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Abstract

We prove the following graph coloring result� Let G be a ��connected bipartite

planar graph� Then one can triangulate G in such a way that the resulting graph is

��colorable�
This result implies several new upper bounds for guarding problems including the

	rst non�trivial upper bound for the rectilinear Prison Yard Problem�


�
�
n
�

�
vertex guards are su�cient to watch the interior of a rectilinear polygon

with holes�

��
�
�n
��

�
� � vertex guards resp�

�
n��
�

�
point guards are su�cient to watch

simultaneously both the interior and exterior of a rectilinear polygon�

Moreover
 we show a new lower bound of
�
�n
��

�
vertex guards for the rectilinear Prison

Yard Problem and prove it to be asymptotically tight for the class of orthoconvex

polygons�
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� Introduction

The original Art Gallery Problem raised by V
 Klee asks how many guards are su��
cient to watch the interior of an n�sided simple polygon
 In ��
� V
 Chv�atal ��� gave
the answer proving that bn��c guards are always su�cient and sometimes necessary

Since then many results have been published studying variants of the problem or
analyzing algorithmic aspects� see ���� ����� ��	� for a detailed discussion

One of the main open questions in this �eld is the so called Prison Yard Problem for
simple rectilinear polygons �comp
 ������ i
e
 one wants to determine the minimal
number of vertex guards su�cient to watch simultaneously both the interior and
exterior of any n�sided simple rectilinear polygon

The Prison Yard Problem for general simple polygons has been completely settled
by Z
 F�uredi and D
 Kleitman proving that

�
n
�

�
vertex guards for convex and

�
n
�

�
vertex guards for any non�convex simple polygon are su�cient� see ���
 As men�
tioned in ��� this does not imply new bounds for the rectilinear case
 Here� the
only upper bound known has been the trivial

�
�n
�


�
� ��bound �see ���� which can

be obtained by combining the
�
n
�

�
�result for the interior �see ���� with the

�
n
�

�
� �

vertex guards for the exterior of an n�sided rectilinear polygon

Below we are going to derive several new bounds for the original rectilinear Prison
Yard Problem as well as for the stronger �Prison Problem� where the guards have to
watch not only the inside and outside of the yard but also all cells of the prison
 The
key tools to prove them are coloring and multicoloring arguments
 Especially the
new graph coloring result shown in Section 	 is probably also of some independent
interest
 It says that one can triangulate a 	�connected bipartite planar graph in
such a way that the resulting graph is ��colorable

In Section � and Section � we apply this result to guarding problems by a suitable
modeling of the rectilinear polygons
 Next in Section � we establish lower bounds
for the vertex guard number in staircase�like and in orthoconvex prison yards
 In
Section �� we use a new multicoloring technique to prove these bounds to be asymp�
totically tight for the described polygon classes
 The following table summerizes the
upper bounds on guard numbers shown in this paper for rectilinear polygons� see ���
for previous bounds�

polygon problem guard type previous bound new bound

simple prison yard vertex
�
�n
�


�
� �

�
	n
��

�
� 	

simple prison yard point
�
�n
�


�
� �

�
n��
�

�
staircase prison yard vertex � �

�n
��

�
� 	 �tight�

orthoconvex prison yard vertex � �
	n
�


�
� 	 �tight�

h holes prison vertex � �
	n��h
��

�
� 	

h � n�� holes art gallery vertex
�
n��h
�

� �
n
�

�
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We close in Section 
 with posing a few related open questions and with discussing
algorithmic aspects of our results


� A Result on ��Colorable Planar Graphs

This paragraph is devoted to the proof and the discussion of the following theorem
on ��colorings of planar graphs


Theorem ���� Let G be a planar� ��connected� and bipartite graph� Then there
exists a triangulation of G such that the triangulation graph is ��colorable�

The proof of the Theorem consists of two lemmata
 The �rst one is due to Whit�
ney and can be proved by standard induction arguments� for an elegant proof see ���


Lemma ���� A planar triangulated graph is ��colorable i� all vertices have even
degree�

A triangulation of a planar graph G will be called even if in the triangulated
graph any vertex has even degree


Lemma ���� Let G be a ��connected� bipartite� and planar graph then there
exists an even triangulation of G�
Proof� Since G is 	�connected any face of it is bounded by a cycle
 By adding
chords to facial cycles of length � � we can assume that all faces of G are bounded
by ��cycles only
 Let Q denote the set of these faces and Qv be the set of all faces
with a given vertex v on the boundary
 Consider an auxiliary 	�coloring of G with
colors red and blue
 For any face q � Q we de�ne the main diagonal to be that one
connecting the vertices of q colored red
 Furthermore� we introduce a f�� �g�valued
variable xq which will be set � if we choose the main diagonal in q and � if the other
diagonal is chosen


If v is a vertex of q we de�ne �q�v to be � if v is colored red and � if v is colored
blue
 Obviously� xq��q�v describes the increase of the degree of v by the diagonal of q
chosen with respect to xq
 Here and in the following � denotes the addition modulo
	
 It is easy to see that the existence of the desired triangulation is equivalent to
the condition that the following system of equations has a solution�

deg�v��
M
q�Qv

�xq � �q�v� � � ��v � V �

or� equivalently� M
q�Qv

xq � deg�v��
M
q�Qv

�q�v ��v � V �

The left side of the second system forms the homogeneous part of the system
 It
is well known that such a system has a solution i� the rank of the homogeneous part



�

is equal to the rank of the full system or� equivalently� any linear dependence of rows
in the homogeneous part is also a dependence of rows in the full system
 Taking
into account that over GF �	� the only linear combinations of rows are ��sums it is
su�cient to prove the following

Claim� If for some set of vertices W � V holds
L

v�W

L
q�Qv

xq � � then
M
v�W

�deg�v��
M
q�Qv

�q�v� � ��

Here the symbol � in the �rst sum means that all xq are understood as free
variables� i
e

