Approximate Max k-Cut with Subgraph
Guarantee

Viggo Kann'*, Jens Lagergren'**, Alessandro Panconesi?***
! Department of Numerical Analysis and Computing Science, Royal Institute of
Technology, S-100 44 Stockholm, Sweden. Email: {jensl,viggo}@nada.kth.se
2 Facbereich Informatik, Freie Universitit, Takustr. 9, 14195 Berlin, Deutschland.
Email: ale@inf.fu-berlin.de

Abstract. We study the following variant of the Max k-Cut problem.
Given an input graph G with positively weighted edges and k colors—
the number k being fixed and not dependent on the input instance— we
wish to compute a subgraph H of G containing “lots” of heavy edges
and a color assignment ¢ : V. — [k] such that: (a) all edges in H are
properly colored and (b) a “large fraction” of edges in G\ H is properly
colored. We give several definitions of “lots” and “large fraction” and
give fast polynomial time algorithms to compute such color assignments.
This problem is related to the frequency allocation problems for cellular
telephone networks but could be useful in other scenarios too.

1 Introduction.

In the frequency allocation problem for cellular telephones we are given a set
of k frequencies, henceforth referred to as colors, and a weighted input graph
which intuitively models a network of radio transmitters. In the graph, vertices
correspond to transmitters, and an edge (u, v) denotes the fact that if v and v get
the same color (i.e. frequency) the performance locally deteriorates by w(u,v)
per cent. Usually, the set of colors is fixed once for all and it is independent
of the input graph. The goal is to allocate colors so to minimize the “total
disruption”, a notion that can be formalized in several ways. In many situations
one is seeking to optimize simultaneously two somewhat conflicting parameters.
On one hand, one would like to take care of “heavy” edges as much as possible
because if even one of these was monochromatic, the resulting deterioration of
local service would be unacceptable (an edge is monochromatic if both endpoints
have the same color). On the other, one would like the color assignment to be
good globally, i.e. the fraction of monochromatic edges should be small.

One way to formalize the problem is to introduce a parameter h and to
define the heavy edges as those whose weight is greater than or equal to h. This

* Supported by grants from TFR.
** Supported by grants from NFR and TFR.
*** Supported by an ERCIM post-doctoral fellowship and by an Alexander von Hum-
boldt fellowship.

formulation however immediately leads to an NP-hard problem because asking
whether such a subgraph is k-colorable is an NP-complete problem. Therefore
other approaches are called for. In this paper we propose two ways to define
the graph of “heavy” edges which do not give raise to an NP-complete problem
and that could work well in many real life situations. The basic idea is that
we are given a subgraph H of G which: (a) is easily computable; (b) is easily
k-colorable, and (c) contains lots of “heavy” edges (hopefully all). Our goal is
then to compute a color assignment of G that satisfies these two conditions
simultaneously: (1) no edge of H is monochromatic; (2) only a “small” fraction
of the remaining edges is monochromatic.

In this paper we show how the above goal can be achieved for two cate-
gories of graphs: maximum [-matchings (to be defined in section 2) and unions
of maximum weight spanning trees. We will investigate the following scenarios.

— H is amaximum (k—1)-matching in G. In this case the fraction of monochro-
matic edges in G\ H is at most 2H(k)/k, where 7 (n) is the harmonic number.
This can be achieved in O(k®|E| + k|V|) deterministic sequential time.

— H is a maximum (k/2)-matching in G. In this case the fraction of monochro-
matic edges in G\ H is at most 2/k. This can be achieved in O(|E|+|V |k log k)
deterministic sequential time.

— H is a maximum (logk — 1)-matching in G. In this case the fraction of
monochromatic edges in G \ H is at most 1/k. This can be achieved in
O((|[V| + |E|) log k) deterministic sequential time.

— H is the union of ¢ maximum weight spanning trees (MST’s). In this case
the fraction of monochromatic edges in G \ H is at most 1/(k — 2t + 1). This
can be achieved in O(|E| + |V|klog k) deterministic sequential time.

How good are these solutions? To have an idea consider the MaX k-CuT
problem: given an input graph G with weighted edges, find a color assignment
that maximizes the total weight of non monochromatic edges. The best known
approximation algorithm computes color assignments such that the fraction of
monochromatic edges is (1+0(1))/k [6, 2]. On the other hand, in a recent paper
Kann et al. [3] show that no polynomial time algorithm can guarantee a fraction
of monochromatic edges smaller than 1/ck, unless P=NP. Here o is a constant
depending on the best known lower-bound for MAx CuT whose current value is
132. This lower bound automatically applies to our problems (for which higher
lower bounds could perhaps be found).

