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Abstract

An extremely simple distributed randomized edge colouring algorithm is given which� for
any positive constants � and c and a graph G with minimum degree ��nc� log logn�� produces
with high probability a proper edge colouring of G using �������G� colours in only O�log logn�
communication rounds	

� Introduction

The edge colouring problem is a much studied problem in the theory of algorithms� graph theory�

and combinatorics� whose relevance to computer science stems from its numerous applications to

scheduling and resource allocation problems ��� ��� ��� ��� �	� ��� �
� among others�� Given an

input graph� the problem consists in nding a proper colouring using as few colours as possible� A

proper colouring is an assignment of colours to the edges so that no two incident edges have the

same colour�

In this paper we give an extremely fast� distributed� randomized� nearly optimal algorithm for

edge colouring� �Nearly optimal� means that the number of colours used is �� � ���� where �

denotes the maximum degree of the input graph and � � � is any arbitrarily small� but xed�

positive real� The algorithm is randomized in that it is allowed to call a random number generator

which can generate uniformly distributed random integers in any interval� The algorithm may fail

to nd a proper colouring� but we show that this almost never happens� i�e� the probability of

failure is o���� a function which goes to � as n goes to innity�

One of the main features of the algorithm is that it is arguably the simplest randomized

edge colouring algorithm one can consider� Each edge e � uv is initially given a palette of

�� � ��maxfdeg�u��deg�v�g colours� The computation takes place in rounds� In each round�
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each uncoloured edge independently picks a tentative colour uniformly at random from its current

palette� If no neighbouring edge picks the same colour� it becomes nal� Otherwise� the edge tries

again in the next round� At the end of each round the palettes are updated in the obvious way�

colours successfully used by neighbouring edges are deleted from the current palette�

The algorithm succeeds with high probability on any graph� regardless of its structure� as long

as certain minimum degree conditions are met� If the degrees are such that every edge e�s initial

palette has

a��e�� log n

colours �recall that a��uv� � maxfdeg�u��deg�v�g and that f � g means g�f � o����� we can show

that the algorithm colours the graph within O�logn� rounds� But more remarkably� if there is a

xed constant c � � such that for every edge e

a��e� � �
�
nc� log log n

�

then the algorithm colours the graph within O�log logn� rounds�

It is apparent that the algorithm is distributed�that is� each edge only needs to exchange

information with its neighbours� More precisely� the algorithm can be implemented in the standard

synchronous� message�passing distributed model of computation� Here� a distributed network �or

architecture� is modelled as an undirected graph� The vertices of the graph correspond to processors

and edges correspond to bi�directional communication links� The network is synchronous in the

sense that computation takes place in a sequence of rounds� in each round� each processor reads

messages sent to it by its neighbours in the graph� does any amount of local computation� and

sends messages back to each of its neighbours� The time complexity of a distributed algorithm is

then given by the number of rounds needed to compute the desired function�

In the description of the algorithm it is implicit that each edge is a processor� It is easy to see�

however� that each step of the algorithm can be implemented in the distributed model in a constant

number of rounds� Thus our algorithm enables a distributed network to edge colour itself� Besides

being of theoretical interest� such an algorithm has applications to real�life parallel architectures

�	� ����

Note that� unlike the PRAM� the distributed model has no shared memory� something that

makes these two models radically di�erent and� in fact� complementary� In a PRAM� each processor

can communicate with any other processor in constant time via the shared memory� Hence� the cost

of communication is completely neglected and only computation is charged for� In the distributed

model the opposite happens� computation is not charged for� but sending messages is expensive�

The time required to send a message from one processor to another is proportional to the minimum

distance in the graph between sender and receiver� In particular� if a distributed protocol runs in t

steps� a processor can communicate only with other processors at distance t or less and therefore all

computation must be �local�� A message�passing network models the fact that in real distributed
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or parallel architectures the cost of sending a message is order of magnitudes higher than the cost

of performing local computation�

We note that the local computations required by our algorithm are very simple and require only

O��� time in the PRAM model� Simulating the message passing requires an extra O�log n� factor�

however�

Previous Work and Our Solution�

Clearly� if a graph G has maximum degree � then at least � colours are needed to properly

edge colour it� A classical theorem of Vizing shows that ��� colours are always su�cient and the

proof is actually a polynomial�time algorithm to compute such a colouring �see for example �����

Interestingly� given a graph G� it is NP�complete to decide whether it is � or ��� edge colourable�

even for cubic or regular graphs ���� ���

E�orts at parallelizing Vizing�s theorem have failed� the best PRAM algorithm known is a

randomized algorithm by Karlo� and Shmoys that computes an edge colouring using very nearly

� �
p
� � �� � o����� colours in O�log n� time ����� This algorithm can be derandomized using

standard derandomization techniques ��� ���� Whether �� � ���edge colouring is P�complete is an

open problem�

In the distributed setting the rst non�trivial result was a randomized algorithm by Panconesi

and Srinivasan which� with high probabilty� uses roughly ������log n colours and runs in O�log n�

time ��
�� For the interesting special case of bipartite graphs Lev� Pippinger� and Valiant show that

