°C	Grad Celsius
μ	micro
APS	Ammoniumpersulfat
AS	Aminosäure
ATCC	American type culture collection
ATP	Adenosintriphosphat
bp	Basenpaar
BSA	Rinder-Serumalbumin
BLU	Boehringer Lichteinheiten
BRCA 1	Brustkrebs 1
CaMK II	Ca ⁺⁺ /Calmodulin-abhängige Kinase II
CBP	CREB (calcium response element binding protein)-Bindeprotein
СНХ	Cycloheximid
Ci	Curie
CIP	Alkalische Kälberdarm-Phosphatase
CRM1	Chromosome region maintenance 1
СТР	Cytidintriphosphat
Da	Dalton
dIdC	Desoxyinosidphosphat-Desoxycytidinphosphat
DMEM	Dulbecco-modifiziertes Eagle-Medium
DMSO	Dimethylsulfoxid
DNA	Desoxyribonuleinsäure
dNTP	Desoxynukleotid
DSMZ	Deutsche Sammlung von Mikroorganismen und Zellkulturen
DTT	Dithiotreitol
EDTA	Ethylendiamin-N,N,N',N'-Tetraessigsäure
EGF	Epidermaler Wachstumsfaktor
EGTA	1,2-Bis-(2-aminoethoxyethan)-N,N,N',N'-Tetraessigsäure
EMSA	Electrophoretic mobility shift assay

EPO	Erythropoeitin
EtOH	Ethanol
ERK	Extrazellulär-regulierte Kinase
FCS	Fötales Kälberserum
FITC	Fluorescein-Isothiocyanat
FRAP	Fluoreszenz-Wiederauffüllung nach Photobleichung
g	Erdbeschleunigung
GAS	Gamma-aktivierte Stelle
GFP	Grün-fluoreszierendes Protein
GSH	Glutathion
GST	Glutathion-S-Transferase
GTP	Guanosintriphosphat
h	Stunde(n)
HEPES	N-(2-hydroxyethyl)-1-Piperazino-Ethansulfonsäure
HRP	Meerrettich-Peroxidase
IFN	Interferon
Ig	Immunglobulin
IL	Interleukin
IPTG	Isopropyl-β-D-thiogalactopyranosid
ISGF3	Interferon-stimulierter Genfaktor
ISRE	Interferon-stimuliertes Genelement
JAK	Janus-Kinase
k	kilo
1	Liter
LB	Luria-Broth
LIF	Leukämie-inhibierender Faktor
LMB	Leptomycin B
LPS	Lipopolysaccharid
m	milli, Meter
М	molar
МАРК	Mitogen-aktivierte Proteinkinase
MBP	Maltosebindeprotein

MBS	m-maleimidobenzoyl-N-hydroxysuccinimid-Ester
MCM 5	Minichromosome maintenance 5
MeOH	Methanol
MES	2-(-morpholino)-Ethansulfonsäure
МНС	Haupthistokompatibilitäts-Komplex
Min.	Minute(n)
МКК	MAP-Kinase-Kinase
n	nano
NEM	N-Ethylmaleimid
NES	Nukleäres Exportsignal
NF-κB	Nukleärer Faktor κB
NLS	Nukleäres Lokalisationssignal
NP-40	Nonidet-P40
NUP	Protein des Kernporenkomplexes
OD	Optische Dichte
ONPG	Ortho-Nitrophenyl- B-D-Galactopyranosid
OSM	Onkostatin M
PAGE	Polyacrylamid-Gelelektrophorese
PBS	Phosphat-gepufferte Salzlösung
PCR	Polymerase-Kettenreaktion
РКС	Proteinkinase C
PMSF	Phenylmethylsulfonylfluorid
ran	Ras-verwandtes Kernprotein
RT	Raumtemperatur
S	Sekunde(n)
SDS	Natriumdodecylsulfat
SH2	Src-Homologie 2
STAT	Signal-Transduktor und Aktivator der Transkription
TAE	Tris-Essigsäure-EDTA
TBE	Tris-Borsäure-EDTA
TBS	Tris-gepufferte Salzlösung

