operations such as push�
pop� top it exports an operation

public int�	 dump��

return cells�

�

delivering the values currently stored in the stack� There are several stacks in our
distributed system� registered in a StackDictionary object� Our demonstration program
plays with two stacks listed in the dictionary�

public class RMItest

static RemoteStack s� � null�

static RemoteStack s
 � null�

static StackDictionary stacks �

new StackDictionary���

public static void main�String�	 args�

���

�� stacks are created at

�� different sites and

�� registered with dictionary

s� � stacks�get��that���

s
 � stacks�get��this���

s��push����

s
�push����

int�	 there � s��dump���

int�	 here � s
�dump���

there��	 � ����

here��	 � ����

System�out�print��there� ��s��top����

System�out�print��here� ��s
�top����

���

�

�

	�� ���but fails

As dump�� delivers an array and arrays are Serializable by default� the result of a
remote invocation will be a copy of the stack
s array� So the output of the program
should be

�

there� � here� �

! but be also prepared to see

there� � here� ��� "

Why is this� It is possible that one of the stacks� s
 in this case� happens to be
local to the caller� which causes the standard parameter passing semantics to take e�ect
�yes"�� So a reference to the array will be delivered� causing the assignment here��	����
to e�ectively modify the stack�

The example shows that not only can two seemingly alike objects have di�erent be�
haviour but� worse� there is no way to tell them apart� This is because it is impossible to
�nd out whether an object with a Remote interface is indeed remote ! or actually local
to the caller�

If we ! inadvertently and not knowing ! use a Remote object locally� as in the
example� the operation semantics may be di�erent from what was expected� Note that
we are not referring to a di�erent �exceptional� semantics in the face of network latency
or failure� but to the successful execution of an operation�

Also note that there is indeed no way of telling remote from local objects� even if we
knew that taking one for the other might cause problems� both objects have the same
type and we have no way of tracking down every single object reference in a system� RMI
turns out to be dangerously confusing� it gives the programmer the false impression that�
although Remote and Serializable parameters are treated di�erently� at least all objects
of a certain class� whether implementing Remote or not� behave alike� As we have seen�
this may not be the case�

	�	 Fixing RMI

The problem illustrated above arises because with RMI� Remote objects can in fact be
accessed locally as well� and in this case they exhibit a subtly di�erent behaviour�

One approach to correct this is to draw the distinction between local objects and
remote objects in a more consequent fashion� For example� we might disallow local access
to Remote objects completely� Implementing Remote would then mean that objects of
the class can only be called from a remote machine� This would clearly eliminate the
unpleasant behavior of the example ! but seems very restrictive�

As an alternative� we could force every call to a Remote object� whether it is a local call
or a true remote call� to have the same semantics ! that of the remote case� Parameters
that would have to be serialized for a remote call must also be passed by value if the call
is actually local� Thus we should always get the same semantics when calling a particular
object� although� just as before� we have to deal with two sets of semantics in general� a
�local semantics� for local objects and a �remote semantics� for objects that are �even
potentially� remote� If we want to make an existing class remotely accessible� we may
have to change both the method implementations and the calls to those methods from
other classes� If we forget any of these changes� there is no way the compiler could warn
us�

Moreover� the two kinds of method invocations still look exactly the same in the code�
So maybe we should even change the syntax to make it apparent that a �potentially�
remote call is something di�erent� for example�

�

object�method �arg�� �����

for local semantics

object��method�arg�� �����

for remote semantics

Using runtime checks� the compiler would ensure that a remotely accessible object is
always called using the �� notation and that a local object is always called using the �

notation� Thus� the programmer would really have to think about each call� especially
when converting existing code ! something that seems quite consistent with the overall
design of RMI�

	�� Beyond RMI

RMI embodies a fundamental assumption about how distributed computing should be
done� The chief designers of RMI take the view �Waldo ��� that remote objects are
intrinsically di�erent from local objects and that this di�erence must not be hidden by
the distribution technology in use� In other words� they do not subscribe to the idea of
distribution transparency� which has been favored by other researchers and which aims
at just the opposite� to make the distinction between local objects and remote objects
invisible for the programmer� so that distribution issues are hidden behind an abstraction
boundary�

Distribution transparency has many facets� the most important of which is access
transparency� We speak of access transparency when the syntax and semantics of object
invocation are identical for both local and remote objects� Ideally� �remote method invo�
cation� should just refer to a distributed implementation of otherwise unchanged �with
respect to syntax and semantics� method invocation� There are numerous programming
languages which achieve this ideal to a high degree� ranging from more experimental ones
�Bal ��� Cardelli ��� to mainstream languages like Ada �� �Barnes ����

This is not to say that access transparency is an absolute value� There are areas
where non	transparent technologies like RMI might be appropriate �see also �Kiczales ���
Lea ����� RMI in its current form� however� is problematic for two reasons� First� there is
a confusion about the concept of remoteness� RMI regards it as a property of an object to
be �remote�� but in fact remoteness is a relation between objects� as in �A is remote from
B� vs� �A is local to B�� Second� RMI does not� in a sense� live up to its own standards�
it sets out to be deliberately non	transparent� but �pseudo	transparency� lurks in there�
manifest in the strange phenomenon that the syntax of local and remote invocation is
still the same ! but not the semantics�

There have been e�orts to hide the RMI technicalities behind a smoother facade� in
order to achieve more transparency �see� e�g�� �Philippsen ����� This can� of course� work
only to a limited degree� as the semantics will be invariably those of RMI�

� CORBA and Java

If RMI is not an appropriate model for a distribution	enabled Java� what is the alter�
native� An obvious candidate for a distributed object model is CORBA� which we will
brie�y describe in this section� We will also evaluate the possibility of integrating CORBA
with Java�

�

��� The CORBA object model

The OMG de�nes an object model for its Object Management Architecture �OMA� in
CORBA �OMG ��� through the de�nition of the CORBA interface de�nition language
�IDL�� This object model has been designed in order to allow access	transparent dis�
tribution and accomodation of such diverse programming languages as C� C##� Cobol�
Smalltalk� Java and others through language mappings�

CORBA de�nes the following rules for passing data to and from operations� all base
type values �integers� characters� ���� are passed by value� and so are arrays and records
�structs�� All object type values are passed by reference� �CORBA object types are
de�ned by specifying their interface��

CORBA object references are opaque� they do not betray the locations of objects�
The behavior of an object is independent of whether it is invoked locally or remotely�
CORBA de�nes three parameter passing modes� in� out and inout� in is pass	by	value
�as described for Java above�� out is pass	by	result and inout is pass	by	value	result�

Obviously� the problems with the Java object model described above do not arise in
CORBA as arrays and records are passed by value� The CORBA object model in itself
would allow perfect access transparency� In its present form� however� CORBA lacks
another important concept ! passing objects by value� The OMG has acknowledged the
need to pass objects by value by issuing a corresponding request for proposals �OMG ���
which recognizes that passing an object by reference �is inappropriate for some situations�
such as when an object encapsulates a data structure� In these situations� passing the
object by value provides for greater e$ciency��

��� Integrating Java with CORBA

If we integrate the CORBA object model with a �host� language according to an IDL
language mapping� one of its premier values ! access transparency ! is compromised if
this host language is not simply an extension of IDL� Unfortunately� even in the case of
Java� which is conceptually very close to IDL� a number of object model mismatches arise
�Brose ����

The �rst of these is that Java allows the overloading of operation names while CORBA
does not� Secondly� the distinction between Java
s reference type strings and arrays versus
CORBA
s base type strings and arrays cannot be concealed� the di�erence between a null
reference and an empty value� which can be expressed in Java� cannot be expressed in
CORBA�

The most important point is� again� the di�erence in the respective parameter passing
modes� Obviously� we cannot have both CORBA and Java parameter passing semantics as
the two are mutually exclusive� so there remains a clear di�erence between calling objects
in the CORBA and the Java object models� Hence� an access	transparent integration of
CORBA with the Java language is not possible�

� Revising Java�

We have seen that CORBA provides a suitable object model for access transparency while
Java does not� We will therefore examine how Java might be modi�ed with respect to

�

parameter passing� We will discuss a number of options for parameter passing techniques
and how the concept of passing objects by value could be realized�

��� Passing by reference considered harmful

The suitability of the local parameter passing modes for remote invocation has been
questioned since the introduction of Remote Procedure Call� The reason is e$ciency !
an important consideration in a distributed system where communication can become a
serious bottleneck� But then� e$ciency has always been scrutinized for local parameter
passing as well� Programmers �and language designers� have often taken to using by	
reference where by	value would have been adequate� just for e$ciency reasons� This
misuse� however� works only if the parameter is not modi�ed inadvertently� either by the
receiver or through aliasing� The language should give the programmer the choice to pass
objects either by value or by reference�

A conceptually attractive technique for implementing pass	by	value is copy�on�write�
just a reference is passed� and a copy will be generated on demand� i�e�� if and when
the object is modi�ed� Unfortunately� e$cient implementation of this techique requires
virtual memory support ! unless writing is excluded a priori� i�e�� the language treats
value parameters as read	only and prevents the actual parameter from being modi�ed
through aliasing�

Remember that pass	by	reference is a typical device for �low	level� imperative pro�
gramming �as oppposed to� e�g�� functional programming� and should be shunned wherever
possible� We should pass an object by reference only if the very job of the receiver is to
modify the object� or to sense changes applied to the object by concurrent activities� or to
serve as a container for object references� For a counterexample� consider array objects�
An array is usually part of the data representation of a larger object� If it is passed as
a parameter of an object invocation� it is usually passed by value� Passing by reference
is con�ned to local auxiliary procedures of the object� This reasoning is all the more
valid for small� record	like objects and for variables of primitive types �which� in Java�
are passed by value anyway��

��� Distributed implementation

What does this imply for remote invocation� To begin with� the e$ciency properties of
pass	by	value and pass	by	reference are inverted� Thus� restrictions on pass�by�reference
as suggested above come in handy� Let us make sure that no trouble spots remain�

�� The object in question is a typical server object ! heavy	weight and�or immo�
bile and�or infrequently invoked� Pass	by	reference is alright here� If the ob�
ject is mobile and small� a migrational variant such as pass�by�visit�pass�by�move
�Black %�� Achauer ��� may exhibit better performance� depending on the access
pattern�

�� For arrays� pass	by	reference must not be allowed in remote invocations� If this
restriction is not obeyed we would get an error message �e�g� from the stub compiler�
when generating the distributed version� As we have seen� however� the restriction
is not a serious one and barely compromises access transparency�

�

�� For all other objects� e�g� record	like data objects� passing by reference poses no
conceptual problems� It may not be e$cient� but� as argued above� will occur only
rarely� This would even justify not supporting remote access to public attributes
�again producing error messages��

In order to prepare the ground for designing an appropriate modi�cation to Java we
have to have a closer look at pass	by	value for Java objects�

��	 Passing objects by value

Determining the parameter passing mode

One of the questions connected with passing objects by value is how the parameter pass�
ing mode for arguments of a particular operation is determined� The approach taken
by RMI is to introduce new interfaces like Remote and Serializable and select the pa�
rameter passing mechanism for a particular argument according to this argument
s type�
if it implements Serializable� it is passed by value� A similar approach is taken in
�Netscape ���� one of the four submissions to the OMG
s object	by	value RFP �OMG ����
Here� the notion of stateful interfaces is introduced� i�e� interface types that de�ne an ex�
plicit representation for the state of an instance� Instances of stateful interfaces are always
passed by value�

However� this approach ! even if it is applied consistently ! is inappropriate� On
the one hand� it is not �exible enough as we cannot pass an object x by reference to an
operation f�� and by value to another operation g��� which might be desirable� e�g�� if
f�� is designed to make a single update to a data structure embedded in x and g�� needs
to access this same data structure frequently� e�g� by traversing it � times without
altering it�

On the other hand� it is problematic that an operation cannot rely on the passing
semantics used for its arguments as these may not be known at compile time� A for�
mal parameter type T might have two subtypes T� and T
� one of which implements
Serializable while the other does not� The actual argument supplied to the method
invocation might be of any of the types T� T� and T
 as Java allows polymorphism� �This
is not a problem in RMI because RMI� as shown above� uses serialization for remote calls
only� The RMI stub generator complains if a remote interface extends another� non	
remote interface� Thus� it keeps the inheritance hierarchies for remote and non	remote
types separate so that the above problem caused by polymorphism cannot arise� For a
more general approach� though� this remains a problem��

The underlying misconception of the whole approach is that the mechanism for passing
a parameter to an operation is selected on the basis of the type of the actual argument�
so the semantics of the passing mode is regarded a property of this type while in fact it is
part of the operation semantics� Consequently� it should be expressed in the declaration
of the operation
s formal parameters and its return type� as already argued for the local
case in ����

A new keyword for specifying pass�by�value

We propose the introduction of a new keyword copy which speci�es that a parameter is
to be passed by value� Consider the following method declaration�

%

public copy int�	 aMethod �copy A a� B b� int i�

The parameter passing modes for myMethod are as follows� Both the return value of
reference type int�	 and the formal parameter a of reference type A� are declared using
copy� this means that the corresponding objects are passed by value� Using copy does
not change the fact that both the formal and the actual parameter are references� The
only e�ect is that� e�g�� a refers to a newly created copy of the actual parameter� Of the
remaining parameters� b is passed by reference and i is passed by value�

It is important to remember that� according to ���� omitting the �rst copy would
cause an error message to be produced during the generation of the distributed version�
Omitting the second copy would produce an error message only if A had public attributes
and the system would not support remote attribute access�

The semantics of copy is similar to the semantics of expanded in the Ei�el language
�Meyer ���� In Ei�el� expanded is used to declare variable names that denote objects� not
references to objects� It can also be used to specify pass	by	value semantics for arguments
and return values of reference types� However� if a parameter is passed expanded� the
receiver will get a copy rather than a reference to a copy�

Serializing object state

To support object copying in a homogenous environment� a single implicit serializa�
tion�deserialization protocol realized by the distribution platform could be used� RMI�
e�g�� provides such a mechanism� This protocol would specify what parts of the object
are to be copied in which order� Such an implicit protocol would not� however� su$ce in
heterogeneous environments such as CORBA where interoperability between implemen�
tations and platforms is a major concern� In order to realize object	by	value semantics
in such a setting� the protocol used for serialization�deserialization of objects needs to
be explicitly de�ned� Alternatively� a negotiation mechanism for selecting a serialization
protocol could be speci�ed� In the following we will assume some reasonable default
protocol�

Copies made as a consequence of passing an object by value are �shallow copies� by
default� i�e� objects contained as references within the object are not copied� instead
those references are automatically replaced by network references� If this behavior is
not appropriate for a particular situation� the class of the object that is passed must
inherit from a special interface and the programmer needs to provide the speci�c copying
mechanism�

We assume that an implementation for the appropriate object type �a Java class� is
available in the receiving context or can be made available by downloading Java code if
necessary� But which is the appropriate type� In order to support polymorphism properly�
the receiving context needs to be given an object of the most derived type of the actual
argument supplied in the invocation�

� Conclusion

We have shown that Java� although explicitly designed with the network in mind� exhibits
weaknesses in an important network	related issue and de�es access transparency more
�ercely than traditional languages� A number of approaches to solving the parameter

�

passing problem have been presented� emphasizing the need for a solution that avoids
distribution	related featurism�

A modest modi�cation of Java has been proposed� a new keyword copy for specifying
pass	by	value semantics for reference type parameters� It has been argued that carefully
choosing the semantically appropriate parameter modes makes a program �t for both
centralized and distributed execution� Not surprisingly� the resulting mechanisms are in
line with CORBA
s model of parameter passing� An interesting perspective would be to
evaluate Java as a starting point for designing a CORBA implementation language�

References

�Achauer ��� Bruno Achauer�
The DOWL distributed object	oriented language� Communications of the ACM�
������ September ����� �%	���

�Bal ��� Henri Bal� Frans Kaashoek� Andrew Tanenbaum� Orca� a language for parallel
programming of distributed systems� IEEE Trans� on Software Engineering ������
����� �� 	� ��

�Barnes ��� John Barnes� Ada �� Rationale� The Language� The Standard Libraries�
Springer� �����
http���www�adahome�com�Resources�refs�rat���html

�Black %�� Andrew Black� Norman Hutchinson� Eric Jul� Henry Levy� Larry Carter� Dis�
tribution and Abstract Types in Emerald� IEEE Transactions on Software Engineer	
ing� ������ January ��%�� ��	���

�Brose ��� Gerald Brose� JacORB ! Design and implementation of a Java ORB� Proc�
Int� Conf� on Distributed Applications and Interoperable Systems DAIS
��� Cottbus�
Germany� September ����� Chapman & Hall� ���	��� �
http���www�inf�fu�berlin�de��brose�jacorb�

�Cardelli ��� Luca Cardelli� A language with distributed scope� Computing Systems �����
January ����� ��	���
http���www�research�digital�com�SRC�personal�Luca Cardelli�Obliq�Obliq�html

�Gosling ��� James Gosling� Bill Joy� Guy Steele� The Java Language Speci�cation�
Addison	Wesley �����
http���java�sun�com�

�Kiczales ��� Gregor Kiczales� Beyond the black box� open implementation� IEEE Soft	
ware ������ January ����� %	���

�Lea ��� Doug Lea� Design for open systems in Java� Proc�
� Int� Conf� on Coordination
Languages and Models� LNCS ��%�� Springer ����� ��	���

�Meyer ��� Bertrand Meyer� Object�Oriented Software Construction� �nd ed�� Prentice	
Hall �����

�

�Netscape ��� Netscape� Novell� Visigenic� Objects By Value� Joint Initial Submission�
OMG TC document orbos���	 �	 ��
ftp���ftp�omg�org�pub�docs�orbos��������
�ps

�OMG ��� OMG� The Common Object Request Broker� Architecture and Speci�cation�
Revision �� � July �����
http���www�omg�org�

�OMG ��� OMG� Objects�by�Value RFP�
OMG document orbos���	 �	��� June �����
ftp���ftp�omg�org�pub�docs�orbos����������ps

�Philippsen ��� Michael Philippsen� Matthias Zenger� JavaParty ! transparent remote
objects in Java� Proc� ACM PPoPP Workshop on Java for Science and Engineering
Computation� Las Vegas� June �����
http���wwwipd�ira�uka�de��phlipp�party�gs�gz

�Sun ��� Sun Microsystems� Java Remote Method Invocation Speci�cation� Revision ����
� February ����� Sun Microsystems �����
http���java�sun�com�products�jdk� ����docs�guide�rmi�spec�

rmiTOC�doc�html

�Waldo ��� Jim Waldo� Geo� Wyant� Ann Wollrath� Sam Kendall� A note on distributed
computing� Sun Microsystems Technical Report TR	��	��� November �����
http���www�sunlabs�com�technical�reports������abstract�
��html

��

