
Image Segmentation by Uniform Color Clustering
Approach and Benchmark Results

Gerald Friedland, Kristian Jantz, Lars Knipping, Raul Rojas

Institut für Informatik, Freie Universität Berlin
[fland|jantz|knipping|rojas]@inf.fu-berlin.de

Abstract. The following article presents an approach for interactive foreground extraction
in still images. The presented approach has been derived from color signatures, a tech-
nique originated from image retrieval. The article explains the algorithm and presents some
benchmark results to show the improvements in speed and accuracy compared to state-of-
the-art solutions. The article also describes how the algorithm can easily be adapted for
video segmentation.

1 Introduction

The algorithm presented here has been developed for the extraction of an instructor teach-
ing in front of an electronic chalkboard. In the E-Chalk system, used for recording and trans-
mitting lectures over the Internet, the board content is transmitted as vector graphics, pro-
ducing thus a high quality image, while the video of the extracted lecturer is sent separately
[RFKT04,FKST04,FKT04]. It is then pasted onto the board image. It is possible to dim the lec-
turer from opaque to semitransparent, or even transparent. This makes it possible to transmit
the mimic and gestures of the lecturer in relation to the board without using either too much
bandwidth or having blurry artefacts around the board strokes produced by state-of-the-art video
compression. Figure 1 shows an example of such a video.

Video segmentation requires speed more than accuracy. In still image segmentation, accuracy
becomes the higher priority. This article shows that our algorithm for the segmentation of the
instructor is general enough to be used also for foreground extraction in still images. Section 2
first introduces related work. Section 3 then explains the algorithm and how it is used. We bench-
mark our results and compare them to the GrabCut underlying algorithm presented in [RKB04a].
Section 5 shortly summarizes the video segmentation approach before, in Section 6, a conclusion
is drawn and possible future work is presented.

2 Related Work

A nicely written summary and discussion of most of several foreground extraction methods can
be found in [RKB04b]. In the following, some approaches for still image segmentation are only
briefly described. The most popular tool to extract foreground is Magic Wand [Ado02]. Magic
Wand starts with a small user-specified region. The region grows through connected pixels such
that all selected pixels fall within some adjustable tolerance of the color statistics of the specified
region. The methods works good for images that contain very few color, such as comic strips.
For natural images, finding the correct tolerance threshold is often cumbersome. A satisfactory
segmentation is seldom achieved. Knockout is a proprietary plugin for Photoshop [Cor02] that is,
like the approach presented here, driven from a trimap (see Section 3.1). According to [CYYR01]
the results are sometimes similar, sometimes of less quality than Bayes matting. Bayes Matting also
gets a trimap as input and tries to compute alpha values over the unknown region. A disadvantage
is that the user must specify a lot of shape information for the algorithm to work properly. Grabcut
[RKB04b] relies on Graph Cut [BJ01] and [RKB04a]. The idea is to build a graph where each pixel
is a node with outgoing edges to each of the 8 pixel’s neighbors. The edges are weighted such that a
max-flow/min-cut problem solves the segmentation. The user only provides the region of interest.

Fig. 1. A video of the lecturer is recorded (above left), the instructor is segmented (above right)
and superimposed semi-transparently on the vector based board data (below left) and replayed
together using MPEG 4 (below right).

Grabcut also includes manual post processing tools called background brush, foreground brush,
and matting brush to smooth borders or re-edit classification errors manually. The disadvantage is
its complicated data structure that requires high computational effort. At the time of writing this
article, there was no program available to test the performance of the tool, nor are there sufficient
information to compare any benchmark results. In this article only automatic classification without
manual post-editing is considered. Benchmark comparison is done using the results in [RKB04a].

3 The Algorithm

The algorithm described here is to solve the task of foreground extraction in a given image. We
define foreground to be a single, spatially connected object that is of interest to the user. The rest
of the image is considered background. The user has to specify at least a superset of the foreground
and the algorithm is to return an image that does not contain any background.

3.1 Input

The input for the algorithm consists of the actual image three user specified regions: Known Back-
ground, unknown region, and known foreground. The user specified regions are called a trimap.
The known foreground is optional, but eases segmentation of tricky images. To provide this infor-
mation, the user makes several selections with the mouse. The outer region of the first selected
areas specify the known background while the inner region define a superset of the foreground,
i.e. the unknown region. Using additional selections, the user may specify one or more known
foreground regions. Figure 2 shows an example of the user interaction and the resulting trimap.
Internally, the trimap is mapped into a confidence matrix, where each element of the matrix cor-
respondents to a pixel in the image. The values of the elements lie in the interval [0, 1] where a
value of 0 specifies known background, a value of 0.5 specifies unknown, and a value of 1 specifies

known foreground. Any other value expresses uncertainty with a certain tendency towards one
limit or the other.