TE	Tris-EDTA
TEMED	N,N,N',N'-Tetramethylethylendiamin
TNF	Tumor Nekrose Faktor
TTP	Thymidintriphosphat
Tris	2-Amino-2-Hydroxymethyl-1,3-Propandiol
TRITC	Tetramethylrhodamin-Isothiocyanat
UV	ultraviolett
ü/N	über Nacht
V	Volt
wt	Wildtyp

Aminosäuren

Α	Alanin
С	Cystein
D	Aspartat
Е	Glutamat
F	Phenylalanin
G	Glycin
Н	Histidin
Ι	Isoleucin
К	Lysin
L	Leucin
М	Methionin
Ν	Asparagin
Р	Prolin
Q	Glutamin
R	Arginin
S	Serin
Т	Threonin
V	Valin
W	Tryptophan
Y	Tyrosin

9 Anhang I

Statistische Auswertung der FRAP-Daten
--

Unstimulierte Zellen						
Bleichtiefe (Minimum) ^a	GFP	STAT1 DNA ^{minus}	STAT1α	STA T1β	STAT1∆N	STAT1tc
Mean SD SEM N	76.16 2.68 1.2 5	60.41 1.49 0.61 6	59.5 2.88 0.96 9	59.66 5.03 2.25 5	58.77 5.07 2.27 5	57.7 2.79 1.25 5
Endwert (Maximum) ^a						
Mean SD SEM N	96 1.98 0.89 5	95.45 0.96 0.39 6	93.75 2.44 0.81 9	94.47 1.23 0.55 5	94.71 0.92 0.41 5	94.39 1.38 0.62 5
Zeit größter Endwert (s)						
Mean SD SEM N	4.38 1.33 0.59 5	4.6 1.19 0.48 6	3.56 1.76 0.59 9	4.12 1.4 0.63 5	4.49 1.11 0.5 5	4.38 1.67 0.74 5
Halbwertzeit (s)						
Mean SD SEM N	0.166 0.087 0.039 5	0.148 0.044 0.018 6	0.129 0.050 0.017 9	0.154 0.038 0.017 5	0.105 0.023 0.01 5	0.0127 0.037 0.017 5
		T-Te	st			
Bleichtiefe		df	t-Wert	I	o-Wert Sig	Inifikanz
GFP: DNA ^{minus} GFP: STAT1α GFP: STAT1β GFP: STAT1ΔN GFP: STAT1ΔN		9 12 8 8 8	12.35 10.59 6.466 6.771 10.66	< ((0.0001 0.0001 0.0002 0.0001 0.0001	Ja Ja Ja Ja Ja
STAT1α: DNA ^{minus} STAT1α: STAT1β STAT1α: STAT1ΔN STAT1α: STAT1ΔN		13 12 12 12	0.7058 0.0772 0.3457 1.13	((((0.4928 0.9397 0.7356 0.02805	Nein Nein Nein Nein
STAT1β: DNA ^{minus} STAT1β: STAT1ΔN STAT1β: STAT1tc		9 8 8	0.3495 0.2771 0.7613	()).7347).7887).4683	Nein Nein Nein
STAT1∆N: DNA ^{minus} STAT1∆N: STAT1tc		9 8	0.7579 0.4147	(0.4679 0.6893	Nein Nein
STAT1tc: DNA ^{minus}		9	2.064	(0.0691	Nein

