Nearly optimal distributed edge colouring in O(loglogn) rounds

David A. Grable* Alessandro Panconesif
Institut fir Informatik Institut fir Informatik
Humboldt-Universitat zu Berlin Freie Universitat Berlin
Unter den Linden 6 Takustrafie 9
D-10099 Berlin Germany D-14195 Berlin Germany
grable@informatik.hu-berlin.de ale@inf.fu-berlin.de

February 1996

Abstract

An extremely simple distributed randomized edge colouring algorithm is given which, for
any positive constants € and ¢ and a graph G with minimum degree Q(n¢/ 1081967 produces
with high probability a proper edge colouring of G using (1+¢)A(G) colours in only O(loglogn)
communication rounds.

1 Introduction

The edge colouring problem is a much studied problem in the theory of algorithms, graph theory,
and combinatorics, whose relevance to computer science stems from its numerous applications to
scheduling and resource allocation problems [5, 10, 12, 16, 17, 11, 19, among others]. Given an
input graph, the problem consists in finding a proper colouring using as few colours as possible. A
proper colouring is an assignment of colours to the edges so that no two incident edges have the
same colour.

In this paper we give an extremely fast, distributed, randomized, nearly optimal algorithm for
edge colouring. “Nearly optimal” means that the number of colours used is (1 + €)A, where A
denotes the maximum degree of the input graph and € > 0 is any arbitrarily small, but fixed,
positive real. The algorithm is randomized in that it is allowed to call a random number generator
which can generate uniformly distributed random integers in any interval. The algorithm may fail
to find a proper colouring, but we show that this almost never happens, i.e. the probability of
failure is o(1), a function which goes to 0 as n goes to infinity.

One of the main features of the algorithm is that it is arguably the simplest randomized
edge colouring algorithm one can consider. Each edge e = wwv is initially given a palette of

(1 + £) max{deg(u),deg(v)} colours. The computation takes place in rounds. In each round,

*Supported by Deutsche Forschungsgemeinschaft project number Pr 296/4-1.
fSupported by an Alexander von Humboldt Research Fellowship.

each uncoloured edge independently picks a tentative colour uniformly at random from its current
palette. If no neighbouring edge picks the same colour, it becomes final. Otherwise, the edge tries
again in the next round. At the end of each round the palettes are updated in the obvious way:
colours successfully used by neighbouring edges are deleted from the current palette.

The algorithm succeeds with high probability on any graph, regardless of its structure, as long
as certain minimum degree conditions are met. If the degrees are such that every edge e’s initial
palette has

ag(e) > logn

colours (recall that ap(uv) = max{deg(u),deg(v)} and that f > ¢g means g/f = o(1)), we can show
that the algorithm colours the graph within O(logn) rounds. But more remarkably, if there is a

fixed constant ¢ > 0 such that for every edge e
ao(e) -0 (nc/loglogn)

then the algorithm colours the graph within O(loglogn) rounds.

It is apparent that the algorithm is distributed—that is, each edge only needs to exchange
information with its neighbours. More precisely, the algorithm can be implemented in the standard
synchronous, message-passing distributed model of computation. Here, a distributed network (or
architecture) is modelled as an undirected graph. The vertices of the graph correspond to processors
and edges correspond to bi-directional communication links. The network is synchronous in the
sense that computation takes place in a sequence of rounds; in each round, each processor reads
messages sent to it by its neighbours in the graph, does any amount of local computation, and
sends messages back to each of its neighbours. The time complexity of a distributed algorithm is
then given by the number of rounds needed to compute the desired function.

In the description of the algorithm it is implicit that each edge is a processor. It is easy to see,
however, that each step of the algorithm can be implemented in the distributed model in a constant
number of rounds. Thus our algorithm enables a distributed network to edge colour itself. Besides
being of theoretical interest, such an algorithm has applications to real-life parallel architectures
[7, 11].

Note that, unlike the PRAM, the distributed model has no shared memory, something that
makes these two models radically different and, in fact, complementary. In a PRAM, each processor
can communicate with any other processor in constant time via the shared memory. Hence, the cost
of communication is completely neglected and only computation is charged for. In the distributed
model the opposite happens; computation is not charged for, but sending messages is expensive.
The time required to send a message from one processor to another is proportional to the minimum
distance in the graph between sender and receiver. In particular, if a distributed protocol runs in ¢
steps, a processor can communicate only with other processors at distance ¢ or less and therefore all

computation must be “local”. A message-passing network models the fact that in real distributed

or parallel architectures the cost of sending a message is order of magnitudes higher than the cost
of performing local computation.

We note that the local computations required by our algorithm are very simple and require only
O(1) time in the PRAM model. Simulating the message passing requires an extra O(logn) factor,

however.

Previous Work and Our Solution.

Clearly, if a graph G has maximum degree A then at least A colours are needed to properly
edge colour it. A classical theorem of Vizing shows that A + 1 colours are always sufficient and the
proof is actually a polynomial-time algorithm to compute such a colouring (see for example [5]).
Interestingly, given a graph G, it is NP-complete to decide whether it is A or A+ 1 edge colourable,
even for cubic or regular graphs [10, 8].

Efforts at parallelizing Vizing’s theorem have failed; the best PRAM algorithm known is a
randomized algorithm by Karloff and Shmoys that computes an edge colouring using very nearly
A+ VA = (1+0(1))A colours in O(logn) time [12]. This algorithm can be derandomized using
standard derandomization techniques [4, 18]. Whether (A + 1)-edge colouring is P-complete is an
open problem.

In the distributed setting the first non-trivial result was a randomized algorithm by Panconesi
and Srinivasan which, with high probabilty, uses roughly 1.58 A +logn colours and runs in O(logn)
time [19]. For the interesting special case of bipartite graphs Lev, Pippinger, and Valiant show that
A-colourings can be computed in NC, but this is provably impossible in the distributed model of
computation even if randomness is allowed (see [16, 20]). The result of Panconesi and Srinivasan
was greatly improved by Alon [1] and Dubhashi and Panconesi [6] who showed how to compute
nearly optimal colourings in O(logn) rounds with high probability. These solutions are based
on a strategy known as the Rodl Nibble, a powerful probabilistic technique which has been used
with great success for a large variety of asymptotic packing, covering, and colouring problems
[2, 13, 14, 15, 21, 22, among others]. Our result shows that in order to get asymptotically optimal
edge colourings, such semi-random techniques are unnecessary.

The main feature of our algorithm, however, is its vastly improved running time. An interesting
open question is whether nearly optimal edge colourings can be computed as fast deterministically.
Our solution compares favourably to earlier ones also in terms of simplicity, not only because of
the utter simplicity of the algorithm but also because it makes no use of a separate “brute force”
routine at the end of the recursion.

The rest of this paper is devoted to the analysis of the algorithm described above. We first deal
with the regular case, where all vertices have the same degree, and then show how to remove this

assumption.

2 A Large Deviation Inequality

A key ingredient of our proof is a large deviation inequality for functions of independent random
varaibles. The one we use is a generalization of a result of Alon, Kim, and Spencer [3], which
the first author recently developed. Please see [9] for a proof, a more general result, and further
discussion.

Assume we have a probability space generated by independent random variables X; (choices),
where choice X; is from the set A;, and a function Y = f(X1,...,X,,) on that probability space.
Consider a query game in which we try to determine the value of Y by making queries of the form
“What was the i-th choice?” to a truthful oracle. A strategy can be expressed as a decision tree
whose internal nodes designate queries to be made and whose leaves designate final values for Y.

Define the variance of a query (internal node) ¢ concerning choice 7 to be

— .2
v(] - Z pl,auq,av
a€A;

where

Pi,a = Prlchoice i was a]

and
Hq,a = Ex[Y | choice ¢ was a and all previous queries| — Ex[Y" | all previous queries].

In words, fi4,, measures the amount which our expectation changes when the answer to query q is
revealed to be a.
Also define the mazimum effect of query ¢ as

Cq = Imax — bl-
47 ek |Hg,a — gl

As an upper bound on ¢; we often take the maximum amount which ¥ can change if choice ¢ is
changed, but all other choices remain the same.

A line of questioning is a path in the decision tree from the root to a leaf and the variance of
a line of questioning is the sum of the variances of the queries along it. Finally, the variance of
a strategy is the maximum variance over all lines of questioning. The use of the term variance is
meant to be suggestive: the variance of a strategy for determining Y is an upper bound on the

variance of Y.

Proposition 1 If there is a strategy for determining Y with variance at most V then

Pr ||V — EafY]| > 2V/pV] < 2¢7%

for every 0 < ¢ < V/max cg.