L
v�W

L
q�Qv

xq has to be zero for any �� ��assignment of the variables

Since a variable xq occurs only in the four equations corresponding to the vertices
of the face q� it follows that for any q � Q the number of vertices of q which are also
in W must be even� i
e
 it is �� 	 or �
 Now we will prove the claim by showing that
the sums �� �

L
v�W deg�v� and �� �

L
v�W

L
q�Qv

�q�v are both zero

�� Since G is planar and 	�connected for any vertex v the degree equals the

cardinality of the set Qv
 Using this fact and changing the order of summation we
get�

�� �
M
v�W

jQvj �
M
v�W

M
q�Qv

� �
M
q�Q

M
v�q�W

� �
M
q�Q

jq 	W j

As we have already mentioned all summands are even numbers and consequently
�� � �


	� We start as above changing the order of summation


�� �
M
v�W

M
q�Qv

�q�v �
M
q�Q

M
v�q�W

�q�v

Since for any q � Q the number jq 	W j is even we can subdivide Q according to
this cardinality into Q�� Q� andQ�
 Furthermore� we subdivide Q� according to the
property whether the two vertices in q 	W lie on a diagonal or on an edge of q
 So
we get�

�� �
M
q�Q�

M
v�q�W

�q�v �
M

q�Qdiag
�

M
v�q�W

�q�v �
M

q�Qedge
�

M
v�q�W

�q�v �
M
q�Q�

M
v�q�W

�q�v

Obviously the �rst sum is zero and can be deleted
 We also delete the sum over
Qdiag

� since any summand has either the form � � � or � � �
 Analogously� the sum
over Q� is zero� but instead of deleting it� we will add it once more to S� and we
obtain�

�� �
M

q�Qedge
�

M
v�q�W

�q�v �
M
q�Q�

M
v�q�W

�q�v �
M
q�Q�

M
v�q�W

�q�v

Consider the subgraph of G induced by W and denote its edge set by EW 
 We will
prove that the number of ��s in the sum above is equal to 	 
 jEW j �or equivalently
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straight walk

Figure �

to the number of directed edges in EW � what will �nish the proof of the claim
 Let
us identify each face q with the directed cycle obtained by running around the region
in counterclockwise order
 Now the sum over Qedge

� can be seen as a representation
of all directed edges �u� v� in EW such that their corresponding face q is in Q�
 Note
that for any such edge the representing summand �q�u � �q�v has the form � � � or
�� �
 Analogously� the �rst �resp
 second� sum over Q� can be seen as a represen�
tation of those directed edges in EW whichs corresponding face is in Q� and which
are directed from red to blue �resp
 from blue to red� vertices
 Here any summand
represents two directed edges
 It is easy to observe that this representation is one�
to�one what completes the proof


For the remaining part of this section we assume that G � �V�E� is 	�connected
and maximal planar bipartite� i
e
 all faces of G are ��cycles
 Obviously� any even
triangulation can be described by a GF �	� vector �aq�q�Q which is a solution of the
linear system of equations in the proof above� and vice versa

Now� our aim is to characterize the subspace of solutions of this system or� equiv�
alently� to characterize all even triangulations of G
 This will be essential for the
e�ciency analysis of the ��coloring algorithm in section 


We consider the dual graph G� � �V �� E�� and identify its vertex set V � with the
set Q of faces of G
 For any vertex q � V � the edges incident with it �in coun�
terclockwise order� correspond to the edges of G which form the facial cycle of q
�traversing it in counterclockwise order�
 Clearly� G� is ��regular
 A maximal path
p in G� with the property that if �q� q�� is an edge on p then its successor is the
next but one of the edges incident with q� in counterclockwise order will be called



�

a straight walk path or shortly an S�path
 The maximality of S�paths implies that
they are closed paths
 However S�path are not necessarily simple cycles since some
q � V � may occur twice on an S�path
 Figure � shows an example of graph with a
nonsimple S�path
 The set of all S�paths will be denoted by S

In the following we introduce an operation which formalizes a walk on an S�path
with  ipping the diagonal in each step
 Let �aq�q�Q be a vector over GF �	� and p
be an S�path
 Then we de�ne �p � �aq�q�Q � �bq�q�Q by�

bq �

�
aq � � if q occurs exactly once on p
aq if q is not on p or if q occurs twice on p

Lemma ���� If the vector �aq�q�Q represents an even triangulation of G and p
is an S�path then the vector �bq�q�Q � �p � �aq�q�Q also represents an even triangu�
lation�
Proof� We consider the operation �p � �aq�q�Q as a walk around p  ipping the di�
agonals in each step
 Let �q� q�� � E� be an edge on p
 The corresponding edge
�u� v� � E is the common edge of the faces q and q�
 Remark that  ipping the
diagonal in q the degree of both u and v will be changed by � or �� as well as it
will be changed once more  ipping the diagonal in q� in the next step
 Thus in the
end the parity of the degrees is unchanged
 Extending this argument to the whole
path p proves the lemma


The following theorem states that  ipping diagonals along S�paths is the only
way to get other even triangulations


Theorem ���� Let �aq�q�Q and �bq�q�Q be two vectors over GF �	� representing
even triangulations of G� Then there is a collection �p�� p�� � � � � pk� of S�paths in G�

such that
�bq�q�Q � �p� � �p� � � � � �pk � �aq�q�Q

�
Proof� Similar as in the proof of Lemma 	
� the problem will be translated into
a system of linear equations� but the combinatorial arguments to show that the
system has a solution will be completely di�erent
 First we de�ne a vector ��q�q�Q �
�aq�bq�q�Q which indicates all faces with di�erent diagonals according to �aq�q�Q and
�bq�q�Q
 Let fyeje � Eg be a set of f�� �g�valued variables and assume that for any
face q the edges on the facial cycle of q are numbered eq�� e

q
�� e

q
�� e

q
� in counterclockwise

order
 It is su�cient to prove that the following system of linear equations has a
solution


yeq� � yeq� � � ��q � Q�

yeq� � yeq� � � ��q � Q�

yeq� � yeq� � �q ��q � Q�

Indeed� the �rst and the second group of equations ensure that in any solution
of the system the ��valued variables represent the �dual� edges of a collection of
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S�paths in G�
 The third group of equations guaranties that the diagonals di�er
exactly for those faces which occur exactly once as a vertex in this collection of
S�paths
 Applying the rank method as in the proof of Lemma 	
� this system has
a solution if and only if the following holds