Comment: we are assuming that random numbers can be obtained for free.

2 Preliminaries

We will use the following notation.
If G is a graph, then A(G) denotes the maximum degree of any vertex of G.
A mazimum [-matching in G is a subgraph H C G with A(G) <[that has
maximum weight among such subgraphs [4].

A graph G is d-inductive if (1) it has a single vertex or (2) there is a vertex
of degree at most d in G such that G \ {v} is d-inductive.

Let H and H' be subgraphs of G. Then, G \ H is the graph with vertex set
V(G) and edge set E(G) \ E(H). Similarly, H U H' is the graph with vertex set
V(G) and edge set E(H) UE(H").

3 Maximum matchings

3.1 Many guaranteed edges

In this subsection we give an algorithm which, given a weighted input graph G
and a maximum k-matching H in G, finds a k-coloring ¢ : V' — [k] of G such
that (a) no edge of H is monochromatic, and (b) at most a 2H(k)/k fraction of
edges in G \ H is monochromatic.

We need a preliminary definition.

Definition 1. A coloring ¢ : V — [€] of a a graph H is a good coloring if, for all
vertices u, no two neighbors of u have the same color.

Given a graph H, a good coloring using ¢ = A(H)? + 1 colors can be easily
computed as follows. Consider the graph H? which is the same graph as H with
edges added between any two vertices v and v which, in H, have distance two
or less. We have that A(H?) < A(H)?. Any coloring of H? is a good coloring of
H. In particular, a (A(H?) + 1)-coloring of H?, which can be greedily computed
in O(min(|V|?%,|V| A(H)?)) = O(min(|V|?,k?|V])) time, gives the desired good
coloring for H.

The Algorithm. The only data structure needed by the algorithm is a list A(u)
of available colors which is initially set to [k] for each vertex u. The algorithm
is probabilistic but can be derandomized with a standard application of the
method of conditional probabilities (see for example [1, 7]). The input is G and
H.

1. Compute a good coloring s of H using £ = (k — 1) + 1 colors. Let o be a random
permutation of s.

2. [Comment: the idea is to use o as a schedule for the vertices in H to get their final
color.]
For i = o1,02...,0¢ do: each vertex u such that o(u) = ¢ picks a final color
X (v) uniformly at random from A(u). The H-neighbors of u update their lists by
removing x(u).

3. For all w € G\ H: Each u picks a color ¢ uniformly at random in [k].

In the next two lemmas, we establish correctness of the algorithm. Afterwards
the running time is analyzed.

Lemma 2. No edge of H is monochromatic.

Proof. Following the convention introduced in the algorithm, let x(u) denote
the final color of an H-vertex obtained in step 2 and let o(u) be the processing
time of vertex u in step 2. Recall that ¢ is a random permutation of the good
coloring computed in step 1.

The claim follows from a couple of observations. First, H-vertices choosing
their final color x(-) in parallel form an independent set because vertices pro-
cessed in parallel in step 2 have the same o (u). This ensures that the color choices
made in parallel at iteration ¢ are mutually compatible. Second, the way the lists
are updated ensures that if u and v are neighbors in H then yx(u) # x(v). More-
over, the number of colors available to a vertex in H is always greater than the
number of its H-neighbors because of the way the color lists are updated and
the fact that initially |A(u)| = k > A(H). The claim follows.

Lemma3. For any edge e of G\ H, the probability that e is monochromatic is
at most 2H(k)/k.

Proof. There are three possible kinds of edges: (a) edges of H; (b) edges of G\ H
which have both endpoints in H; and (c) edges in G \ H which have only one
endpoint in H (edges in G \ H with both endpoints not in H do not exist,
otherwise they would be included in H).

Lemma 2 shows that no edge of type (a) is monochromatic. For an edge
e = (u,v) of type (c) we compute the probability that it is monochromatic. Let
u € H, x(u) =cand v € G\ H. Then, from step 3 of the algorithm,

Pr[e monochromatic] = Pr[x(u) = ¢] = —.