Fig. 2. The original image, a user provided rectangular selection (red: region of interest, green:
known foreground), and the corresponding trimap (black: known background, gray: unknown,
white: known foreground).

3.2 Conversion to CIELAB

The first step of the algorithm is to convert the entire image in CIELAB color space. This color
space was explicitely designed as a perceptually uniform color space. It is based on the opponent-
colors theory of color vision, which says that two colors cannot be both green and red at the same
time, nor blue and yellow at the same time. As a result, single values can be used to describe
the red/green and the yellow/blue attributes. When a color is expressed in CIELAB, L defines
lightness, a denotes the red/green value and b the yellow/blue value. In the algorithm described
here, the standard observer and the D65 reference white (see [WS82]) is used as an approximation
to all possible color and lightning conditions that might appear in an image. CIELAB may still
not be the optimal color space and the aforementioned assumption clearly leads to problems
but in practice, the Euclidean distance between two colors in this space better approximates a
perceptually uniform measure for color differences than in any other color space, like YUV, HSI,
or RGB. Refer to Section 4.6 for a short discussion on the limits and issues of using this color
space.

The biggest disadvantage of using CIELAB is the computational costs involved for the con-
version from the image color space (usually RGB or YUV). To reduce the computational cost,
we experimented with two approaches: Using a hash table to lookup already converted colors and
using a lookup table filled with pre calculated values to approximate the cubic roots appearing in
the conversion formula. These appeared to be the efficiency bottleneck. Section 4.5 looks at the
trade-off between memory consumption and segmentation accuracy.

3.3 Color Segmentation

The segmentation method was adapted from [RTG00] who describes the use of color signatures
and the Earth Mover’s Distance for image retrieval. The idea behind our approach is to create a
kind of color signature of the known background and use it to classify the pixels in the image into
those belonging to the signature and those not belonging to it. The known background sample is
clustered into equally sized clusters because in LAB space specifying a cluster size means assuming
to specify a certain perceptual accuracy. To do this efficiently, we use the modified two-stage k-d
tree [Ben75] algorithm described in [RTG00], where the splitting rule is to simply divide the given
interval into two equally sized subintervals (instead of splitting the sample set at its median).
In the first phase, approximate clusters are found by building up the tree and stopping when an
interval at a node has become smaller than the allowed cluster diameter. At this point, clusters
may be split in several nodes. In the second stage of the algorithm, nodes that belong to several

clusters are recombined. To do this, another k-d tree clustering is performed using just the cluster
centroids from the first phase. We use different cluster sizes of for the L, a, and b axes. The default
is 0.66 for L, 1.25 for A and 2.50 for the B axis. The values can be set by the user according to
the perceived color diversity in each of the axes. For efficiency reasons, clusters that contain less
than 1 h of the pixels of the entire background sample are removed.

We explicitly build the k-d tree and store the interval boundaries in the nodes. Given a certain
pixel, all that has to be done is to traverse the tree to find out whether it belongs to one of the
known background clusters or not. If the user has specified known foreground, than another tree
is built for the known foreground. Each pixel is then also checked against the known foreground.
If it does not belong to either one of the clusters trees, it is assumed to belong to the cluster with
the minimum Euclidean Distance between the pixel and each cluster’s centroid.

Using known foreground improves the classification rate dramatically, because it lowers the
probability that foreground colors that also exist in the background are classified as background.

3.4 Post Processing

The remaining task is to eliminate the background colors appearing in the foreground. By above
definition, the foreground must be a unique, spatially connected region. In addition to several
smoothing and an erosion/dilation step, a breadth-first-search on the confidence matrix is per-
formed to identify all spatially connected regions that were classified as foreground. We assume
that the biggest region is the one if user interest and eliminate all other regions1. The user can
specify a smoothness factor to specify how much smoothing should be applied to the confidence
matrix. More smoothing reduces small classification errors. Less smoothing is appropriate for high
frequency object boundaries, for example hair or clouds. The values of the confidence matrix are
directly used as transparency factors (also known as α-values) for each corresponding pixel. The
default value for the smoothing factor is 6. Figure 3 shows the result for the running example
image directly after color segmentation and after post-processing.

Fig. 3. The result of the color classification (left) and after post processing (right).