Claim �� If for some Q�� Q�� Q� � Q we have that

!�Q�� Q�� Q�� ��
M
q�Q�

�yeq� � yeq���
M
q�Q�

�yeq� � yeq���
M
q�Q�

�yeq� � yeq�� � �

then M
q�Q�

�q � ��

Suppose that there are sets Q�� Q�� Q� � Q such that the assumption of the claim
is ful�lled
 Since we consider any ye � yeq

i
in this equation as a free variable� it is

clear that for any e � E the occurence of ye in !�Q�� Q�� Q�� is even
 If Q� � 

there is nothing to prove� so we can assume that Q� �� 

 The following procedure
decomposes !�Q�� Q�� Q�� into smaller sums �each one representing a closed path in
G� but not necessarily an S�path� and possibly a subsum !�Q�

�� Q
�

�� Q
�

�� with Q
�

� � 

�

�
 Set for a new path Q�

� � Q�

� � Q�

� � �

Choose some q � Q� which contributes �yeq� � yeq�� to !�Q�� Q�� Q��

Construct a new path in G� which starts with �eq��

� as the �rst and �eq��
� as

the second edge

Delete q from Q� and insert it into Q�

�


	
 Denote by e� the last edge chosen so far on the current path


�
 If e� is identical with the �rst edge of the current path
then stop the construction of this path �it is closed"� and

if Q� �� 
 then return to �� else stop the decomposition
else goto �


�
 Find some q in Q� � Q� � Q� such that ye �e is the dual of the last edge e��
is one of the two summands contributed by q and denote the other summand
by ye�
 �Remark that such a q exists by the fact that any variable ye occurs in
!�Q�� Q�� Q�� an even number of times
�
Set �e��� to be the next edge on the current path

Delete q from that setQi it was chosen from and insert it into the corresponding
Q�

i
 Goto 	


We remark that one possibly can �nd a degenerate situation in a decomposition
path� namely a loop
 This can happen if some q is in Q� �resp
 Q�� and also in
Q�
 Reaching q on the current path via �eq��

� one can continue choosing �eq��
� and

inserting q to Q�

�
 Then one can choose �eq��
� to be the next edge and insert q to

Q�

�




�

q’

q"

q

Figure ��
Figure 	

Now� �eq��
� represents a loop at q instead of an edge in G�
 If Q�

�� Q
�

� and Q�

� are
subsets of Q�� Q� and Q� corresponding to a decomposition path then they ful�l the
assumptions of the claim� i
e
 we have

!�Q�

�� Q
�

�� Q
�

�� �
M
q�Q�

�

�yeq� � yeq�� �
M
q�Q�

�

�yeq� � yeq���
M
q�Q�

�

�yeq� � yeq�� � �

Obviously� it is su�cient to prove the claim for decomposition paths
 This will
be done in two steps� First for the case that the decomposition path is simple� i
e

Q�

�� Q
�

� and Q�

� are pairwise disjoint� and then for the general case


Claim �� If Q�

�� Q
�

� and Q�

� are pairwise disjoint subsets of Q�� Q� and Q� cor�
responding to a decomposition path p then

L
q�Q�

�q � ��

Let us return to the given even triangulations of G represented by the vectors
�aq�q�Q and �bq�q�Q
 We denote by Ga �resp
 Gb� the triangulation graphs and by
dega �resp
 degb� the degrees in these graphs
 Furthermore� let Vint�p� be the set of
vertices in G which lie on the left side of the cycle p in G� �see Fig
	� the fat points�

Since both triangulations are even we have

� ��
M

v�Vint	p


�dega�v�� degb�v�� � ��

We will prove the second claim by showing that
L

q�Q�
�q is equal to the sum �


To do this we de�ne Q� to be the sum Q�

� � Q�

� � Q�

� and Qint�p� to be the set of
vertices of the dual graph G� �i
e
 faces of G� which lie on the left side of the cy�
cle p
 Now� � will be computed once more by counting for all edges of Ga and Gb
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q                      q’ q                      q’

q           q’ q                       q’

(a)                                                              (b)

  (c)                                                                 (d)

their contributions to �
 Each such edge is either an edge of the original graph G or a

Figure �

triangulation diagonal

Let e be an edge of G then it has a copy ea in Ga as well as a copy eb in Gb
 Depen�
dent on whether e is incident to �� � or 	 vertices from Vint�p� both copies together
contribute �� 	 or � to �
 Since we are counting modulo 	 this shows that � depends
on the triangulation diagonals only

For any q � Q we denote by da �resp
 db� the diagonal of q in Ga �resp
 Gb�
 Then�

it is straightforward that for any q �� Q� �Qint�p� neither da nor db contribute to �

If q � Qint�p� then each of the diagonals contributes 	 to � because both incident
vertices are in Vint�p�
 Hence � depends on triangulation diagonals of faces in Q�

only
 If q � Q�

� �Q�

� then it is a part of a straight walk segment of p
 Exploring the
assumption about the simplicity of p� the face q contains exactly two vertices from
Vint�p� which lie on an edge of G �see Fig
	 for illustration�
 Hence any diagonal is
incident to exactly one of these two vertices
 This implies that da and db together
contribute 	 to �
 Thus� � depends only on the triangulation diagonals of faces
q � Q�

�
 We note that any such face contains either exactly one �q� and q�� in Fig
	�
or exactly three �q in Fig
	� vertices from Vint�p�
 If da and db coincide �i� �q � ��
they clearly contribute together an even number to �
 Otherwise� if �q � � one of
them contributes an odd and the other one an even number to �
 This proves our
Claim 	 because we have� M

q�Q�

�

�q � � � �



��

q

q q

q

q q

Remark� In fact� this proves that for any simple closed path p in G� the number of
faces q � Q with �q � � and containing an odd number of vertices from Vint�p� is even