To conclude the proof, let e = (u,v) be an edge of type (b). Notice that the
random schedule o induces a sub-permutation among any H-vertex v and its
H-neighbors and that u can occupy any position within this sub-schedule with
uniform probability. We refer to u’s position within this sub-permutation as the
local time of vertex u. We need the following fact. If A;(u) and deg}; (u) denote,
respectively, the available palette at w and the number of H-neighbors of u still
uncolored at local time 4 then, |A4;(u)| > degh; (u) + 1. This follows from the fact
that o is a good coloring. Let MT(u,v) denote the maximum of the local time
of vertex u and the local time of vertex v. Then,

Pr[e monochromatic] = Z Pr{x(u) = x(v)|MT (u,v)) = t] Pr[MT (u,v)) = t].
te(k]

Assume pessimistically that when a vertex performs its color choice at local
time t then all H-neighbors of u have picked different colors. Then,

S Prlx(e) = ()| MT(u,0) = f PHMT (u,0)) =] < 3 -
te(k] ot

2 1
< = - -
_ka—t-i-l
telk]

We now turn to the running time of the algorithm.

Step 1 can be computed as outlined above in O(k?|V|) time. Step 2 takes
O(k?|V]) time and step 3 takes O(|V]) time.

Step 1 can be computed in deterministic time O(k®|E|). Step 2 and step 3
can be computed in deterministic time O(|E| + k|V|). Thus the algorithm runs
in deterministic time O(k°|E| + k|V]).

How hard is it to find H? In the terminology of Lovasz & Plummer’s book on
Matching [4], computing a maximum (k — 1)-matching is reducible to Maximum
Matching in a graph with O(|E| + |V|) vertices and O(|E|*) edges. Maximum
Matching in a graph with n vertices and m edges can be computed in time
O(v/n-m) [5]. Thus H can be found in probabilistic time O(y/|E| + |V |- |E|* +
K2V).

3.2 Probability 1/k for non-guaranteed edges

Our first result in this subsection is the following: Given a graph and a maximum
1-matching H of G one can color G such that all edges of H are bichromatic and
at least half of the edges of G \ H are bichromatic. We now give the algorithm.
Algorithm A. The algorithm is probabilistic but can be derandomized with a
standard application of the method of conditional probabilities [1, 7].

1. Give each edge of H an arbitrary direction.
2. For each directed edge (u,v) of H let U receive the color 1 with probability 1/2
and the color 2 with probability 1/2, and let v receive the other color.

Lemmad4. After the execution of Algorithm A no edge of H is monochromatic.
Also, for any edge e of G\ H, the probability that e is monochromatic is 1/2.

Proof. Tt is trivial to see that no edge of H is monochromatic. Note that for an
edge (u,v) of G\ H the colors of u and v are independent. Hence, the probability
that an edge of G'\ H is monochromatic is 1/2.

Algorithm A runs in O(]V|) probabilistic time and the derandomized varia-
tion of it runs in O(|V| + |E|) deterministic time.

The above result can be generalized to the following. Given a graph G and a
maximum ((log k) — 1)-matching H of G, G can be colored such that no edge of
H is monochromatic and at most a fraction 1/k of the edges of G \ H becomes
monochromatic. We now describe the algorithm. In the algorithm, each vertex
v of G is colored with a vector x(v) € {0, 1}!°8%,

Algorithm B. The algorithm is probabilistic but can be derandomized with a
standard application of the method of conditional probabilities [1, 7].

1. Give each edge of H an arbitrary direction.

2. Edge-color H using the colors [log k]

3. For each directed edge (u,v) of H with color i, set z(u); to 0 with probability 1/2
and to 1 with probability 1/2, and let z(v); be z(u); ® 1.

4. For each color ¢ that do not occur at a vertex v set, x(v); to 0 with probability
1/2 and to 1 with probability 1/2.

Lemma5. After the execution of Algorithm B no edge of H is monochromatic.
Also, for any edge e of G\ H, the probability that e is monochromatic is 1/k.

Proof. Tt is trivial to see that no edge of H is monochromatic. Note that for
an edge (u,v) of G\ H the colors of uw and v are chosen independently and
uniformly from among k colors. Hence, the probability that an edge of G \ H is
monochromatic is 1/k.

Algorithm B runs in O(|V|logk) probabilistic time and the derandomized
variation of it runs in O((|V'| + |E|)log k) deterministic time.

3.3 Probability O(1/k) for non-guaranteed edges

In the next section, we will show that when H is a d-inductive graph, we can
obtain probability 1/(k — d) that an edge of G \ H is monochromatic. However,
we already now note that this implies the following.

Lemma 6. For each 0 < ¢ < 1 when H is a mazimum ck-matching in G we can
in polynomial time k-color G such that (1) no edge of H is monochromatic (2)
the probability that an edge of G \ H is monochromatic is 1/((1 — ¢)k).