4 Benchmarking Results

4.1 Data Set

[RKB04a] presents a database of 50 images plus the corresponding ground truth that may be
used to benchmark foreground extraction approaches. The benchmark dataset is available on the
Internet [Mic04] and includes also 20 images from the Berkeley Image Segmentation Benchmark
Database [MFTM01]. In addition to the ground truth and images the database also contains user
specified trimaps. These trimaps, however, are not optimal inputs for the algorithm presented
1 Another approach would be to use all regions containing known foreground.

here because their known foreground is not always a representative color sample of the entire
foreground. Furthermore, creating such a trimap for the user would be too cumbersome, as it
already contains a lot of shape information. The benchmark would then not represent the results
a user could obtain. For this reason, the authors created an additional set of trimaps better suited
to test the approach. The authors asked a non-involved user to draw appropriate rectangles for
the region of interest and known foreground in each of the images. These trimaps may still be
suboptimal but it is assumed here that they represent the typical input of a user. Using a rough free
hand selection instead of a rectangular area, for example, would improve the segmentation result
of those images where the smallest possible rectangle already covers almost the entire picture. For
the benchmark, the default values for the smoothness factor and the cluster granularity were used.
Figure 4 shows an example of an image with both types of trimaps and the ground truth.

Fig. 4. From left to right: The original image, the lasso selection, the trimap by a user, and the
ground truth

4.2 Error Measure

Given a perceptual accurate error measurement for foreground extraction approaches reduces the
entire task to minimize the error function. Unfortunately it is difficult, maybe impossible, to
create a general error measure. Because we want to create comparable results, we stick to the
error measurement defined in [RKB04a]2. The segmentation error rate is defined as:

ε =
no. misclassified pixels

no. of pixels in unclassified region
(1)

In low contrast regions a true boundary is just not observed. This results in the ground truth
database also containing unclassified pixels. For comparibility these pixels are excluded from the
number of misclassified pixels as in [RKB04a].

4.3 Results

Figure 5 presents the error rates when applying trimaps provided by the database (lasso selection
style). The average error is 9.1 %.3 As already mentioned, the lasso selections are not optimal for
the segmentation algorithm presented here. Figure 6 shows the result for the additional set of
trimaps based on rectangular user selections. The detailed results are shown in Table A.1. The
average error is 4.3%. The best case average error rate on the database for the GrabCut underlying
algorithm is reported as 7.9 %[RKB04a].4 Using another trimap for classification results in another
2 The authors chose comparsion with this article because the solutions presented there are commonly

considered to be very succesful methods for foreground extraction.
3 In this article, the images are always listed in the same order.
4 At the time of publication of this article, a per image error measurement has not been published.

Fig. 5. Error rates of segmenting the benchmark images using the lasso trimaps.

total number of pixels to classify. One could object that a higher total number of pixels to classify
may contain more pixels that are easier to classify and thus may beautify the error rate, because
the critical pixels are not focused. This may be true for algorithms that seek an accurate boundary
by growing from some center of the picture or by shrinking a lasso. The algorithm proposed here
makes no distinction between critical and non-critical pixels: in the color classification step every
pixel has equal chance to be misclassified no matter in what region of the image it is located.
Having more pixels to classify is therefore an even harder test. The segmentations subjectively
appears much better when the additional trimap is used.

4.4 CIELAB vs. YUV vs. HSI vs. RGB

In order to test the impact of using CIELAB as underlying color space, the algorithm was also
applied to the benchmark images using YUV, HSI, and RGB. Otherwise the algorithm remained
completely unchanged. CIELAB proves to be better than all other color spaces. Although YUV
comes close in average, CIELAB shows a significantly smaller worst-case error. Figure 7 shows the
detailed results and Table 1 summarizes the average and worst-case results.

Color Space Worst Case Error Average Error

LAB 17.8 % 4.3 %

RGB 97.0 % 12.3 %

HSI 54.2 % 6.0 %

YUV 34.7 % 5.4 %

Table 1. Average and worst-case classification results for different color spaces.

Fig. 6. Error rates of segmenting the benchmark images using the rectangular selections trimap.
See Appendix for details.

Fig. 7. Error rates of segmenting the benchmark images in different color spaces.