Figure �

Claim �� If Q�

�� Q
�

� and Q�

� are subsets of Q�� Q� and Q� corresponding to a
decomposition path p in G� then

L
q�Q�

�q � ��

If there is a q which occurs multiply on p then it must be contained in at least
two of the Qi
 Decomposing p into smaller paths� we will reduce such multiplicities
�except those ones caused by loops� step by step

Reduction	type �� q � Q�

� 	Q�

�

If �eq��
� does not represent a loop then it is used twice in p
 Denote by q� the neighbor

of q reached by �eq��
�
 There are two possible connection schemes shown in Fig
�a

and �c
 The �rst one can be resolved easily
 Exchanging the entries in q� �see Fig
�b�
we decompose p into two paths which can be processed independently

The situation sketched in Fig
�c will be reduced to the degenerate one by cutting
both edges between q and q� and replacing them by two loops �see Fig
�d�
 We
note that all subpaths constructed so far one could obtain also immediately from
the decomposition procedure making suitable choices in step � and step �

Reduction	type �� q � Q�

� 	Q�

� � analogiously to Case �

We will apply reductions of type � and 	 to p or respectively to the subpaths obtained
from p as long as such multiplicities appear in the nondegenerate form

Reduction	type �� q � Q�

� 	Q�

�

In this situation we split p as indicated in Fig
�
 Unfortunately� the resulting paths
are not decomposition paths since the turns in q do not correspond to a summand
of
L

Q�

��Q
�

��Q
�

�

 We apply type � reductions as long as possible and denote by Q�� the

set of all q to which reductions of this type were applied
 The result of the whole
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procedure is a decomposition of p in subpaths which are almost simple �loops are
possible�
 Ignoring all loops we get a family of simple paths fp�� p�� � � � � pkg to which
the analysis of the remark on page � can be applied
 Any q � Q�� occurs in exactly
two of these paths
 Since if for any path pj a faces q contains an odd number of
vertices from Vint�pj� then either q � Q�

� or q is one of the two copies of some q � Q��

we �nally get

� �
M
q�Q�

�

�q � 	 

M
q�Q��

�q �
M
q�Q�

�

�q

� A Graph Model for the Prison Yard Problem

The idea for our graph model is based on the following nice and simple proof of the
classical Art Gallery Theorem due to S
 Fisk �	�
 Consider any triangulation graph
of a given simple polygon
 One knows that it is ��colorable
 Clearly� any triangle
contains each color and choosing guard position corresponding to the smallest color
class one can watch the polygon using � �n�� guards

J
 Kahn� M
 Klawe� and D
 Kleitmann � ���� applied a similar idea to rectilinear poly�
gons
 They proved that any rectilinear polygon �possibly with holes� has a convex
quadrilateralization� i
e
 a decomposition into convex ��gons �called quadrilaterals�
using only diagonals �here called chords� of the polygon
 Moreover it is easy to see
that for simple rectilinear polygons the graph consisting of all polygon edges� all
chords� and both inner diagonals of all quadrilaterals is ��colorable
 Hence� they
obtained an

�
n
�

�
�upper bound for the rectilinear Art Gallery Problem
 However�

the ��colorability of this graph does not hold starting with polygons having holes

But now Theorem 	
� states that one can select one diagonal per quadrilateral such
that the graph formed by all polygon edges� all chords� and the selected diagonals
is ��colorable
 So we get at least an

�
n
�

�
�upper bound on the vertex guard number

for the Art Gallery Problem in the presence of holes
 Below we introduce a graph
model which allows us to apply this coloring result also to Prison�type Problems

Given an n�sided rectilinear polygon P �w
l
o
g
 in general position� see ���� we con�
struct its orthoconvex hull OConv�P �� i
e
 the smallest point set containing P and
such that its intersection with any horizontal or vertical line is convex �see Fig
�a�

This partitions the exterior region of P into the exterior region of OConv�P � and
those connected components of OConv�P � n P which are di�erent from the interior
region of P 
 They will be called pockets
 Since all pockets are bounded by rectilin�
ear polygons there is a quadrilateralization of them as well as of the interior of P 

We have to pay for this construction by some additional vertices �u in our example�

However� using ideas from �
� one can shift these vertices to neighboring polygon
corners on the boundary of OConv�P � in such a way that the resulting polygon



�	

u

(a)                                               (b)                                                  (c)

OConv��P � is also orthoconvex and the quadrilateralizability of the pockets is not
destroyed �see Fig
�a� the dashed line�


Fig
�a Fig
�b Fig
�c
Now we have to cover the exterior region of OConv��P � with convex sets
 Remark
that OConv��P � is bounded by four extremal edges �northernmost� westernmost�
southernmost� easternmost� which are cyclically connected by monotone staircases

So the exterior of OConv��P � is covered by four halfplanes de�ned by the extremal
edges and the cones de�ned by all concave vertices on the staircases


Let G�P � be the planar graph �Fig
�b� over the polygon vertices the edge set
of which consists of all polygon edges� all quadrilateralization chords� and all pairs
of consecutive convex corners on boundary stairs of OConv��P �
 We say that a
subset C of the vertex set dominates G�P � if any quadrilateral� any triangle over a
staircase� and any of the four extremal edges contains at least one vertex from C

The Prison Yard Problem in this context now reads� Find a small dominating set
for G�P �


Since we want to apply Theorem 	
�
 it is neccessary to modify G�P � in such
a way that it becomes bipartite� i
e
 all convex regions �also the exterior cones and
halfplanes"� which have to be dominated are represented by convex quadrilater�
als
 To do this we need some additional vertices
 We start as before constructing
OConv��P �
 Then we use � new vertices to obtain a copy of all extremal edges as
indicated in Fig
�c
 Finally� for any monotone boundary staircase of OConv��P �
which contains more than one convex vertex �we do not count the vertices on the
extremal edges� we copy every second one of them
 Now it is possible to replace
any boundary triangle in G�P � by a quadrilateral in the new graph G��P �� comp