��colourings can be computed in NC� but this is provably impossible in the distributed model of

computation even if randomness is allowed �see ���� ����� The result of Panconesi and Srinivasan

was greatly improved by Alon ��� and Dubhashi and Panconesi ��� who showed how to compute

nearly optimal colourings in O�logn� rounds with high probability� These solutions are based

on a strategy known as the R�odl Nibble� a powerful probabilistic technique which has been used

with great success for a large variety of asymptotic packing� covering� and colouring problems

��� � � ��� ��� ��� ��� among others�� Our result shows that in order to get asymptotically optimal

edge colourings� such semi�random techniques are unnecessary�

The main feature of our algorithm� however� is its vastly improved running time� An interesting

open question is whether nearly optimal edge colourings can be computed as fast deterministically�

Our solution compares favourably to earlier ones also in terms of simplicity� not only because of

the utter simplicity of the algorithm but also because it makes no use of a separate �brute force�

routine at the end of the recursion�

The rest of this paper is devoted to the analysis of the algorithm described above� We rst deal

with the regular case� where all vertices have the same degree� and then show how to remove this

assumption�

 



� A Large Deviation Inequality

A key ingredient of our proof is a large deviation inequality for functions of independent random

varaibles� The one we use is a generalization of a result of Alon� Kim� and Spencer � �� which

the rst author recently developed� Please see �
� for a proof� a more general result� and further

discussion�

Assume we have a probability space generated by independent random variables Xi �choices��

where choice Xi is from the set Ai� and a function Y � f�X�� � � � � Xn� on that probability space�

Consider a query game in which we try to determine the value of Y by making queries of the form

�What was the i�th choice!� to a truthful oracle� A strategy can be expressed as a decision tree

whose internal nodes designate queries to be made and whose leaves designate nal values for Y �

Dene the variance of a query �internal node� q concerning choice i to be

vq �
X
a�Ai

pi�a�
�
q�a�

where

pi�a � Pr�choice i was a�

and

�q�a � Ex�Y j choice i was a and all previous queries�� Ex�Y j all previous queries��

In words� �q�a measures the amount which our expectation changes when the answer to query q is

revealed to be a�

Also dene the maximum e�ect of query q as

cq � max
a�b�Ai

j�q�a � �q�bj�

As an upper bound on cq we often take the maximum amount which Y can change if choice i is

changed� but all other choices remain the same�

A line of questioning is a path in the decision tree from the root to a leaf and the variance of

a line of questioning is the sum of the variances of the queries along it� Finally� the variance of

a strategy is the maximum variance over all lines of questioning� The use of the term variance is

meant to be suggestive� the variance of a strategy for determining Y is an upper bound on the

variance of Y �

Proposition � If there is a strategy for determining Y with variance at most V then

Pr
h
jY � Ex�Y �j � �

p
�V

i
� �e��

for every � � � � V�max c�q �

�



When applying this Proposition� to determine the variance of each query� we must bound the

sum
P

pi�a�
�
q�a� There are two �standard� ways to do this� If we only know that the ��s di�er by

at most cq� the best we can say is that

vq �
X
a�Ai

pi�a�
�
q�a � c�q��� ���

If we know� in addition� that the ��s take on two values� one corresponding to choices with total

probability p and the other to choices with total probability �� p� then we know that

vq �
X
a�Ai

pi�a�
�
q�a � p��� p�c�q � ���

Both of these bounds can be shown using elementary� but non�trivial� computations� which we

omit�

� Analysis� Overview

The intuition behind the analysis is as follows� The algorithm generates a sequence of graphs

G�� G�� � � � � Gz� where G� is the input graph G and Gi� the input of round i� is the subgraph

induced by the edges which are still uncoloured� Each edge e � uv has initial palette A��e� �

f�� � � � � �� � ��maxfdeg�u��deg�v�gg and at round i the palette Ai�e� is composed of e�s initial

palette minus the colours used by its coloured neighbours�

At round i� each edge e has a probability pi�e� of being coloured� In the regular case �but similar

considerations apply to the general case� these probabilities are sharply concentrated around a

value pi� The initial value of pi is �very nearly� e�� and� as the algorithm proceeds� pi very rapidly

approaches �� Intuitively� this is due to the fact that the size of the intersection of the palettes of

any two neighbouring edges shrinks at a much faster rate than the size of the palettes themselves�

This makes the likelihood of con"ict� i�e� of two neighbouring edges picking the same tentative

colour� very unlikely and in fact soon negligible�

Perhaps the crucial fact about the analysis is to show that� despite the interaction along the

edges of the graph� the colour palettes behave �as if� they were random sets of the original palettes�

evolving independently of one another� In other words� one has to show that the correlation

introduced by the graph is negligible� Similarly� one needs to show that Gi is �essentially� a

random subgraph of the original graph�

We divide the analysis of the algorithm into three phases� During the rst phase� we control the

vertex degrees� palette sizes� and size of palette intersections quite carefully in order to get to the

point were these quantities are small enough that pi is approaching � su�ciently quickly that the

vertex degrees are decreasing doubly exponentially� This requires only constantly many rounds�

In the second phase� the analysis simplies considerably� as we need only bound the vertex

degrees from above� Surprisingly� the vertex degrees decrease at a doubly exponential rate� This
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phase lasts until the vertex degrees are of order log n� at which point they no longer have su�ciently

good statistical properties� This phase lasts at most O�log logn� rounds�

In the last phase� we take a global view and consider all remaining O�n log n� edges� Although

there may be large local deviations� the total number of edges still decreases at a doubly exponential

rate �assuming the original palettes were large enough�� It therefore takes only O�log log n� rounds

to colour all remaining edges�

Consider now the regular case �we will comment on the irregular case in Section 	�� We wish

to colour a d��regular graph with a� � �� � ��d� colours� Dene � as ���� � ��� so that

��� ��a� � d��

We assume that � is a positive constant less than ���� or� equivalently� that � is a positive constant

less than ��
� As noted in the introduction� we also must assume that a� � �
�
nc� log log n

�
� for

some positive constant c� The constant c will be re"ected in the running time of phase III of the

analysis and can be arbitrarily small �but must be xed��

� Analysis� Phase I

The rst phase of the analysis will follow the algorithm for s steps� s a constant� until

degs�v� �
��

�
a� � �

for every vertex v� Unfortunately the analysis is fairly complicated and is only valid for a constant

number of steps� Afterwards though� the situation will be such that the simpler analyses of phases

II and III can be used� We will show that with high probability

degi�v� � di �� � o����� ���

jAi�e�j � a�

�
�a� � di

a�

��

�� � o����� and ���

jAi�e� �Ai�f�j � a�

�
�a� � di

a�

��

�� � o���� ���

for every vertex v� incident edges e and f � and integer � � i � s� where di is dened by the

recurrence

di�� � di

�
�� exp

� ��di
�a� � di

��
� �	�

The key to deciphering equations ��� through ���� as well as many other equations used in this

paper� is to notice that they describe quantities which are evolving �as if� they were truly random�

independently evolving subsets of some original sets� For instance� equation ��� is what we would

expect if the palettes Ai�e� were the intersection of two truly random subsets of size a� � �d� � di�

of the original palettes� To see this� suppose that we start with two identical sets A and B of
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size n and� after deleting k colours independently from each set� we ask what the size of their new

intersection is� The new expected size would be

�jA �Bj � �jAj � jA�j�� jB
�j

jBj �
�n� k��

n

Given that the colours are deleted independently� one can apply the standard Cherno� bounds and

show that the true size of the intersection is sharply concentrated around its expectation� This is

what equation ��� is essentially saying once we plug in the values A � B � A��e�� jA��e�j � a��

d� � a��� � �� and k � d� � di� The edges of the graph introduce a correlation� however� The

crux of the analysis is to show that this e�ect is negligible� i�e� the palettes and the graph evolve

�almost� as truly random subsets of the original palettes and a truly random subgraph of the

original graph� respectively�

For notational convenience� we dene

ai � a�

�
�a� � di

a�

��

and pi � exp

� ��di
�a� � di

�
�

so that� roughly� ai is the size of an edge�s palette and pi is the probability that an edge succeeds

in colouring itself when going from Gi to Gi���

Note that in order that this analysis be valid for more than a constant number of steps� we

would have to determine the o��� terms in ��� through ���� While this could be done� it would

further complicate the already di�cult proof� We prefer to accept the current situation and use

the simpler phase II and III analyses for the rounds beyond s�

Equations ��� through ��� are proved by induction with the help of the following lemma�

Roughly� it indicates that what happens at one vertex is nearly independent of what happens

at another� In particular� this implies that the edge palettes evolve as nearly independent random

subsets of the initial palette� With a slight abuse of notation we use Ai�u� to denote the �implicitly

dened� palette of colours which� at round i� are available around a vertex u �i�e� not used by any

edge incident with u��

Lemma � Consider the step from Gi to Gi�� and �x three distinct vertices u� v� and w� Let X be

a set of colours such that jXj � p
d� lnn� lnn�

�i� If X � Ai�u� then the number of edges e incident with u which succeed in colouring themselves

from X is jXj
�

pidi
�a��di

�
�� � o�����

�ii� If X � Ai�u��Ai�v� then the number of pairs of edges e and f incident with u and v� respec�

tively� which succeed in colouring themselves with the same colour from X is jXj
�

pidi
�a��di

��
���

o�����

�iii� If X � Ai�u��Ai�v��Ai�w� then the number of triples of edges e� f � and g incident with u�

v� and w� respectively� which succeed in colouring themselves with the same colour from X is

jXj
�

pidi
�a��di

��
�� � o�����

	



Before proving the lemma� we�ll show that the i � � versions of equations ��� through ��� follow�

Of course� the i � � case holds even without the �� � o���� factor�

To determine the new degree of a vertex� we use Lemma ��i�� By induction� a vertex v has

degi�v� � di��� o���� and there are jAi�v�j � a�� �d��di��� o����� � ��a��di���� o���� colours

which have not been used by any edge incident with v� With X � Ai�v��

degi���v� � degi�v�� jXj
�

pidi
�a� � di

�
�� � o���� � �di � pidi��� � o���� � di���� � o�����

Now consider a xed edge e � uv� Assuming that e does not colour itself� its new palette

contains those colours not successfully used at either u or v� Using parts �i� and �ii� of Lemma �

with X � Ai�e�� inclusion�exclusion gives

jAi���e�j � jAi�e�j � �jAi�e�j
�

pidi
�a� � di

�
�� � o���� � jAi�e�j

�
pidi

�a� � di

��

�� � o����

� a�

�
�a� � di��

a�

��

�� � o�����

by induction and �	�� Similarly� with X � Ai�e� �Ai�f�� we have

jAi���e� �Ai���f�j � jAi�e� �Ai�f�j
�
��  

�
pidi

�a��di

�
�  

�
pidi

�a��di

�� � � pidi
�a��di

���
�� � o����

� a�

�
�a� � di��

a�

��

�� � o�����

Proof of Lemma �� The statement of the lemma follows from four additional facts� which we

prove by induction� and from the induction hypothesis jAi�e�j � ai���o����� for every edge e � Gi�

This is valid since this lemma is used only in the proof by induction that Ai���e� � ai���� � o�����

These facts concern a specic� xed colour 	� Consider the subgraph of Gi induced by the

vertices which have no incident edge which has been coloured 	� Call this subgraph Gi��� Clearly�

the edges of Gi�� are exactly those whose palettes contain 	� The four facts are as follows� For

every vertex u � Gi���

degi���u� � di���� � o����� ���

where di�� � di
�
�a��di

a�

�
� and for every three disjoint edges e� f � and g in Gi�� �

Pr�e colours itself 	� �
�

ai
exp

���di��
ai

�
�� � o����� �
�

Pr�e and f colour themselves 	� �
�

a�i
exp

���di��
ai

�
�� � o����� and ����

Pr�e� f and g colour themselves 	� �
�

a�i
exp

���di��
ai

�
�� � o����� ����

Note that di��a� � di��a� is the �right� value for di�� � Indeed� if the graph and palettes were

evolving in a truly random fashion the probability that colour 	 would belong to an �implicit�

vertex palette after removal of d� � di colours would be

jA��u�j � �d� � di�

jA��u�j �
�a� � di

a�

�



for all 	 and u� Then� the expected number of u�neighbours still retaining 	 would be di��a� �

di��a�i� for all u and 	�

Equations �
� through ���� follow from our inductive assumption jAi�e�j � ai�� � o���� and

equation ���� which is also proved by induction� We prove �
� through ���� rst� Equation �
� is

pretty easy� Fix an edge e� The only relevant edges are those in Gi�� and each edge picks 	 as

its tentative colour with probability ��ai�� � o����� since each edge has a palette of ai�� � o����

colours� Edge e succeeds in colouring itself if it� but none of the incident edges� tentatively picks

	� This happens with probability

�

ai

�
�� �

ai

��di��

�� � o���� �
�

ai
exp

���di��
ai

�
�� � o�����

Equation ���� is more or less the same� Fix edges e and f � They are disjoint and so have at

most � incident edges in common� Therefore� the probability that they both succeed is

�

a�i

�
�� �

ai

��di��

�� � o���� �
�

a�i
exp

���di��
ai

�
�� � o�����

Equation ���� is proved similarly� The only thing to note is that there are at most �� incident

edges in common�

Now we make the induction step in the proof of equation ���� �In the i � � case� it holds even

without the �� � o������ We assume the equation holds as shown and prove the i� � version� It is

helpful to think of the transition from Gi�� to Gi���� as occurring in two steps� First only consider

the e�ect of edges being coloured 	� This causes vertices and their surrounding edges to disappear�

Then consider the e�ect of edges being coloured with other colours� This causes the individual

successful edges to disappear� Although splitting the transition into two steps increases the length

of the proof slightly� it helps clarify the di�erences in the two e�ects�

Fix a vertex u� In the rst step some of the neighbours of u disappear� taking with them the

connecting edge� and in the second step some more of the edges incident to u disappear� The

probability that a given neighbour v has a successful edge �and therefore disappears� is di�� times

the probability that a particular edge succeeds with 	� since these are disjoint events� From equation

�
� and the other assumptions this is

di��
ai

exp

���di��
ai

�
�� � o���� �

di
�a� � di

exp

� ��di
�a� � di

�
�� � o���� �

pidi
�a� � di

�� � o�����

Therefore the expected number of u�s neighbours which disappear is

di��
pidi

�a� � di
�� � o����

Let Y be the number of u�s neighbours which survive this rst step� We�ve just shown that

