
Approximate Max k�Cut with Subgraph

Guarantee

Viggo Kann��� Jens Lagergren���� Alessandro Panconesi����

� Department of Numerical Analysis and Computing Science� Royal Institute of
Technology� S���� �� Stockholm� Sweden� Email� fjensl�viggog�nada�kth�se

� Facbereich Informatik� Freie Universit	at� Takustr�
� ���
� Berlin� Deutschland�
Email� ale�inf�fu�berlin�de

Abstract� We study the following variant of the Max k�Cut problem�
Given an input graph G with positively weighted edges and k colors�
the number k being xed and not dependent on the input instance� we
wish to compute a subgraph H of G containing �lots� of heavy edges
and a color assignment c � V � �k� such that� �a� all edges in H are
properly colored and �b� a �large fraction� of edges in G nH is properly
colored� We give several denitions of �lots� and �large fraction� and
give fast polynomial time algorithms to compute such color assignments�
This problem is related to the frequency allocation problems for cellular
telephone networks but could be useful in other scenarios too�

� Introduction�

In the frequency allocation problem for cellular telephones we are given a set
of k frequencies� henceforth referred to as colors� and a weighted input graph
which intuitively models a network of radio transmitters� In the graph� vertices
correspond to transmitters� and an edge �u� v� denotes the fact that if u and v get
the same color �i�e� frequency� the performance locally deteriorates by w�u� v�
per cent� Usually� the set of colors is �xed once for all and it is independent
of the input graph� The goal is to allocate colors so to minimize the �total
disruption�� a notion that can be formalized in several ways� In many situations
one is seeking to optimize simultaneously two somewhat con	icting parameters�
On one hand� one would like to take care of �heavy� edges as much as possible
because if even one of these was monochromatic� the resulting deterioration of
local service would be unacceptable �an edge is monochromatic if both endpoints
have the same color�� On the other� one would like the color assignment to be
good globally� i�e� the fraction of monochromatic edges should be small�

One way to formalize the problem is to introduce a parameter h and to
de�ne the heavy edges as those whose weight is greater than or equal to h� This

� Supported by grants from TFR�
�� Supported by grants from NFR and TFR�

��� Supported by an ERCIM post�doctoral fellowship and by an Alexander von Hum�
boldt fellowship�

formulation however immediately leads to an NP
hard problem because asking
whether such a subgraph is k
colorable is an NP
complete problem� Therefore
other approaches are called for� In this paper we propose two ways to de�ne
the graph of �heavy� edges which do not give raise to an NP
complete problem
and that could work well in many real life situations� The basic idea is that
we are given a subgraph H of G which� �a� is easily computable� �b� is easily
k
colorable� and �c� contains lots of �heavy� edges �hopefully all�� Our goal is
then to compute a color assignment of G that satis�es these two conditions
simultaneously� �� no edge of H is monochromatic� ��� only a �small� fraction
of the remaining edges is monochromatic�

In this paper we show how the above goal can be achieved for two cate

gories of graphs� maximum l
matchings �to be de�ned in section �� and unions
of maximum weight spanning trees� We will investigate the following scenarios�

� H is a maximum �k��
matching in G� In this case the fraction of monochro

matic edges inGnH is at most �H�k��k� whereH�n� is the harmonic number�
This can be achieved in O�k�jEj� kjV j� deterministic sequential time�

� H is a maximum �k���
matching in G� In this case the fraction of monochro

matic edges inGnH is at most ��k� This can be achieved in O�jEj�jV jk log k�
deterministic sequential time�

� H is a maximum �log k � �
matching in G� In this case the fraction of
monochromatic edges in G n H is at most �k� This can be achieved in
O��jV j� jEj� log k� deterministic sequential time�

� H is the union of t maximum weight spanning trees �MST�s�� In this case
the fraction of monochromatic edges in G nH is at most ��k� �t��� This
can be achieved in O�jEj � jV jk log k� deterministic sequential time�

How good are these solutions� To have an idea consider the Max k�Cut
problem� given an input graph G with weighted edges� �nd a color assignment
that maximizes the total weight of non monochromatic edges� The best known
approximation algorithm computes color assignments such that the fraction of
monochromatic edges is �� o����k ��� ��� On the other hand� in a recent paper
Kann et al� ��� show that no polynomial time algorithm can guarantee a fraction
of monochromatic edges smaller than ��k� unless P�NP� Here � is a constant
depending on the best known lower
bound for Max Cut whose current value is
��� This lower bound automatically applies to our problems �for which higher
lower bounds could perhaps be found��

Comment� we are assuming that random numbers can be obtained for free�

� Preliminaries

We will use the following notation�
If G is a graph� then ��G� denotes the maximum degree of any vertex of G�

A maximum l�matching in G is a subgraph H � G with ��G� � l that has
maximum weight among such subgraphs ����

A graph G is d�inductive if �� it has a single vertex or ��� there is a vertex
of degree at most d in G such that G n fvg is d
inductive�

Let H and H � be subgraphs of G� Then� G nH is the graph with vertex set
V �G� and edge set E�G� nE�H�� Similarly� H �H � is the graph with vertex set
V �G� and edge set E�H� �E�H ���

� Maximum matchings

��� Many guaranteed edges

In this subsection we give an algorithm which� given a weighted input graph G
and a maximum k
matching H in G� �nds a k
coloring c � V � �k� of G such
that �a� no edge of H is monochromatic� and �b� at most a �H�k��k fraction of
edges in G nH is monochromatic�

We need a preliminary de�nition�

De�nition �� A coloring c � V � ��� of a a graph H is a good coloring if� for all
vertices u� no two neighbors of u have the same color�

Given a graph H � a good coloring using � � ��H�� � colors can be easily
computed as follows� Consider the graph H� which is the same graph as H with
edges added between any two vertices u and v which� in H � have distance two
or less� We have that ��H�� � ��H��� Any coloring of H� is a good coloring of
H � In particular� a ���H����
coloring of H�� which can be greedily computed
in O�min�jV j�� jV j��H���� � O�min�jV j�� k�jV j�� time� gives the desired good
coloring for H �

The Algorithm� The only data structure needed by the algorithm is a list A�u�
of available colors which is initially set to �k� for each vertex u� The algorithm
is probabilistic but can be derandomized with a standard application of the
method of conditional probabilities �see for example �� ���� The input is G and
H �

�� Compute a good coloring s of H using � � �k� ��� � � colors� Let � be a random
permutation of s�

�� �Comment� the idea is to use � as a schedule for the vertices in H to get their nal
color��
For i � ��� �� � � � � �� do� each vertex u such that ��u� � i picks a nal color
��u� uniformly at random from A�u�� The H�neighbors of u update their lists by
removing ��u��

�� For all u � G nH� Each u picks a color c uniformly at random in �k��

In the next two lemmas� we establish correctness of the algorithm� Afterwards
the running time is analyzed�

Lemma�� No edge of H is monochromatic�

Proof� Following the convention introduced in the algorithm� let ��u� denote
the �nal color of an H
vertex obtained in step � and let ��u� be the processing
time of vertex u in step �� Recall that � is a random permutation of the good
coloring computed in step �

The claim follows from a couple of observations� First� H
vertices choosing
their �nal color ���� in parallel form an independent set because vertices pro

cessed in parallel in step � have the same ��u�� This ensures that the color choices
made in parallel at iteration i are mutually compatible� Second� the way the lists
are updated ensures that if u and v are neighbors in H then ��u� �� ��v�� More

over� the number of colors available to a vertex in H is always greater than the
number of its H
neighbors because of the way the color lists are updated and
the fact that initially jA�u�j � k � ��H�� The claim follows�

Lemma�� For any edge e of G nH� the probability that e is monochromatic is
at most �H�k��k�

Proof� There are three possible kinds of edges� �a� edges of H � �b� edges of GnH
which have both endpoints in H � and �c� edges in G n H which have only one
endpoint in H �edges in G n H with both endpoints not in H do not exist�
otherwise they would be included in H��

Lemma � shows that no edge of type �a� is monochromatic� For an edge
e � �u� v� of type �c� we compute the probability that it is monochromatic� Let
u � H � ��u� � c and v � G nH � Then� from step � of the algorithm�

Pr�e monochromatic� � Pr���u� � c� �

k
	

To conclude the proof� let e � �u� v� be an edge of type �b�� Notice that the
random schedule � induces a sub
permutation among any H
vertex u and its
H
neighbors and that u can occupy any position within this sub
schedule with
uniform probability� We refer to u�s position within this sub
permutation as the
local time of vertex u� We need the following fact� If Ai�u� and degiH�u� denote�
respectively� the available palette at u and the number of H
neighbors of u still
uncolored at local time i then� jAi�u�j 	 degiH�u��� This follows from the fact
that � is a good coloring� Let MT�u� v� denote the maximum of the local time
of vertex u and the local time of vertex v� Then�

Pr�e monochromatic� �
X

t��k�

Pr���u� � ��v�jMT �u� v�� � t� Pr�MT �u� v�� � t�	

Assume pessimistically that when a vertex performs its color choice at local
time t then all H
neighbors of u have picked di�erent colors� Then�

X

t��k�

Pr���u� � ��v�jMT �u� v�� � t� Pr�MT �u� v�� � t�

X

t��k�

k � t�

�t�

k�

� �

k

X

t��k�

k � t�

� �
H�k�

k
	

We now turn to the running time of the algorithm�
Step can be computed as outlined above in O�k�jV j� time� Step � takes

O�k�jV j� time and step � takes O�jV j� time�
Step can be computed in deterministic time O�k�jEj�� Step � and step �

can be computed in deterministic time O�jEj � kjV j�� Thus the algorithm runs
in deterministic time O�k�jEj� kjV j��

How hard is it to �nd H� In the terminology of Lovasz � Plummer�s book on
Matching ���� computing a maximum �k��
matching is reducible to Maximum
Matching in a graph with O�jEj � jV j� vertices and O�jEj�� edges� Maximum
Matching in a graph with n vertices and m edges can be computed in time
O�
p
n �m� ���� Thus H can be found in probabilistic time O�

p
jEj� jV j � jEj� �

k�jV j��

��� Probability ��k for non�guaranteed edges

Our �rst result in this subsection is the following� Given a graph and a maximum

matching H of G one can color G such that all edges of H are bichromatic and
at least half of the edges of G nH are bichromatic� We now give the algorithm�
Algorithm A� The algorithm is probabilistic but can be derandomized with a
standard application of the method of conditional probabilities �� ���

�� Give each edge of H an arbitrary direction�
�� For each directed edge �u� v� of H let U receive the color � with probability ���

and the color � with probability ���� and let v receive the other color�

Lemma	� After the execution of Algorithm A no edge of H is monochromatic�
Also� for any edge e of G nH� the probability that e is monochromatic is ���

Proof� It is trivial to see that no edge of H is monochromatic� Note that for an
edge �u� v� of GnH the colors of u and v are independent� Hence� the probability
that an edge of G nH is monochromatic is ���

Algorithm A runs in O�jV j� probabilistic time and the derandomized varia

tion of it runs in O�jV j� jEj� deterministic time�

The above result can be generalized to the following� Given a graph G and a
maximum ��log k�� �
matching H of G� G can be colored such that no edge of
H is monochromatic and at most a fraction �k of the edges of G nH becomes
monochromatic� We now describe the algorithm� In the algorithm� each vertex
v of G is colored with a vector ��v� � f�� glogk�
Algorithm B� The algorithm is probabilistic but can be derandomized with a
standard application of the method of conditional probabilities �� ���

�� Give each edge of H an arbitrary direction�
�� Edge�color H using the colors �log k�
�� For each directed edge �u� v� of H with color i� set x�u�i to � with probability ���

and to � with probability ���� and let x�v�i be x�u�i � ��

�� For each color i that do not occur at a vertex v set� x�v�i to � with probability
��� and to � with probability ����

Lemma
� After the execution of Algorithm B no edge of H is monochromatic�
Also� for any edge e of G nH� the probability that e is monochromatic is �k�

Proof� It is trivial to see that no edge of H is monochromatic� Note that for
an edge �u� v� of G n H the colors of u and v are chosen independently and
uniformly from among k colors� Hence� the probability that an edge of G nH is
monochromatic is �k�

Algorithm B runs in O�jV j log k� probabilistic time and the derandomized
variation of it runs in O��jV j� jEj� log k� deterministic time�

��� Probability O���k� for non�guaranteed edges

In the next section� we will show that when H is a d
inductive graph� we can
obtain probability ��k� d� that an edge of G nH is monochromatic� However�
we already now note that this implies the following�

Lemma� For each �
 c
 when H is a maximum ck�matching in G we can
in polynomial time k�color G such that ��� no edge of H is monochromatic ���
the probability that an edge of G nH is monochromatic is ���� c�k��

� Inductive graphs

In this section� we show that when H is a d
inductive subgraph of G then G can
be k
colored such that �� no edge of H is monochromatic ��� the probability
that an edge of G n H is monochromatic is ��k � d�� We will then apply this
result to the case when H is a union of t trees by showing that any such union
is �t�
inductive�

	�� Algorithm for d�inductive subgraphs

Algorithm� The algorithm is probabilistic but can be derandomized with a
standard application of the method of conditional probabilities �� ��� We are
given G and a d
inductive subgraph H of G where d
 k� We shall color G with
k colors�

�� Delete a vertex v of degree d in H from H�
�� Color H n fvg recursively�
�� Color v with a color chosen uniformly from the colors not present in the neighbor�

hood of v in H�

Lemma�� After the execution of the algorithm no edge of H is monochromatic�
Also the probability that an edge of G nH is monochromatic is ��k � d��

Proof� It is trivial to see that no edge of H is monochromatic� Note that for
an edge �u� v� of G n H the colors of u and v are chosen independently and
uniformly from among k�d colors� Hence� the probability that an edge of GnH
is monochromatic is ��k � d��

The algorithm runs in O�kjV j� probabilistic time� Its derandomized variation
runs in O�jEj � kjV j�� deterministic time�

	�� A union of t trees

In this subsection� we show that a union of t trees is �t� inductive� Hence� when
H is such a union we can k
color G such that �� no edge of H is monochromatic
��� the probability that an edge of GnH is monochromatic is ��k��t��� We
also show that such an H is easy to �nd�

To chose a heavy union of t trees we will generate a sequence of graphs
G�� G�� 	 	 	 � Gt� Gt��� a sequence of subgraphs H�� H�� 	 	 	 � Ht� and a sequence
of MSTs T�� T�� 	 	 	 � Tt such that� �a� Ti is a MST in Gi� �b� G� � G and
Gi�� � Gi n Ti� and H� � T� and Hi�� � Hi � Ti��� We will then let H � Ht�

Lemma�� A union of t trees is �t�colorable�

Proof� Let H be a union of t forests� We make two observations� First� if v is
a vertex of H then H n fvg is a union of t forests� Second� a union of t forests
contains a vertex of degree �t� � The latter holds since if the union contains n
vertices then the degree sum in the union is at most �t�n� � and this implies
that one vertex has degree at most b��t�n � ��n�c � �t � � �From these two
observations follows that H is �t � inductive� and this clearly implies that it
is �t
colorable�

The Algorithm�

�� G� �� G� H� �� �
�� for i �� � to t do

Let Ti be a maximum spanning tree in Gi computed using Prim�s algorithm�
Hi �� Hi�� � Ti

Gi�� �� Gi n Ti

H �� Ht

How hard is it to �nd H� One maximum spanning tree can be constructed
using Prim�s algorithm in O�jEj � jV j log jV j� time� The set operations take
O�jEj� time� It follows that we can �nd H in O�t�jEj� jV j log jV j�� deterministic
time�

References

�� N� Alon� J� Spencer and P� Erd	os� The Probabilistic Method� John Wiley
� Sons� �

��

�� A� Frieze and M� Jerrum� Improved approximation algorithms for
Max k�Cut and Max Bisection� In Proc� of �th Int� Conf� on Inte�

ger Prog� and Combinatorial Optimization� Lecture Notes in Comput� Sci�

��� pages ����� Springer�Verlag� �

��

�� V� Kann� S� Khanna� J� Lagergren and A� Panconesi� On the hardness of
approximating Max k�Cut and its dual� KTH Tech� report TRITA�NA�

���� �

�� Submitted�

�� L� Lovasz and M� D� Plummer� Matching Theory� Annals of Discrete
Mathematics �
� North Holland� �
���

�� An O�
p
jV j � jEj� algorithm for nding maximum matching in general

graphs� In Proc� ��st Ann� Symp� on Foundations of Computer Science�
pages ������ IEEE� �
���

�� C� H� Papadimitriou and M� Yannakakis� Optimization� approximation�
and complexity classes� J� Comput� System Sci�� ����������� �

��

�� P� Raghavan� Lecture notes on randomized algorithms� Tech� report RC
����� ��������� IBM T� J� Watson Research Center� January �

��

This article was processed using the LATEX macro package with LLNCS style