Fig
�c
 The number of additional vertices is bounded by

�
n���
�

�
� � and hence the

number of vertices of G��P � is bounded by
�
	n
�

�
��
 Obviously� if a new vertex will

be chosen as a guard position this guard can be placed onto the original polygon
vertex
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In order to demonstrate the power of Theorem 	
�
 we introduce the Prison
Problem which is a generalization of the Prison Yard Problem as well as of the
Art Gallery Problem for polygons with holes
 Let a rectilinear polygon P with h
rectilinear holes P�� � � � � Ph be given� having in total n vertices
 We have to select
a set of vertices such that any point in the plane can be watched from one of
the selected vertices
 A graph G��P�P�� � � � � Ph� representing this problem can be
constructed as follows�
�� quadrilateralize the holes P�� � � � � Ph�
	� quadrilateralize the interior of P minus the holes�
�� proceed with the exterior of P as in the construction of G��P �

Clearly� P has at most n� �h vertices and hence the number of additional vertices
for the construction of G��P � is bounded by ��

�
n��h���

�

�

 Thus� G��P�P�� � � � � Ph�

has at most
�
	n��h

�

�
� � vertices


Finally� we generalize the concept of graph coloring to the notion of labellings and
multicolorings
 Suppose� we have given k di�erent colors
 Then a function which
labels any vertex of a graph G�P � with a certain set of colored pebbles will be called
a k�labelling
 It is a k�multicoloring if adjacent vertices are labelled with disjoint
color sets
 A labelling is called l�uniform if the pebble sets have cardinality l for
all vertices
 Clearly� any k�coloring is a ��uniform k�multicoloring
 A multicoloring
is called dominating if for any color the set of those vertices labelled with a pebble
of this color dominates G�P �
 Hence� a dominating k�multicoloring of G�P � which

uses in total f�n� pebbles implies the existence of an
j
f�n�
k

k
solution of the Prison

Yard Problem for P 


� General Upper Bounds

We start with a straightforward application of Theorem 	
� to the classical rectilin�
ear Art Gallery Problem
 Consider a rectilinear polygon P with h holes and a total
of n vertices
 Both the polygon and the holes can be quadrilateralized� so we have
the following


Corollary ����
�
n
�

�
vertex guards are su	cient to solve the Art Gallery Problem

for rectilinear polygons with holes�

Observe� that the guards watch the interior of the holes� too
 Further let us
remark that this improves the prevously known �n���bound which was obtained by
converting a polygon with holes into a ��connected one by adding h edges �	h new
vertices� and then applying the n���result of ���
 However� there is some evidence
that the 	n�
�lower bound� see ���� for the vertex guard number is tight


Conjecture ���� For any quadrilateralized rectilinear polygon possibly with holes
there is a 	�uniform dominating 
�coloring�



��

guard positions

a

b
c

d
e

f
g

h

(a)                                                                       (b)

The second application of Theorem 	
� deals with the weak version of the recti�
linear Prison Yard Problem where point guards are allowed� see ���
 Here the spiral
polygon gives an �

�
n
�

�
����lower bound
 However� the best upper bound up to now

has been the same as for the vertex guard version�
�
�n
�


�
� �


Fig
�a� Dorward�s example Fig
�b� �n��� guards are necessary

Corollary ���� For any rectilinear polygon 
possibly with holes� P on n vertices�
n��
�

�
point guards are su	cient to solve the Prison Problem�

Proof� Let R be a rectangle enclosing P 
 We consider R together with P as a
polygon P � having P as a hole
 After quadrilateralizing P � as well as the original P
the resultig graph ful�lls the assumptions of Theorem 	
� and we can choose guard
positions corresponding to the minimal color class of the dominating ��coloring


Observe� that one gets at most two point guards the other guards can be chosen
to sit in vertices


Corollary ���� For any rectilinear polygon on n vertices with h holes
�
	n��h
��

�
�	

vertex guards are su	cient to solve the Prison Problem�
Proof� Apply Theorem 	
� to the graph G��P � de�ned in Section �
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α − partner

guard

α −

β γ − −

guard

guard

type2

type1

� Lower Bounds

Any simple convex polygon requires
�
n
�

�
vertex guards to solve the Prison Yard

Problem
 What are candidates for lower bound examples in the rectilinear world#
Figure �a shows an example of a rectilinear polygon due to Dorward who claimed
that it required

�
n
�

�
guards� see ����
 Continuing� however� periodically the guarding

positions indicated in Fig
�a one sees that
�
�n
��

�
� 	 watchmen are su�cient
 Let P�

be the simplest staircase shown in Fig
�b


Proposition ���� The prison yard P� requires
�
�n
��

�
vertex guards�

Fig

� �n��� vertex guards are necessary

Proof� Consider a segment S on �� vertices as indicated in the �gure
 We need at
least two guards for the triangles abc� cde� fgh 
 But there are also � inner corridors
in S to be watched what is impossible with one guard sitting in c and only one more
in f �g� or h
 Finally� guards placed in disjoint segments cannot help each other
watching these triangles and the inner corridors


We will show in the next section that
�
�n
��

�
� 	 vertex guards are also su�cient for

any strictly monotone rectilinear polygon
 Surprisingly� there are other monotone
polygons which require even more guards
 Let P� be the pyramid in Fig


 Assume
that the edge lengths are chosen in such a way that to watch an inner quadrilateral
one has to choose one of its vertices as guard position
 Again� as indicated �n���
guards are su�cient �up to an additive constant� and we show that we need as many


Proposition ���� The prison yard P� requires
�
	n���
�


�
vertex guards�

Proof� We distinguish � types of guards� comp
Fig


 A guard stationed in a
concave corner such that he can watch four quadrilaterals is called an 	�guard

We remark that any such guard must have at least one $partner� on the other



��

1 25

3 42

1 5

32 5

4

convex diagonal

3

4

1 5

side watching the opposite triangle and we choose one of them and form an 	�
pair
 An 	�guard pair watches together � quadrilaterals� 	 type��triangles� and �
type	�triangle
 