Ex�Y � � di��

�
�� pidi

�a� � di

�
�� � o���� � di��

�
�a� � di��

�a� � di

�
�� � o�����






Next we�ll use the large deviation inequality to show that Y is with high probability equal to

its expectation times �� � o����� The only thing that was important in determining the value of

Y was knowing which edges tentatively chose 	� Another way to say this is that the underlying

probability space for the rst step is formed by the independent answers to the question �did edge

e tentatively pick 	!� The probability of Yes is pe � ��jAi�e�j � ��ai�� � o�����

Here�s a strategy for determining Y � rst look at all of the edges incident with all of the

neighbours of u� This is d�i���� � o���� queries� Each query can a�ect the disappearance of at most

� neighbours of u �and this only if e joins two neighbours of u which have only one other Yes edge

which itself joins two neighbours of u�� so the variance of each query is at most ���ai�� � o�����

The neighbours with exactly one edge which tentatively picked 	 may or may not survive� but

if the number of incident edges which tentatively pick 	 is not �� the vertex certainly survives� For

each of those vertices still in question� look at all edges incident with the other endpoint of the one

edge tentatively coloured 	� All of this requires at most d�i���� � o���� additional queries� These

queries can a�ect at most � neighbours of u �and that only if the edge creates a ve cycle�� so the

variance of each query is at most ��ai�� � o�����

Therefore the total variance is at most ��d�i���ai�� � o����� Proposition � then implies that

Pr
h
jY � Ex�Y �j � �

q
��d�i���ai�� � o����

i
� �e��

for all � 
 � 
 �����d�i���ai�� � o����� We will require that the exceptional probability be ��n� so

that we can accommodate such an application of the large deviation inequality per edge per colour

per round� In any case� this forces � � � lnn� The condition that d� � lnn and the fact that

during Phase I di� di�� � and ai all have order d� �since � is a constant� imply that the side condition

is satised and that Y �s deviation is negligible compared with its expectation� Therefore� with high

probability�

Y � Ex�Y ��� � o���� � di��

�
�a� � di��

�a� � di

�
�� � o�����

Turning to the second step of the transition� how many of these Y edges incident with u survive

this step! That is� how many of them manage not to colour themselves with some other colour!

We already know from the rst step which edges tentatively chose 	� Since the number of edges

incident with vertex v which chose 	 is binomially distributed with mean di���ai� the Cherno�

bounds easily imply that this number is asymptotically negligible to di�� with probability su�ciently

close to one�

Thus� the probability that a given edge e successfully colours itself with a colour other than 	

is the sum of disjoint events�

X
��Ai�e�nf�g

�

ai

�
�� �

ai

��di�����o����

�� � o���� � exp

���di��
ai

�
�� � o���� � pi�� � o�����

Therefore�

Ex�degi�����u�� � ��� pi�Y �� � o����

��



� ��� pi�di��

�
�a� � di��

�a� � di

�
�� � o����

� ��� pi�di

�
�a� � di

a�

��
�a� � di��

�a� � di

�
�� � o����

� di��

�
�a� � di��

a�

�
�� � o�����

This is the right expectation� so we just need to show that this quantity is also highly concen�

trated about its mean� Again we use Proposition �� This time� the underlying probability space

is generated by the independent� tentative colour choices of those edges of Gi known not to have

chosen colour 	� Note that now we have to consider the entire graph� and not just Gi���

Here�s a strategy for determining how many of the Y neighbours from the rst step survive the

second� rst query all edges joining u and vertices other than those which were discarded in the

rst step� Each tentative choice can a�ect the number of successes by at most �� That�s all we

know� so we bound the variance of each query by ���� � �� There are of course at most di���o����

such queries�

Call an edge connecting u and one of the Y neighbours which still might succeed in colouring

itself �because its colour was unique among the edges incident with u�� a half�successful edge and the

neighbour a half�successful vertex� Next query all edges joining two half�successful vertices� Each

such edge could kill the chances of one half�successful edge or the other� but not both since they

have di�erent tentative colours� This e�ect of � happens with probability at most ��ai�� � o����

��at most� since the edge might not even have the necessary colours in its palette�� Thus� each

such query has variance at most ��ai�� � o�����

Lastly� query all remaining edges incident with a half�successful neighbour� Each such edge

could kill only one half�successful edge� so each query has variance at most ��ai�� � o�����

The strategy�s total variance is therefore

di�� � o���� � di��di�ai�� � o�����

which� when we put � � � lnn� leads to a deviation of

�
q
di�� � di���ai� lnn�� � o�����

which is asymptotically negligible compared with degi�����u��s expectation� Thus we conclude that�

with high probability�

degi�����u� � ��� pi�Y �� � o���� � di��

�
�a� � di��

a�

�
�� � o�����

as desired� That nishes the proof of the i� � version of ����

Now we can prove the statements made in the lemma� In the rst� we are given a xed vertex u

and a set X of colours� none of which have been used by any edge incident with u� and we ask how

many edges incident with u succeed in colouring themselves with colours in X� Call this quantity