IFN _γ -Stimulation						
Bleichtiefe (Minimum) ^a	GFP	STAT1 DNA ^{minus}	STAT1α	STAT1 β	STAT1∆N	STAT1tc
Mean SD SEM N	77.96 2.34 1.05 5	57.23 2.56 1.15 5	42.48 7.9 3.53 5	61.24 3.69 1.65 5	60.02 4.41 1.8 6	59.24 6.43 2.87 5
Endwert (Maximum) ^a						
Mean SD SEM N	95.91 1.38 0.62 5	95.22 3.98 1.78 5	93.5 1.77 0.79 5	96.49 1.53 0.68 5	94.9 1.17 0.48 6	93.69 0.51 0.23 5
Zeit größter Endwert (s)						
Mean SD SEM N	4.5 0.48 0.21 5	3.08 1.43 0.64 5	5.21 4.09 1.83 5	4.01 0.36 0.16 5	4.3 0.70 0.29 6	4.08 1.24 0.55 5
Halbwertzeit (s)						
Mean SD SEM N	0.147 0.051 0.023 5	0.093 0.051 0.023 5	0.144 0.045 0.02 5	0.127 0.036 0.016 5	0.163 0.061 0.025 6	0.164 0.085 0.038 5
		T-Test	:			
Bleichtiefe		df	t-Wert	p-	Wert Sig	gnifikanz
GFP: DNA ^{minus} GFP: STAT1α GFP: STAT1β GFP: STAT1ΔN GFP: STAT1tc		8 8 9 8	13.36 9.626 8.554 8.141 6.118	<0 <0 <0 <0 0.	.0001 .0001 .0001 .0001 .0003	Ja Ja Ja Ja Ja
STAT1α: DNA ^{minus} STAT1α: STAT1β STAT1α: STAT1ΔN STAT1α: STAT1ΔN		8 8 9 8	3.97 4.808 4.664 3.679	0. 0. 0.	0041 0013 0012 0062	Ja Ja Ja Ja
$\begin{array}{l} \text{STAT1} \beta \text{: } \text{DNA}^{\text{minus}} \\ \text{STAT1} \beta \text{: } \text{STAT1DN} \\ \text{STAT1} \beta \text{: } \text{STAT1tc} \end{array}$		8 9 8	1.994 0.4903 0.6021	0.0 0.0 0.1	0813 06356 5638	Nein Nein Nein
STAT1∆N: DNA ^{minus} STAT1∆N: STAT1tc STAT1tc: DNA ^{minus}		9 9 8	1.242 0.2375 0.6495	0.: 0.: 0.:	2456 8176 5342	Nein Nein Nein Nein

^a in % der Fluoreszenzintensität vor dem Bleichprozess
 Unterschiede wurden als statistisch signifikant gewertet, wenn p < 0.05.
 Abkürzungen: SD: standard deviation; SEM: standard error of mean; N: number of samples

Massenspektrometrische Analyse der Serin⁷²⁷-Phosphorylierung

A) und B) Abschätzung des Anteils an Serin⁷²⁷-phosphoryliertem Protein an Hand der MS-Signalintensitäten des tryptischen Peptides 717-736. Die Abschätzung erfolgte aufgrund der Signalintensität des Serin⁷²⁷- phosphorylierten Peptides (bei 1201,637 M/z; oberes Spektrum) und der Signalintensität des unmodifizierten Peptides (bei 1161,630 M/z; unteres Spektrum). Aus mehreren Messungen ergibt sich so ein Anteil von etwa 50% an Serin⁷²⁷-phosphoryliertem Protein für Tyrosin⁷⁰¹-phosphoryliertes STAT1 α (A) (in dem hier gezeigten Spektrum: Signalintensität modifiziertes Peptid: 265; Signalintensität unmodifiziertes Peptid: 489) und etwa 90% für nicht-Tyrosin⁷⁰¹-phosphoryliertes STAT1 α (B) (Signalintensität modifiziertes Peptid: 357; Signalintensität unmodifiziertes Peptid: 30,5).

C) Nachweis der Identität des Peptides und Bestätigung der Phosphorylierung an Position Serin⁷²⁷ durch MSMS des tryptischen Peptides 717-736 von STAT1α.

10 Anhang II

Liste eigener Publikationen

- Lödige, I., Marg, A., Wiesner, B., Malecová, B., Oelgeschläger, T. and U. Vinkemeier (2005). Nuclear export determines the cytokine sensitivity of STAT transcription factors. *J. Biol. Chem.* **280**, 43087-99.
- Meissner, T., Krause, E., <u>Lödige, I.</u> and U. Vinkemeier (2004). Arginine methylation of STAT1: a reassessment. *Cell* **119**, 587-589.
- Meyer, T., Begitt, A., <u>Lödige, I</u>., van Rossum, M. and U. Vinkemeier (2002). Constitutive and IFN-γ-induced nuclear import of STAT1 proceed through independent pathways. *EMBO* **21**, 1-11.
- Page, G., <u>Lödige, I.</u> and K.H. Scheidtmann (1999). AATF, a novel transcription factor that interacts with Dlk/ZIP kinase and interferes with apoptosis. *FEBS Letters* **462**, 187-191.