� resp
��guards are sitting in concave �convex� corners and they
are not part of 	�pairs
 They watch each 	 �resp
�� quadrilaterals � � �resp
��
type��triangle� and ��resp
�� type	�triangle
 Since we have a total of �n � 	��	
quadrilaterals and �n � 	��� triangles of each type we conclude for any guarding
set consisting of g � 	a � b � c guards of 	�� 
�� and ��type respectively that�
�a � 	b � c � �n � 	��	� 	a � c � �n � 	���� a � b � c � �n � 	���
 Adding
to the �rst inequality the second one and then the third multiplied by 	 we get
�g � ��n � 	���
 But this implies the lower bound


Fig
�� ��multicoloring a strictly monotone polygon

� Special Upper Bounds

In this section we are going to show that the lower bounds derived for strictly
monotone and for orthoconvex rectilinear polygons are tight up to an additive con�
stant
 We use the idea from Section 	 to construct a dominating set of vertices in
the graph G�P � by a multicoloring


Theorem 
���
�
�n
��

�
� 	 guards are su	cient to solve the Prison Yard Problem

for strictly monotone rectilinear polygons�
Proof� Let P denote such a polygon� say with north�west orientation �comp
 Fig
��

First we remark that the quadrilateralization of P is unique and its dual is a path
W � q�� q�� ���q�n�����% any chord of the quadrilateralization connects a convex with a
concave vertex and any quadrilateral has a diagonal connecting two convex vertices
�called convex diagonal�


Let �di�� i � �� 	� ���n� � be the following sequence of polygon edges� diagonals�
and chords obtained by traversing W 
 We start with d� the bottom polygon edge
in q� followed by the convex diagonal of q�� di is the common edge of q�i����� and
q�i����� for an odd � � i otherwise it is the convex diagonal of qi��
 dn�� is the top
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148

edge of P 
 The di�s induce a canonical numbering of the vertices of P 
 Starting with
d� each di encounters exactly one new vertex� say vi��
 Let Q

i denote the polygon
generated by the �rst i quadrilaterals

We show that there is a greedy algorithm which following the path W constructs a
dominating ��multicoloring of G�P � with the following properties�

� both the north�westernmost vertex vn and the south�easternmost vertex v�
are labelled by � pebbles%

� any other convex �resp
 concave� vertex is colored by 	 �resp
�� pebbles


Fig
�� ��multicoloring the lower bound example

While building this multicoloring we maintain the following invariant� Each con�
vex diagonal contains exactly � colors� i
e
 there is one common color on both sides
of the diagonal
 We start as follows
 Color the left endpoint v� of the bottom edge
d� by 	 colors the right vertex v� by one pebble with a third color
 Complete the
multicoloring of q� by repeating one color from v�� say c� in v� together with a pebble
having the fourth color
 One pebble with the �fth color is put on v�

Assume that we have already colored correctly Qi
 The next vertex to be colored is
v�i��
 It closes a triangle already labelled by three di�erent colors� hence it gets the
remaining two colors
 v�i�� is colored by the �fth color not used before in qi��

Eventually� to get a dominating multicoloring we have to put on vn the remaining �
colors to dominate both the northern and western extremal edge of P � and similarly
� more pebbles on v�

Why does this scheme work correctly#
Let ��j� denote the set of colors put on vertex j
 Assuming qi being colored cor�
rectly we have for its convex diagonal �vk� v�i��� that j��k� 	 ��	i � ��j � �
 Now
the algorithm colors v�i�� by 	 pebbles such that j��	i� �� � ��	i� 	� � ��l�j � ��
where vl is that vertex of the i�th convex diagonal which is in a common exterior
triangle with v�i��
 But then for the other vertex vm of the i�th diagonal follows



��

that j��	i � �� 	 ��m�j � � � so the invariant holds for qi�� � and we can indeed
color v�i�� by the �fth color not being element of the set ��	i�	����	i������m�
which has cardinality �


In total we use 	n��� � n��
� � � � �n���

� pebbles
 Consequently� there exists a
dominating color class of size � ��n���� 	


In a similar way we prove the following statement


Theorem 
���
�
	n
�


�
� 	 guards are always su	cient to solve the Prison Yard

Problem for orthoconvex rectilinear polygons�
Proof� We outline the proof for pyramids
 The result follows the for an orthocon�
vex polygon P by decomposing it into at most 	 pyramids and � strictly monotone
polygon
 For the strictly monotone part of P we extend the ��multicoloring con�
structed in Thm
 �
� to an ��multicoloring by adding an independent dominating
��multicoloring
 Using Thm
 	
� this ��multicoloring can be chosen to be ��uniform
for all vertices not on extremal edges

Recall that a horizontal pyramid is a rectilinear polygon with a horizontal edge �bot�
tom edge� the length of which equals the sum of the lengths of all other horizontal
edges
 For such a pyramid P we consider again the dual path W � q�� q�� ���� q�n�����
of its unique quadrilateralization
 We construct a dominating ��multicoloring of
G�P � with the following properties�

� one of the bottom edge vertices has � pebbles the other � pebbles%

� one of the top edge vertices has � pebbles the other � pebbles%

� any other convex vertex has � pebbles� any concave one gets 	 pebbles%

Again� the existence of such a dominating ��multicoloring can be shown using a still
simple but slightly more complicated greedy algorithm along W 
 Let d� be the bot�
tom edge and di for � � i 
 �n�	��	 denote the common edge of the quadrilaterals
qi and qi��
 We duplicate both bottom edge vertices and introduce on both sides
dummy �zero length� horizontal edges
 Now we are in a situation where on both
sides of any di� i � � there are 	 horizontal edges
 Let &di denote the path consisting
of these 	 horizontal edges with di in the middle
 &di starts and ends with a convex
vertex and has 	 concave middle vertices
 The invariant we maintain during the
algorithm is the following�
Denoting the colors by � thru � the color pattern on &di is modulo a permutation of
the form �	� � �� � �� � 	�
� hence one color is missing