4.5 Exact CIELAB vs CIELAB approximation

As described in Section 3.2 an approximation of CIELAB was used to improve speed. Table 2
shows the classification error for different approximation granularities. The granularity defines
the number of lookup values within a domain interval of size 1 for the cubic root table. The
table’s domain is [0, 100], i.e. the number of entries is 100×granularity. The approximation error
was measured as root mean square error over one million random pixels against the average
benchmark error in percent. The measured speed up gained for the conversion is about a factor
between 10 and 30 depending on the machine5. For the purpose of error reduction versus table
size a non-linear distribution of interpolation points would yield better results but then the lookup
itself would be complicated and thus slower.

Granularity RMS Error Benchmark Error

10 35.26% 35.3%

100 3.24% 6.2 %

1000 0.32% 5.1 %

10000 0.03% 4.6 %

Table 2. CIELAB conversion approximation accuracy versus classification error.

4.6 Strengths and Weaknesses

Fig. 8. An example of the accuracy of the segmentation in a middle-contrast region (left: original
image, right: segmented image).

The benchmark shows that the presented algorithm performs well on a number of difficult
pictures where it is even difficult to construct an accurate ground truth. If the contrast is good,
the segmented border is accurate to a pixel, see Figure 8 for an example. The classification copes
well with noise although the computation needs considerably more time for noisy input. Figure 9
shows the result of classifying a noise image. However, looking at the resulting pictures also
discloses some weaknesses. The segmentation depends heavily on the user provided trimap. The
user must select a region of interest that does contain the whole foreground object. Failing to do
so will give unusable results. Difficult images require a wise selection of representative foreground.
Therefore the user must have at least a little knowledge of what could be representative. It is not
possible to extract multiple objects at once. For example, extracting multiple clouds from a sky
5 Tested on a few Windows and Linux PCs with JRE 1.4.

requires several steps6. If two very similar objects exist on the picture, where one of them is to be
considered foreground, the segmentation mostly gives bad results. The reason is, that most of the
colors of the foreground are then considered background because they exist on the second object.
The only workaround is to include both objects in the region of interest and to provide good
foreground samples. Still, this method may fail when the unwanted similar object is bigger than
the wanted one. Foreground objects that are connected together with objects of the same color
structure (for example, two people embracing each other) are almost impossible to segmentate
using the approach. Most of the misclassified pixels in the benchmark result from objects that are
close to the foreground object, both in color structure and in location. The same reason counts
for shadows and reflections. Still another problem is the use of the standard observer and the D65
reference white. Pictures photographed with different illumination conditions are segmentated
poorly. Especially underwater scenes are awkward to segmentate, because of the natural color
quantization underwater [Ric00]. For these pictures, a different model would have to be used7.

Fig. 9. A fairly high signal-to-noise ratio has only little effect on the segmentation (left: original
image, right: segmented dog).

5 Video Segmentation

Due to the k-d-tree structure that enables fast range queries, the classification algorithm can also
be used for video segmentation. After converting each video frame to CIELAB space, the first
processing step simply uses a Gaussian noise filter and calculates the difference of two consecutive
frames pixel wise using Euclidean distance. The confidence matrix is initialized with these distance
values normalized between 0 and 1.

The next processing step is to apply exponential smoothing on the last three confidence matri-
ces. This improves the frame rate independence of the algorithm. Now, in equivalence of the first
user selection, a representative sample of the background has to be reconstructed.

To distinguish noise from real movements, the following simple but general model is used. Given
two measurements m1 and m2 of the same object with each measurement having a maximum
deviation e of the real world due to noise or other factors, it is clear that the maximum possible
deviation between m1 and m2 is 2e. Given several consecutive frames, we estimate e to find out
which pixels changed due to noise and which pixels changed due to real movement. To achieve this,
the color changes of each pixel over a time period h(x,y) (where x and y specify pixel coordinates)
is recorded. It is assumed that during this interval, the minimal change should be one that is
caused by noise. The frame is then divided into 16 sub-frames and the changes in each sub-frame

6 A simple trick in this case is to invert the problem. Just consider the sky to be the foreground.
7 In the case of underwater photography, this model would have to depend on the depth where the picture

was taken

are accumulated. Under the assumption, that at least one of these sub-frames was not touched
by any foreground object, 2e is estimated to be the average variation of the sub-frame with the
minimal sum. Then those pixels of the current frame are joined with the background sample
that during this history period h(x,y) did not change more than our estimated 2e. The history
period h(x,y) is initialized with one second and is continously increased for pixels that are seldom
classified as background, to avoid that a still-standing instructor is added to the background buffer.
Figure 10 shows some examples of reconstructed backgrounds. It normally takes several seconds,
until enough pixels could be collected to form a representative subset of the background. The
background sample buffer is organized as an ageing FIFO queue.