When applying this Proposition, to determine the variance of each query, we must bound the
sum Y, piya,ugya. There are two “standard” ways to do this. If we only know that the p’s differ by

at most ¢4, the best we can say is that

2 2
Vg = Z piya:uq,a < cq/4' (1)
a€A;
If we know, in addition, that the p’s take on two values, one corresponding to choices with total

probability p and the other to choices with total probability 1 — p, then we know that

Vg = D Piakya < p(1—p)c. (2)
a€A;
Both of these bounds can be shown using elementary, but non-trivial, computations, which we

omit.

3 Analysis: Overview

The intuition behind the analysis is as follows. The algorithm generates a sequence of graphs
Go,Gy,...,G,, where G is the input graph G and Gj;, the input of round i, is the subgraph
induced by the edges which are still uncoloured. Each edge e = uv has initial palette Ag(e) =
{1,...,(1 4+ ¢) max{deg(u),deg(v)}} and at round i the palette A;(e) is composed of e’s initial
palette minus the colours used by its coloured neighbours.

At round i, each edge e has a probability p;(e) of being coloured. In the regular case (but similar
considerations apply to the general case) these probabilities are sharply concentrated around a
value p;. The initial value of p; is (very nearly) e 2 and, as the algorithm proceeds, p; very rapidly
approaches 1. Intuitively, this is due to the fact that the size of the intersection of the palettes of
any two neighbouring edges shrinks at a much faster rate than the size of the palettes themselves.
This makes the likelihood of conflict, i.e. of two neighbouring edges picking the same tentative
colour, very unlikely and in fact soon negligible.

Perhaps the crucial fact about the analysis is to show that, despite the interaction along the
edges of the graph, the colour palettes behave “as if” they were random sets of the original palettes,
evolving independently of one another. In other words, one has to show that the correlation
introduced by the graph is negligible. Similarly, one needs to show that G; is “essentially” a
random subgraph of the original graph.

We divide the analysis of the algorithm into three phases. During the first phase, we control the
vertex degrees, palette sizes, and size of palette intersections quite carefully in order to get to the
point were these quantities are small enough that p; is approaching 1 sufficiently quickly that the
vertex degrees are decreasing doubly exponentially. This requires only constantly many rounds.

In the second phase, the analysis simplifies considerably, as we need only bound the vertex

degrees from above. Surprisingly, the vertex degrees decrease at a doubly exponential rate. This

phase lasts until the vertex degrees are of order log n, at which point they no longer have sufficiently
good statistical properties. This phase lasts at most O(loglogn) rounds.

In the last phase, we take a global view and consider all remaining O(n logn) edges. Although
there may be large local deviations, the total number of edges still decreases at a doubly exponential
rate (assuming the original palettes were large enough). It therefore takes only O(loglogn) rounds
to colour all remaining edges.

Consider now the regular case (we will comment on the irregular case in Section 7). We wish

to colour a dp-regular graph with ag = (1 + €)dy colours. Define « as ¢/(1 + ¢), so that
(1 - a)ag = d[).

We assume that « is a positive constant less than 1/10 or, equivalently, that € is a positive constant
less than 1/9. As noted in the introduction, we also must assume that ag = 2 (nc/ loglog”), for
some positive constant c¢. The constant ¢ will be reflected in the running time of phase III of the

analysis and can be arbitrarily small (but must be fixed).

4 Analysis: Phase I

The first phase of the analysis will follow the algorithm for s steps, s a constant, until

012

deg,(v) < 0 (3)

for every vertex v. Unfortunately the analysis is fairly complicated and is only valid for a constant
number of steps. Afterwards though, the situation will be such that the simpler analyses of phases
II and III can be used. We will show that with high probability

deg;(v) = d; (1+o0(1)), (4)
aa N\ 2
|Ai(e)] = ao <Ld> (L +o0(1)), and (5)
ag

aag + d;
ag

3
Aie) N A(f)| = ao() (1+o(1)) (6)

for every vertex v, incident edges e and f, and integer 0 < ¢ < s, where d; is defined by the