First initialize the coloring on &d� using this pattern
 Having colored the �rst i quadri�
laterals� &di�� has 	 new vertices� one concave and the other convex
 The convex one
closes an exterior triangle which has already � colors because of the color pattern of
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&di
 So it gets the remaining � colors
 Now it is not hard to see that qi�� has already
got � di�erent colors� so we can put the remaining 	 on the new concave vertex of
&di�� which then also ful�lls the invariant condition

Eventually� after having dominated the 	 top exterior triangles on both sides we
have to put � more pebbles to the top edge and � more pebble to &d�
 We end up
with a dominating ��multicoloring providing the claimed bound


Let us close this section by a remark on the constructed multicolorings
 It seems to
be curious to use � or � dominating color classes when constructing � dominating
vertex set
 The point here is that in our multicoloring all convex �concave� vertices
not on extremal edges get the same number of pebbles� so it is trivial to count the
pebbles
 Recall that the number of convex �concave� vertices does not depend on
the special shape of the polygon
 Of course� one can try to construct directly� say�
in a greedy way a dominating set
 However� even in such a regular example like in
Fig
� it would be hard to give a good estimate of its size


� Related Open Problems and Algorithmic As	

pects

Let us add two more open problems to those mentioned in Section �
 First� we
start with a remark concerning Theorem 	
�
 It is essential for the result proved
there that all inner faces of the graph G are ��cycles
 The result is not true if like
in the graph G�P � in Section � there are also inner triangles
 So one needs some
new ideas to prove for example an

�
n
�

�
�upper bound for the rectilinear Prison Yard

Problem
 We think that replacing the multicoloring argument used in Theorem �
	
by an ��labelling one can show that the following conjecture is correct


Conjecture ���� There is an absolute constant c such that any rectilinear prison
yard can be watched by �n��� � c vertex guards�

Recall� that in a k�labelled graph it is possible for adjacent vertices to be labelled
by pebbles of the same color
 Further� it would be interesting to �nd applications
of Theorem 	
� or of some multicoloring or labelling to non�rectilinear art gallery
type problems� compare with ���� ����� and Chapter �
	 in ���


Below we are going to analyze several algorithmic aspects of our results
 First�
let us mention that all upper bound results proved here can be converted into e��
cient algorithms
 Since one can quadrilateralize simple rectilinear polygons in linear
time we can guard orthoconvex prison yards also in linear time using the greedy
algorithm from Thm
�
	




	�

A much more interesting algorithmic problem is how to �nd the ��coloring of The�
orem 	
� more e�ciently than by using a general �superquadratic� method for solv�
ing linear systems of equations
 Subsequently we describe a quadratic upper bound
which clearly implies the same time bound for the algorithmic problems in �
�� �
��
and �
� 

Let us outline the idea
 The main point� it is possible to �nd an e�cient substitution
scheme for solving the system of linear equations exploring the facts that the equa�
tions are over GF �	� and that the underlying graph is planar
 First� we iteratively
use simple cycle separators from ��� to obtain a face numbering for which at any
moment the boundary �which can be disconnected� between already numbered faces
and the remaining faces has total length at most O�

p
n�
 Then one shows that there

is a substitution scheme based on this numbering with the following properties�

� The length of any substitution is bounded by O�
p
n�%

� Any substitution is applied to at most O�
p
n� equations �which correspond to

boundary points only�


To go into the details let us start with quoting a result from ���


Theorem ���� If G is an embedded ��connected planar graph� with an assign�
ment of weights to the vertices which sums to �� and no face has weight � 	�� then

there exists a simple cycle weighted separator of size 	
q
	
�
d
�

�
n� where d is the max�

imum face size� Further� this cycle is constructible in linear time�

Recall� a simple cycle C of G is a weighted separator if both the weight of the
interior of C and the weigth of the exterior is 
 	��
 In our situation we use uni�
formly distributed weights and d � �
 Our goal is to de�ne a suitable enumeration
of the face set Q of G

We apply the Theorem to G and the cycle separator de�nes a partition of Q into
two subsets Q�� Q�
 Now consider the subgraphs G�

�� G
�

� induced by these sets in the
dual graph G� and de�ne two new graphs by setting G� � �G�

��
� and G� � �G�

��
�


Observe� that the new graphs are planar and ful�l the assumptions of the Theorem

Especially the maximum face size does not increase and the elements of Qj are in
��� correspondence with the faces of Gj for j � �� 	
 We apply recursively this
procedure to the new graphs until we eventually end up with graphs of size O�

p
n�


This way we obtain a partition tree of Q with depth O�log n�
 The set of its leaves
de�nes a partition of Q and we enumerate the faces according to the left�to�right
order of the leaves and an arbitrary enumeration within each leaf
 Let Qi be the set
of the �rst i faces in the enumeration and Gi the graph de�ned by the edges and
vertices of Qi
 Then a simple calculation shows that for all i the boundary length
of the graph Gi is bounded by O�

p
n�
 Here the boundary length is de�ned as the

number of edges belonging both to a quadrilateral qk with k � i and some ql with
l � i

Having such an enumeration q�� q�� ���� qm �with m � n�	 � �� of the quadrilaterals
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�xed we can describe the algorithm and the underlying substitution scheme as fol�
lows


The Algorithm�

Data Structures�First we store attributes associated with the variables xq in
an array of length m according to the �xed enumeration
 Such an attribute is from
the set ffree�
���substg
 Here free means that up to a given stage of the algorithm
there has been no restriction to the value of the variable in a �nal solution of the
system
 The attributes � and � describe the situation that the algorithm determines
at a given stage that in each solution of the system a variable will have value � resp

�
 Finally� subst stands for the fact that the variable has been substituted at some
moment by the sum of other variables
 Initially all attributes are set free

Furthermore we need an m � �m � ���array to store for any variable which is not
free either its value �in the last column� or its substitution formula
 A substitution
formula is a ��sum of some variables and a last summand which is � or �
 The set of
summands which form a substitution formula are encoded by a ����vector of length
m� � in a row of the array
 In an third array we store attributes of vertices� these
are fpassive� active� deadg
 Let Qi denote the set of the �rst i quadrilaterals
 Then
passive �resp
 dead� means for a vertex v at stage i that Qi 	Qv � 
 resp
Qv � Qi�
otherwise the vertex is living
 Initially all vertices are passive% at some stage each
vertex starts to be living� and eventually all are dead