Fig. 10. For extracting foreground in a video, the trimap has to be reconstructed from motion
statistics. The images show known background reconstructed over several frames. The white re-
gions constitute the unknown region.

Using the representative background sample the color classification (as described in Section 3.3)
is performed. Once built-up, the tree is only updated, when more than a quarter of the underlying
background sample has changed. The confidence matrix is then updated by averaging the results
of the classification with the old confidence values. This lowers the risk, that colors that appear
both in the background and foreground are classified in the end as background. Like in still-image
segmentation, a connected component analysis is performed for all pixels classified as foreground,
i.e. pixels with a confidence greater than 0.5.

The biggest blob is considered to be interesting, and all other blobs (mostly noise and other
moving objects) are put back into the background buffer. Again, the elements of the confidence
matrix are directly mapped to α-values, specifying the opaqueness of each pixel.

The performance of the algorithm depends on the complexity of the background and on how
often it has to be updated. The algorithm was applied to segmentate an instructor standing in front
of an electronic chalk board [RFKT04,FKST04]. Using these segmentation videos, the current
Java-based prototype implementation processes a 640×480 video at 6 frames per second. This
includes a preview window and a motion JPEG compression. A 320×240 video can be processed
at 14 frames per second on a standard 3GHz PC. This rate can be dramatically increased, by
utilizing the SIMD multimedia instruction sets of modern CPUs.

As the algorithm focuses on the background it provides rotation and scaling invariant tracking
of any biggest moving object.

6 Conclusion and Future Work

The article presented a color classification algorithm that can be used for foreground extraction
in images as well as in videos. The advantage of the algorithm is that its central data structure
is efficient and not spatially bounded to a certain picture, like a graph spanned between pixels.
Once build-up, the structure can be reused for subsequential frames in a video. Benchmark results

show, that an implicit use of the spatial information provided in the image using region growing
suffices to compete with approaches that use this information explicitely by spanning graphs over
pixels. Demonstration videos and images can be seen at:
http://kazan.inf.fu-berlin.de/echalk/Segmentation/

A usable implementation of the algorithm will be made available as a plugin for GIMP [GIM05],
see Figure 11 for a screen shot of the current prototype. Future enhancements may include an
automatic finding of the cluster sizes according to the color distribution of the image and a further
improvement of the classification speed. Different observers and illumination models may improve
segmentation of underwater scenes, space images, or pictures taken at night. The authors are
also experimenting with the integration of color distribution based methods and with using the
SCIELAB space [ZEW97].

Fig. 11. A screenshot of the Gimp plugin that is currently under development.

Credits

The following people are currently contributing to the segmentation approach:

Gerald Friedland has conceived the algorithm and implemented both the Java prototype of the
video version and a native port in ANSI C.

Kristian Jantz has helped developing the algorithm, conducted the benchmark, and imple-
mented most of the Gimp plugin.

Lars Knipping has created the optimized CIELAB conversion methods in Java and a small test
framework for them.

Raúl Rojas is head of the E-Chalk project and inspired the development of the instructor seg-
mentation algorithm.

http://kazan.inf.fu-berlin.de/echalk/Segmentation/

References

Ado02. Adobe Systems, Inc. Adobe Photoshop User Guide, 2002.
Ben75. J. L. Bentley. Multidimensional binary search trees used for associative searching. Communi-

cations of the ACM, 18:509–517, 1975.
BJ01. Yuri Boykov and Marie-Pierre Jolly. Interactive Graph Cuts for Optimal Boundary and Region

Segmentation of Objects in N-D Images. In Proceedings of the International Conference on
Computer Vision, pages 105–112, Vancouver, Canada, July 2001.

Cor02. Corel Corproation. Knockout User Guide, 2002.
CYYR01. Salesin D. Chuang Y.-Y., Curless B. and Szelinski R. A bayesian approach to digital matting.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2001.
FKST04. Gerald Friedland, Lars Knipping, Joachim Schulte, and Ernesto Tapia. E-Chalk: A Lecture

Recording System using the Chalkboard Metaphor. International Journal of Interactive Tech-
nology and Smart Education, 1(1), February 2004.

FKT04. Gerald Friedland, Lars Knipping, and Ernesto Tapia. Web Based Lectures Produced by AI
Supported Classroom Teaching. International Journal of Artificial Intelligence Tools, 13(2),
2004.