—2d;
dit1 = d; <1 — exp {m}) : (7)
7

The key to deciphering equations (4) through (6), as well as many other equations used in this

recurrence

paper, is to notice that they describe quantities which are evolving “as if” they were truly random,
independently evolving subsets of some original sets. For instance, equation (5) is what we would
expect if the palettes A;(e) were the intersection of two truly random subsets of size ay — (dy — d;)

of the original palettes. To see this, suppose that we start with two identical sets A and B of

size n and, after deleting k£ colours independently from each set, we ask what the size of their new

intersection is. The new expected size would be

! n — 2
(40 5| - (4] -l Z] = 5

Given that the colours are deleted independently, one can apply the standard Chernoff bounds and
show that the true size of the intersection is sharply concentrated around its expectation. This is
what equation (5) is essentially saying once we plug in the values A = B = Ag(e), |Ao(e)| = ao,
dyp = ap(l —) and k = dy — d;. The edges of the graph introduce a correlation, however. The
crux of the analysis is to show that this effect is negligible, i.e. the palettes and the graph evolve
“almost” as truly random subsets of the original palettes and a truly random subgraph of the
original graph, respectively.

For notational convenience, we define

aay + d;i\ 2 —2d;
o ())
so that, roughly, a; is the size of an edge’s palette and p; is the probability that an edge succeeds
in colouring itself when going from G; to G4 1.

Note that in order that this analysis be valid for more than a constant number of steps, we
would have to determine the o(1) terms in (4) through (6). While this could be done, it would
further complicate the already difficult proof. We prefer to accept the current situation and use
the simpler phase II and III analyses for the rounds beyond s.

Equations (4) through (6) are proved by induction with the help of the following lemma.
Roughly, it indicates that what happens at one vertex is nearly independent of what happens
at another. In particular, this implies that the edge palettes evolve as nearly independent random
subsets of the initial palette. With a slight abuse of notation we use A;(u) to denote the (implicitly
defined) palette of colours which, at round 4, are available around a vertex u (i.e. not used by any

edge incident with).

Lemma 2 Consider the step from G; to Gi+1 and fix three distinct vertices u, v, and w. Let X be
a set of colours such that | X| > v/dolnn > Inn.

(i) If X C A;(u) then the number of edges e incident with u which succeed in colouring themselves
from X s |X| (2242) (14 0(1))
(ii) If X C A;j(u)NAj(v) then the number of pairs of edges e and f incident with u and v, respec-

2
tively, which succeed in colouring themselves with the same colour from X is | X| (aé’éfdi) (1+
o(1)).

(113) If X C A;(u) N A;j(v) N A;j(w) then the number of triples of edges e, f, and g incident with u,
v, and w, respectively, which succeed in colouring themselves with the same colour from X is
idi \?
1X| (52d) " (1 +o(1)).

Before proving the lemma, we’ll show that the ¢ + 1 versions of equations (4) through (6) follow.
Of course, the ¢ = 0 case holds even without the (1 + o(1)) factor.

To determine the new degree of a vertex, we use Lemma 2(i). By induction, a vertex v has
deg,;(v) = d;(1+0(1)) and there are |A;(v)| = ag — (do — d;(1 +0(1))) = (awag +d;)(1 4+ o(1)) colours
which have not been used by any edge incident with v. With X = A;(v),

g1 (0) = degs(0) = 1X] (29) (1 0(1) = (@ = pd) (14 0(1) = disa (1 + o{).

Now consider a fixed edge e = uv. Assuming that e does not colour itself, its new palette
contains those colours not successfully used at either u or v. Using parts (i) and (ii) of Lemma 2

with X = A;(e), inclusion-exclusion gives

idi idi \?
(@] = 4@ =240 (25) (1 o) + 4@ (525) (1 +o()
. aay + dig1\? o
— o (M) (o),
by induction and (7). Similarly, with X = A;(e) N A;(f), we have
|Ai+l(e) n Al+1(f)| = |Al(e) n Al(f)| (1 -3 (aé)(jiidi> +3 (aé)éiidi)2 o (a(f;iidi)?’) (1 T 0(1))
o\ 3
. (aag C—i—odz-q-l) (1 4 o(1)).

Proof of Lemma 2. The statement of the lemma follows from four additional facts, which we
prove by induction, and from the induction hypothesis |4;(e)| = a;(1+o0(1)), for every edge e € Gj.
This is valid since this lemma is used only in the proof by induction that A;y1(e) = a;11(1 + o(1)).