We have an ��m�� �m����array to store in its rows the �current potential�fq�v of
all the corners
 A corner is just a pair �q� v�� where v is a vertex of q
 The current
potential of a corner is a ��sum of some variables xp and a last summand which is
� or �
 The initial potential of any corner �q� v� is �

Finally� in a �fth n � �m� ���array we similarly maintain the potentials fv of the
vertices� initially set to be deg�v�


Stage � � Construction of a Substitution Scheme� The algorithm works
in a greedy way
 After the described initialization step we add one quadrilateral
after the other and �possibly� manipulate during each step the potentials of the
newly added corners as well as the potentials of some living vertices
 Recall that all
living vertices are on the boundary
 We maintain during the algorithm the following
invariant�
If v�w are neighboring vertices in some q � Qi then for the current potentials we
have fq�v � fq�w � �
 Moreover� for each dead vertex v holds fv � ��
Assume we have already processed i quadrilaterals and our invariant holds
 Let q
be the �i� ��st quadrilateral

Vertices of q which were passive become living
 Consider the set of �at most� � living
vertices which become dead by adding q to Qi
 If this set is empty we update each
corner potentials by setting fq�v � xq � �q�v and then we add this fq�v to fv

If there is exactly one new dead vertex v we set fq�v �� fv and fq�w �� fv�� for each
of the 	 neighboring corners in q and� consequently� fq�v for the fourth vertex in q



		

opposite to v
 We update the vertex potentials by adding the corresponding corner
potential
 Observe� that for the dead vertex v we have then fv � �
 Finally� we give
the label subst to xq and insert the formula xq � fq�v� �q�v in the substitution array

What happens if we have more than � new dead vertices# In this case we �rst
choose an arbitrary vertex of this set� say v� and proceed as before
 This way we
can garuantee that after the updating fv � �
 But what about the other dead ver�
tices� say some w in q
 Its corner potential in q is either fv or fv � �
 We want that
fw �� fq�w � fw � �
 There are 	 trivial cases� namely that this holds automatically
or if we can set some variable � or � to ful�l this condition
 Otherwise� we have to
choose a free variable� say xp� occuring in fw and substitute it by fw � xp �hence
the xp�s cancel out�
 We insert this substitution of xp in the substitution array and
apply it in all fz of still living vertices
 �Remark� We do not �"� substitute xp in the
dead vertices
� This procedure is applied to all of the remaining dead vertices of q


Stage � � Computation of the Solution� After the �rst stage of the algorithm
it remains to denest the substitution formulae
 This problem can be represented by
a directed graph with m nodes� each one corresponding to a variable
 If a variable
xq has the attribute subst then we draw arcs from its node to all nodes of variables
which occur in the substitution formula of xq
 By the construction of the substi�
tution scheme �substitutions are applied to the potential of all living vertices� this
graph is acyclic and all sinks correspond to variables with the attributes free� 
 or
�
 We remark that for any evaluation of the free variables we get one solution of
the system
 For simplicity we set all free variables to be 

 Now all sinks in the
acyclic graph are labelled 
 or �
 We choose any node such that all its sucessors are
sinks and evaluate the corresponding variable according to its substitution formula

Deleting all arcs drawn from this node it becomes a sink
 We repeat this procedure
until all variables are evaluated
 Clearly� one can modify this method without eval�
uating the free variables in advance


Analysis of the Running Time� Since one can �nd cyclic separators in linear
time� we can compute the enumeration of the faces in O�nlogn� time

For the �rst stage of the algorithm we will show that any step �adding the �i���st
face� can be done in linear time
 Here� the only critical point is the application
of a substituiton to the potentials of all living vertices
 Clearly� the number of
applications is bounded by O�

p
n� whereas� the cost of one application is equal to

the number of variables occuring in the substitution formula
 We note that these
variables come from the potential of the new dead vertex
 Hence� it is su�cient to
show that after i�th step of the algorithm the total set of variables occuring in the
potentials of living vertices is bounded by O�

p
n�
 Let us denote this set by X


Recall that the total boundary length of the current graph Gi is bounded by O�
p
n�


The boundary can be disconnected� but any component will be an even cycle because
Gi is a subgraph of a bipartite graph
 Obviousely� one can add edges to Gi �inside
the boundary faces� in such a way that the resulting graph H is 	�connected and
maximal planar bipartite
 Thus� we can apply our algorithm also to H� using the
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same enumeration up to the i�th face
 Since Gi contains already all vertices of
H� the number of vertices which get dead in the further work of the algorithm is
bounded by O�

p
n�
 Consequently� if Y denotes the set of variables which get label

subst � 
 or � after the i�th step of the algorithm then its cardinality is also bounded
by O�

p
n�
 Let Z be the set of variables labelled free after �nishing the �rst stage

of the algorithm �on H�
 Then we have

X � Y � �X 	 Z��

It remains to show that the number of variables in X 	 Z is bounded by O�
p
n�


Since a free variable xq can generate di�erent solutions of the system it corresponds
to a collection of S�paths by Theorem 	
�� i
e
 xq is in the corner potential of those
faces whichs occurence on S�paths of the collection is odd
 Moreover� if such a
variable is also in X then one of its S�paths crosses the boundary of Gi
 Otherwise
for any boundary vertex v the number of faces in Qi which touch v and contain xq
in their corner potential would be even and this would be a contradiction to xq � X

Finally� we remark that the number of S�paths crossing the boundary of Gi is not
greater than one half of the boundary length
 This implies the required bound for
jX 	 Zj and hence the number of variables in any substitution formula is bounded
by O�

p
n�
 We conclude that the running time of the �rst stage of the algorithm is

bounded by O�n��
It is straightforward that the second stage of the algorithm can be executed in O�n��
time
 Taking into account the fact that any substitution formula is not longer than
O�
p
n� one can solve this stage in O�n���� time


Therefore the total running time of our algorithm is O�n��
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