4 Inductive graphs

In this section, we show that when H is a d-inductive subgraph of G then G can
be k-colored such that (1) no edge of H is monochromatic (2) the probability
that an edge of G \ H is monochromatic is 1/(k — d). We will then apply this
result to the case when H is a union of ¢ trees by showing that any such union
is 2¢ — 1-inductive.

4.1 Algorithm for d-inductive subgraphs

Algorithm. The algorithm is probabilistic but can be derandomized with a
standard application of the method of conditional probabilities [1, 7]. We are
given G and a d-inductive subgraph H of G where d < k. We shall color G with
k colors.

1. Delete a vertex v of degree d in H from H.

2. Color H \ {v} recursively.

3. Color v with a color chosen uniformly from the colors not present in the neighbor-
hood of v in H.

Lemma 7. After the execution of the algorithm no edge of H is monochromatic.
Also the probability that an edge of G\ H is monochromatic is 1/(k — d).

Proof. 1t is trivial to see that no edge of H is monochromatic. Note that for
an edge (u,v) of G\ H the colors of u and v are chosen independently and
uniformly from among k —d colors. Hence, the probability that an edge of G\ H
is monochromatic is 1/(k — d).

The algorithm runs in O(k|V|) probabilistic time. Its derandomized variation
runs in O(|E| + k|V|)) deterministic time.

4.2 A union of t trees

In this subsection, we show that a union of ¢ trees is 2¢—1 inductive. Hence, when
H is such a union we can k-color G such that (1) no edge of H is monochromatic
(2) the probability that an edge of G\ H is monochromaticis 1/(k—2t+1). We
also show that such an H is easy to find.

To chose a heavy union of t trees we will generate a sequence of graphs
G1,Gs, ... ,Gy, Gy, a sequence of subgraphs Hy, Hs,...,H;, and a sequence
of MSTs Ty,T5,...,T; such that: (a) T; is a MST in Gy; (b) Gi = G and
Giy1=G; \Ti; and Hy =717 and Hyy1 = H; UT;41. We will then let H = Hy.

Lemma 8. A union of t trees is 2t-colorable.

Proof. Let H be a union of ¢ forests. We make two observations. First, if v is
a vertex of H then H \ {v} is a union of ¢ forests. Second, a union of ¢ forests
contains a vertex of degree 2t — 1. The latter holds since if the union contains n
vertices then the degree sum in the union is at most 2¢t(n — 1) and this implies
that one vertex has degree at most |[(2t(n — 1)/n)| = 2t — 1. (From these two
observations follows that H is 2¢ — 1 inductive; and this clearly implies that it
is 2t-colorable.

The Algorithm.
1. G1:=G; Hy:=0
2. for i:=1to t do
Let T; be a maximum spanning tree in G; computed using Prim’s algorithm.
H,:=H 1UT;
Giy1 =G\ T;
H = Ht

How hard is it to find H? One maximum spanning tree can be constructed
using Prim’s algorithm in O(|E| + |V|log|V]|) time. The set operations take
O(|E|) time. It follows that we can find H in O(¢t(|E|+ |V |log|V])) deterministic
time.

References

1. N. Alon, J. Spencer and P. Erdés, The Probabilistic Method, John Wiley
& Sons, 1992.

2. A. Frieze and M. Jerrum, Improved approximation algorithms for
MaxX k-Cutr and MAXx BISECTION. In Proc. of 4th Int. Conf. on Inte-
ger Prog. and Combinatorial Optimization, Lecture Notes in Comput. Sci.
920, pages 1-13. Springer-Verlag, 1995.

3. V. Kann, S. Khanna, J. Lagergren and A. Panconesi, On the hardness of
approximating MAX k-Cut and its dual. KTH Tech. report TRITA-NA-
9505, 1995. Submitted.

4. L. Lovasz and M. D. Plummer, Matching Theory, Annals of Discrete
Mathematics 29, North Holland, 1986.

5. An O(\/m |E|) algorithm for finding maximum matching in general
graphs. In Proc. 21st Ann. Symp. on Foundations of Computer Science,
pages 17-27, IEEE, 1980.

6. C. H. Papadimitriou and M. Yannakakis. Optimization, approximation,
and complexity classes. J. Comput. System Sci., 43:425-440, 1991.

7. P. Raghavan, Lecture notes on randomized algorithms, Tech. report RC
15340 (#68237), IBM T. J. Watson Research Center, January 1990.

This article was processed using the IXTEX macro package with LLNCS style