GIM05. GIMP Team. The GNU Image Manipulation Program. http://www.gimp.org, 2005.
MFTM01. D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images

and its application to evaluating segmentation algorithms and measuring ecological statistics.
In Proc. 8th Int’l Conf. Computer Vision, volume 2, pages 416–423, July 2001.

Mic04. Microsoft Research. Microsoft Foreground Extraction Benchmark Dataset.
http://www.research.microsoft.com/vision/cambridge/segmentation/, 2004.

RFKT04. Raúl Rojas, Gerald Friedland, Lars Knipping, and Ernesto Tapia. Teaching With an Intelli-
gent Electronic Chalkboard. In Proceedings of ACM Multimedia 2004, Workshop on Effective
Telepresence, pages 16–23, New York, New York, USA, October 2004.

Ric00. Drew Richardson. Adventures in Diving Manual. International PADI, Inc, Rancho Santa
Margarita, CA, 2000.

RKB04a. C. Rother, V. Kolmogorov, and A. Blake. Grabcut - interactive foreground extraction using
iterated graph cuts. Proc. ACM Siggraph, 2004.

RKB04b. Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. GrabCut - Interactive Foreground
Extraction using Iterated Graph Cuts. In Proceedings of ACM Siggraph Conference, August
2004.

RTG00. Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The Earth Mover’s Distance as a Metric
for Image Retrieval. International Journal of Computer Vision, 40(2):99–121, 2000.

WS82. G. Wyszecki and W. S. Stiles. Color Science: Concepts and Methods, Quantitative Data and
Formulae. John Wiley and Sons, New York, NY, 1982.

ZEW97. Xuemei Zhang, Joyce E.Farrell, and Brian A. Wandell. Applications of a Spatial Extension to
CIELAB. In SPIE Electronic Imaging 97, 1997.

A Detailed Benchmark Results

A.1 Numerical results

Image Name Pixels to classify Wrong Pixels Error

banana1.bmp 217336 6036 2.7773%

banana2.bmp 181541 1669 0.9194%

banana3.bmp 177310 6873 3.8763%

book.bmp 149236 5685 3.8094%

bool.jpg 97781 3143 3.2143%

bush.jpg 80140 8987 11.2141%

ceramic.bmp 141541 8931 6.310%

cross.jpg 131367 2790 2.1238%

doll.bmp 84100 232 0.2759%

elefant.bmp 138369 1362 0.9843%

flower.jpg 84638 676 0.7987%

fullmoon.bmp 30609 5 0.0163%

grave.jpg 133324 984 0.7380%

llama.bmp 39243 1833 4.6709%

memorial.jpg 63443 5526 8.7101%

music.JPG 123759 3649 2.9485%

person1.jpg 178285 10079 5.6533%

person2.bmp 52214 467 0.8944%

person3.jpg 48819 1095 2.2430%

person4.jpg 65989 2169 3.2870%

person5.jpg 27659 1874 6.7753%

person6.jpg 57223 4172 7.2908%

person7.jpg 33783 645 1.9092%

person8.bmp 63632 4325 6.7969%

scissors.JPG 183373 3128 1.7058%

sheep.jpg 17477 204 1.1672%

stone1.JPG 63949 773 1.2088%

stone2.JPG 113080 186 0.1645%

teddy.jpg 47677 947 1.9863%

tennis.jpg 46474 5216 11.2235%

106024.jpg 30888 1472 4.7656%

124084.jpg 94731 1999 2.1102%

153077.jpg 85225 6241 7.3230%

153093.jpg 71508 1555 2.1746%

181079.jpg 74573 7023 9.4176%

189080.jpg 81215 3438 4.2332%

208001.jpg 54619 1463 2.6786%

209070.jpg 43280 5314 12.2782%

21077.jpg 17425 1815 10.4161%

227092.jpg 64448 2473 3.8372%

24077.jpg 66354 2918 4.3976%

271008.jpg 58207 4583 7.8736%

304074.jpg 19732 3054 15.4774%

326038.jpg 43581 1883 4.3207%

37073.jpg 44911 3429 7.6351%

376043.jpg 56738 3005 5.296%

388016.jpg 61026 4388 7.1903%

65019.jpg 34973 4054 11.5918%

69020.jpg 79050 14054 17.7786%

86016.jpg 30495 1945 6.3780%

Total: 3986350 169767 4.2587

A.2 Images

Below are the 50 benchmark images, along with the rectangle trimaps, and the segmentation
result.

	Image Segmentation by Uniform Color Clustering Approach and Benchmark Results
	Gerald Friedland, Kristian Jantz, Lars Knipping, Raul Rojas