Lebenslauf

Name:	Inga Lödige
Geburtstag:	14. Dezember 1974
Geburtsort:	Wuppertal
Adresse:	Stubbenkammerstrasse 14, 10437 Berlin
Ausbildung:	
seit April 2001:	Doktorarbeit in der Arbeitsgruppe für zelluläre Signalverarbeitung bei Dr. Uwe Vinkemeier am Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin.
1999-2000:	Diplomarbeit mit dem Thema: "Charakterisierung funktioneller Domänen des Transkriptionsfaktors AATF" in der Arbeitsgruppe von Prof. Dr. Karl Heinz Scheidtmann am Institut für Genetik der Rheinischen Friedrich- Wilhelms-Universität Bonn.
1997-1998:	Biochemiestudium an der Ohio State University, Columbus, U.S.A., er- möglicht durch ein Stipendium der Ohio State University
1994-2000:	Biologie-Studium an der Rheinischen Friedrich-Wilhelms-Universität Bonn.
1985-1994:	Beethoven-Gymnasium, Bonn.

Danksagung

Diese Arbeit wäre ohne die Unterstützung zahlreicher Personen nicht möglich gewesen, denen ich an dieser Stelle danken möchte.

An erster Stelle gilt mein Dank Herrn Dr. Uwe Vinkemeier. Ohne seine exzellente wissenschaftliche Betreuung wäre diese Arbeit nicht entstanden. Ich möchte mich für das entgegengebrachte Vertrauen bedanken, mir dieses hochinteressante Thema zur Verfügung zu stellen und für die von ihm geschaffene Möglichkeit, unter optimalen Bedingungen daran zu arbeiten. Seine fortwährende Unterstützung, Diskussionsbereitschaft und Beharrlichkeit haben wesentlich zum Erfolg dieser Arbeit beigetragen.

Ganz herzlich möchte ich mich bei Frau Prof. Petra Knaus und Herrn Prof. Thomas Meyer für ihre freundliche Bereitschaft bedanken, diese Arbeit zu begutachten.

Einen wichtigen Beitrag zum Gelingen dieser Arbeit hatte zweifelsohne die angenehme Arbeitsatmosphäre und kollegiale Zusammenarbeit in der Arbeitsgruppe Vinkemeier, für die ich an dieser Stelle allen aktuellen und ehemaligen Mitarbeitern danke. Mein besonderer Dank gilt dabei Herrn Dr. Andreas Marg für seine sorgfältige und kritische Hilfestellung bei zahlreichen Experimenten und die großzügige Bereitstellung von rekombinanten Proteinen. Von den von ihm durchgeführten Mikroinjektions-Experimenten hat diese Arbeit sehr profitiert. Den technischen Mitarbeitern Marleen van Rossum, Stefanie Meyer und Mandy Kumerow bin ich zu großem Dank verpflichtet. Sie haben mit Können und Erfahrung ein effizientes Arbeiten möglich gemacht und so zum Erfolg vieler Experimente beigetragen. Ganz besonders bei Marleen möchte ich mich für die freundschaftliche und herzliche Einführung in die Arbeitsweisen und Gepflogenheiten des Labors bedanken.

Darüber hinaus geht mein Dank an alle Mitarbeiter des Leibniz-Instituts für molekulare Pharmakologie, die diese Arbeit mit Rat und Tat unterstützt haben. Ganz besonders bin ich Herrn Dr. Burckhard Wiesner für die Analyse der FRAP-Daten und die Hilfestellung bei der quantitativen Auswertung von Fluoreszenzintensitäten zu Dank verpflichtet. In diesem Zusammenhang möchte ich auch Frau Jenny Eichhorst für ihre Unterstützung danken. Dank gebührt auch Herrn Dr. Michael Beyermann für die Peptid-Synthese und Herrn Dr. Eberhard Krause für die massenspektrometrische Analyse der Serin-Phosphorylierung.

Nicht zuletzt möchte ich meiner Familie und meinen Freunden danken. Ihr habt mich all die Jahre so liebevoll und mit Geduld und Verständnis unterstützt und motiviert. Vielen Dank!