Y �

��



Fix a colour 	 � X� There are di�����o���� edges incident with u which might colour themselves

	� Equation �
� tells us that the probability that one of these edges succeeds is

di��
ai

exp

���di��
ai

�
�� � o���� �

di
�a� � di

exp

� ��di
�a� � di

�
�� � o���� �

pidi
�a� � di

�� � o�����

Since there are jXj colours and only one edge can succeed for each colour� the expected number of

edges which succeed in colouring themselves from X is

Ex�Y � � jXj
�

pidi
�a� � di

�
�� � o�����

Now we use a large deviation argument similar to that used in the second step of the inductive

proof of ���� Here we consider the whole probability space generated by all tentative colour choices�

First query the di�� � o���� edges incident with u� Each can a�ect Y by at most �� Thus� each of

these queries has variance at most ���� � ��

Given this partial information� call the edges which might still colour themselves successfully

from X �because their colour was unique and in X� and the corresponding neighbours half�

successful� Next query all edges joining two half�successful vertices� Each such query has e�ect

at most � with probability at most ��ai�� � o����� Then query all remain edges incident with

the half�successful vertices� These queries also have e�ect at most �� but probability at most

��ai�� � o�����

This strategy then has a total variance of at most di�� � o���� � jXjdi�ai�� � o����� which

leads to a deviation of at most �
p
di�� � jXj�ai� lnn�� � o����� Since jXj � p

d� lnn� this is again

negligible compared with the mean� which proves statement �i� of the lemma�

In statement �ii�� we have two vertices u and v and a set X of colours� none of which has been

used by an edge incident with u or v� We ask how many pairs of edges e and f incident with u and

v� respectively� will succeed in colouring themselves with the same colour from X�

For a specic colour 	 � X� the probability that there is a pair which colours itself 	 is the

number of pairs times the probability given by ����� There are between degi���u� � degi���v� and

�degi���u� � �� � �degi���v� � �� pairs� In any case� the number of pairs is d�i���� � o����� Therefore

the probability that there is a pair which colours itself 	 is

d�i��
a�i

exp

���di��
ai

�
�� � o���� �

�
pidi

�a� � di

��

�� � o�����

Since there are jXj colours� the expected number of successful pairs is

jXj
�

pidi
�a� � di

��

�� � o�����

A large deviation argument very similar to that given in the proof of statement �i� works here

too� First� we query the edges around the vertices u and v� Changing the tentative colour of one of

these edges can create at most one new pair or kill at most two pairs �and this only if the edge in

��



question formed a pair� but not both� Hence� we have �di�� � o���� queries with maximum e�ect

of �� Call the pairs which survive the exposure of these queries the half�succesful pairs�

Next� we query the edges not yet queried which connect two distinct half�succesful pairs� There

are at most �jXj����o���� queries to be made� Changing the tentative colour of one of these edges

creates no new pairs and can kill at most one of the two pairs� The maximum e�ect of each query

is then � with probability at most ��ai�� � o����� since there are two out of ai�� � o���� colours to

choose from� Finally� we query the remaining edges incident to edges forming a pair� The number

of such queries is at most �jXjdi��� o���� minus twice the number of queries made in the previous

group� each with a maximum e�ect of � and probability of at most ��ai�� � o�����

This strategy�s total variance is at most �di�� � �jXj�ai��� � o���� leading to a deviation of at

most �
p
�di�� � �jXj�ai��� � o����� By choosing � �  lnn� we get an exceptional probability of

n��� which can accomodate jEj 
 n� edges for constantly many rounds�

Statement �iii� is proved almost identically� For a particular colour 	� the number of triples

incident with u� v� and w which might potentially all be coloured 	 is d�i���� � o����� Each triple

succeeds with the probability given by ����� Since there are jXj colours� this means that the

expected number of successful triples is

jXjd
�
i��

a�i
exp

���di��
ai

�
�� � o���� � jXj

�
pidi

�a� � di

��

�� � o�����

The familiar large deviation argument nishes the proof�

Given all of this� how large must s be! If we dene �i by di�a�� we see that �	� implies that

�i�� � �i

�
�� exp

� ���i
�� �i

��

and from the initial conditions� �� � �� �� Since we wish to nd an s such that

degs�v�

a�
� �s�� � o���� � ��

�
�

it su�ces to nd an s such that �s � ����� It is then immediately clear that s depends only on ��

A little computation reveals that

s 	 �� log�������

su�ces�

� Analysis� Phase II

The second phase of the analysis follows the progress of the algorithm until

degt�v� � ���� � ��	 lnn ����

for every vertex v� The surprising thing is that t � s� � � � ��� ln����� �  ln lna� su�ces�

� 



We will show that the quantities dened by ds � ������a� and the recurrence

di�� �
��� � ��

�a�
d�i �

p
��di lnn �� �

satisfy with high probability degi�v� � di for every vertex v and integer s � i � t� Then we will

solve the recurrence to determine how large t need to be in order to satisfy �����

At the end of Phase I we know that degs�v� � ������a� for every vertex v and that jAs�e�j �
a�
�
�� ds

a�

��
�� � o���� 
 ��a� for every edge e in Gs� Together these imply that the edge palettes

can never become empty� since even if every edge incident with edge e chose a di�erent colour from

e�s palette� there would still be ������a� colours� Formally� for every i 
 s and every edge e in Gi�

jAi�e�j 
 ��

�
a��

Also from Phase I we know that for any two edges e and f and i � s�

jAi�e� �Ai�f�j � a�

�
��

di
a�

��

�� � o���� � a�
�
�� ����

��
�� � o���� � �� � ����a��

Furthermore� since the palette intersections can only get smaller over time� the same upper bound

holds for any i 
 s�

The proof that the di�s dened by �� � satisfy degi�v� � di� proceeds by induction� The base

case i � s follows immediately from the denition of ds � ������a��

Assume that the claim is true for Gi and consider the step from Gi to Gi��� Here� an edge

e � uv does not succeed in colouring itself with probability at most

X
f�e�
�

Pr�e and f choose the same colour� �
X
f

jAi�e� �Ai�f�j
jAi�e�j � jAi�f�j � �degi�u� � degi�v��

��� � ��

�a�

Therefore� by induction� the expected new degree of a xed vertex v is

Ex�degi���v�� �
X
e�v

Pr�e does not colour itself� � ��� � ��

�a�
d�i � ����

A large deviation argument very similar to those given in the proof of Lemma � shows that degi���v�

deviates from its mean by more than
p
��di with probability less than e��� We need that the degree

is within this deviation for every vertex in every round of Phase II� so we set � � � lnn� Therefore�

with high probability

degi���v� �
��� � ��

�a�
d�i �

p
��di lnn � di���

as desired�

All that�s left is to �solve� the recurrence �� �� Of course� we�re really only interested in

determining how large t must be in order to guarantee that dt � ���� � ��	 lnn�

A close look at �� � reveals that the rst term dominates when di is large�that is� initially�and

the second term dominates as di becomes smaller� We will break the analysis into two sub�phases

��



to re"ect this behaviour� In order to optimize the constants later� we dene the transition point r

as the minimum integer such that

��� � ��

�a�
d�r � ���� � ��

p
��dr lnn�

This is equivalent to saying that r is the minimum integer such that d�r � �������a� lnn�

For s � i 
 r�

di�� � ��� � ��

�a�
d�i �

�

��a�
d�i �

 

��a�
d�i �

using the fact that � � ����� Therefore� for s � i � r�

di �
�

 

��a�

��i�s��

d�
i�s

s �

�
 

��a�

��i�s��
�
��a�
�

��i�s

�
��a�
 

�
 

�

��i�s

�

Thus� r is at most the solution to the equation

	
��a�
 

�
 

�

��r�s

�

� �������a� lnn�

This is equivalent to �
�

 

��	�r�s

�
���

� �

a��
lnn


 a���

which is implied by

r � s� � 

ln lna�
ln �

�

So� r is at most s� � � � ��� ln lna��

For r � i 
 t�

di�� � ����� � �� � ��
p
��di lnn � �� � ���

p
��di lnn

Thus� di is asymptotic to the solution of x � �� � ���
p
��x lnn� Namely� di is asymptotic to

���� � ��� lnn� In fact�

di � �� � ���
p
�� lnnd�

��

i�� �
�
�� � ���

p
�� lnn

����i�r��

d�
��i�r�

r � ���� � ����lnn�d�
��i�r�

r �

Since we intend to follow di until dt � �������	 lnn� we require that t be no more than the solution

to the equation

���� � ����lnn�d�
��t�r�

r � ���� � ��	 lnn�

This is just

�� � ���
t�r

� dr 
 a��

which is implied by

t� r 
 �ln lna� � ln ln�� � ���� ln � 
 � ��� ln lna� � � ��� ln����� � ��

Therefore� t is at most r � � � � ��� ln����� � � ��� ln lna� � s� � � � ��� ln����� �  ln lna��

��



� Analysis� Phase III

The third and nal phase of the analysis follows the algorithm until every edge is coloured� Up

to this point we�ve been able to control the individual vertex degrees� but from now on they are

too small to have good statistical properties� For this reason we now take a global perspective and

concentrate on the number of edges remaining in the entire graph�

As noted at the beginning of the previous section� already at the end of Phase I we know that

for any i 
 s and any edges e and f in Gi� jAi�e�j 
 ������a� and jAi�e� � Ai�f�j � �� � ����a��

The stopping condition for Phase II guarantees that for any i 
 t and any vertex v� degi�v� �
���� ���	 lnn� Therefore� for any i 
 t� in the transition from Gi to Gi��� the probability that an

edge e does not succeed in colouring itself is at most

X
f�e�
�

Pr�e and f choose the same colour� �
X
f

jAi�e� �Ai�f�j
jAi�e�j � jAi�f�j �

���� � ���� lnn

�a�
�

The expected number of edges in Gi is at most this probability to the �i� t�th power times the

number of edges in Gt� This is at most

	
���� � ���� lnn

�a�


i�t

��� � ��	n lnn�

When the expected number of edges is less than p� Markov�s inequality implies that the probability

that there exists an uncoloured edge is less than p� Setting p � �� lnn and simplifying� we want to

determine the minimum i such that�
�a�

���� � ���� lnn

�i�t

� ��� � ��	n ln� n�

This is equivalent to

i� t �
lnn

lna�
�� � o�����

In particular� if lna� � ��lnn� ln lnn�� we require only O�ln lnn� rounds to completely edge colour

the graph�

Taking a bit more care with the constants� to ensure that Phase III completes within k ln lnn

rounds� we require �
�a�

���� � ���� lnn

�k ln lnn
� ��� � ��	n ln� n�

which� when k 
 �� is implied by

a� �
����� � ���	

�
n��k ln lnn ln� n�

Note that it is possible to replace the constant ��� by the constant ����� � ��� by changing the

stopping point of Phase I� If we follow Phase I until degs�v� � ��a����� � ��� we get jAi�e�j 

��a���� � �� for every i 
 s� giving improvements both here and in Phase II�

��



� Analysis� The irregular case

If the value of the maximum degree � could be inexpensively distributed to all of the edges� the

regular case analysis would also be valid in the general case� However in a distributed architecture

this might be too costly� so it is important that the algorithm rely on local information alone� This

motivates the initial palette size of �� � ��maxfdeg�u��deg�v�g for edge e � uv�

In fact what happens in the case when neighbouring edges receive di�erent sized initial palettes

is that the probability of con"ict is decreased and so the edges succeed in colouring themselves even

more rapidly than in the regular case� We will argue that the graph will be completely coloured

at least as fast as a regular graph where all edges have the same initial palette size as the edge in

our irregular graph with the smallest initial palette size� We�ll do this by xing an edge e and a

round i and showing that the probability that e succeeds in colouring itself in this round is at least

as high as if the graph were locally as in the regular case�

We modify e�s neighbourhood in several ways� all of which decrease the probability of e�s success�

First of all� for every edge f incident with e� we ignore every colour from f �s palette which was

not in e�s initial palette� This increases the probability of con"ict between e and f by forcing f

to choose a tentative colour which e at least has a chance of choosing and therefore decreases the

probability of e�s success� Next we add phantom edges to the vertex of e with lower degree� Say

e � uv and degi�u� � degi�v�� so we add phantom edges to u� To create the phantom edges�

palettes and ll out the real edges� short palettes� we randomly add colours from e�s initial palette

until degi���u� � degi���v� � di�� for all colours 	� This only decreases e�s probability of success�

since it creates more opportunities for con"ict�

But now the situation is locally just as if the graph were max�deg�u��deg�v���regular and so

the probability of e�s success is as in the regular case analysis� And thus� in the original irregular

graph� the probability of e�s success is at least as high� In particular� if every edge�s initial palette

size is large enough� the entire graph will be coloured within O�log log n� rounds�

	 Concluding Remarks

If we are willing to spend O�log n� rounds� we can lower the condition on the minimum initial

palette size to a� � log n� In this case� we skip Phase II entirely and jump to an argument similar

to Phase III� Already at the end of Phase I� the probability that an edge does not succeed in

colouring itself is less than �see equation �����

��� � ��

�a�
di � ��� � ����

Therefore the expected number of edges remaining in Gi is at most

���� � ����i�s ��a�n���

�	



This quantity is less than �� lnn when i� s � ��ln�a�n lnn�� � ��logn�� The other way around�

O�log n� rounds su�ce to colour all edges� The condition a� � logn comes only from the hypothesis

of Lemma � in Phase I�

As we pointed out� if it were possible to distribute the maximum degree � to all edges� we could

assign initial palettes of size ��� ��� and so guarantee completion in O�log log n� rounds whenever

� � �
�
nc� log log n

�
� This isn�t feasible� however� unless the graph has diameter O�log log n��

Failing this� we could spend a constant number of rounds �or� if n were known� O�log log n� rounds�

distributing the maximum local degrees before setting the initial palettes and running the colouring

algorithm� Thus we would only require that each edge be �near� a vertex of su�ciently high degree

to ensure completion within O�log log n� rounds�

Finally� note that the condition a� � �
�
nc� log log n

�
is not an artifact of our analysis� There

really are graphs which the algorithm will not colour in O�log log n� rounds unless the initial palettes

are this large� Take as an example n� disjoint copies of the path on  vertices� For each path�

the two edges both succeed as soon as they pick di�erent tentative colours and the paths succeed

independently� Thus� the expected number of paths surviving after t rounds is n� at�� This means

that unless the initial palettes are of size �
�
nc� log log n

�
� the expected number of rounds until all

pairs are coloured is more than O�log log n��
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