These facts concern a specific, fixed colour 7. Consider the subgraph of G; induced by the
vertices which have no incident edge which has been coloured «y. Call this subgraph G ,. Clearly,
the edges of G; , are exactly those whose palettes contain . The four facts are as follows. For

every vertex u € G,

deg; , (u) = diy(1 + o(1)), (8)
where d; , = d; (%;Mi), and for every three disjoint edges e, f, and g in Gj 5,
, 1 —2d;
Prle colours itself y] = —expq——= (1 +0(1)), (9)
a; a;
1 —dd;
Prle and f colour themselves 7] = —exp{——=" (14 o0(1)), and (10)
a; a;
1 —6d; .
Prle, f and g colour themselves 7] = — exp T’ (14 o(1)). (11)

Note that d;(aag + d;)/ag is the “right” value for d; . Indeed, if the graph and palettes were
evolving in a truly random fashion the probability that colour v would belong to an (implicit)
vertex palette after removal of dy — d; colours would be

|Ag(u)| — (do — d;) _ aag + d;
|Ap (u)] agp

for all v and w. Then, the expected number of u-neighbours still retaining v would be d;(aag +
d;)/aopi, for all u and 7.

Equations (9) through (11) follow from our inductive assumption |4;(e)| = a;(1 + o(1)) and
equation (8), which is also proved by induction. We prove (9) through (11) first. Equation (9) is
pretty easy. Fix an edge e. The only relevant edges are those in G;, and each edge picks «y as
its tentative colour with probability 1/a;(1 + o(1)), since each edge has a palette of a;(1 + o(1))
colours. Edge e succeeds in colouring itself if it, but none of the incident edges, tentatively picks

v. This happens with probability

L (1 _ _>2dm (14 0(1) = ~ exp {i‘“} (1+0(1)).

aj Qg

Equation (10) is more or less the same. Fix edges e and f. They are disjoint and so have at

most 4 incident edges in common. Therefore, the probability that they both succeed is

(- oy = Lo Tt o)

a; a;

Equation (11) is proved similarly. The only thing to note is that there are at most 12 incident
edges in common.

Now we make the induction step in the proof of equation (8). (In the i = 0 case, it holds even
without the (14 0(1)).) We assume the equation holds as shown and prove the ¢ + 1 version. It is
helpful to think of the transition from G;, to G;11, as occurring in two steps. First only consider
the effect of edges being coloured «y. This causes vertices and their surrounding edges to disappear.
Then consider the effect of edges being coloured with other colours. This causes the individual
successful edges to disappear. Although splitting the transition into two steps increases the length
of the proof slightly, it helps clarify the differences in the two effects.

Fix a vertex u. In the first step some of the neighbours of u disappear, taking with them the
connecting edge, and in the second step some more of the edges incident to w disappear. The
probability that a given neighbour v has a successful edge (and therefore disappears) is d; , times
the probability that a particular edge succeeds with -y, since these are disjoint events. From equation

(9) and the other assumptions this is

B e { 22} (1 g o)) = B e {2 (1 o(1)) = P (14 o))

ex
a; a; aag + d; aag + d; aag + d;

Therefore the expected number of u’s neighbours which disappear is

pid;
i —— (1 1
maag—l—di(+o(1))

Let Y be the number of u’s neighbours which survive this first step. We’ve just shown that

o _ pidi o aa0+dz‘+1>
Ex[Y] = di., (1 7aa0+di>(1+o(1))_dm <7aa0+di (1+0(1).

Next we’ll use the large deviation inequality to show that Y is with high probability equal to
its expectation times (1 + o(1)). The only thing that was important in determining the value of
Y was knowing which edges tentatively chose y. Another way to say this is that the underlying
probability space for the first step is formed by the independent answers to the question “did edge
e tentatively pick v?” The probability of Yes is p, = 1/|A;(e)| = 1/a;(1 4+ o(1)).

Here’s a strategy for determining Y: first look at all of the edges incident with all of the
neighbours of w. This is dgﬁ(l + 0(1)) queries. Each query can affect the disappearance of at most
4 neighbours of u (and this only if e joins two neighbours of u which have only one other Yes edge
which itself joins two neighbours of u), so the variance of each query is at most 16/a;(1 + o(1)).

The neighbours with exactly one edge which tentatively picked vy may or may not survive, but
if the number of incident edges which tentatively pick - is not 1, the vertex certainly survives. For
each of those vertices still in question, look at all edges incident with the other endpoint of the one
edge tentatively coloured 7. All of this requires at most d%ﬁ(l + o(1)) additional queries. These
queries can affect at most 2 neighbours of u (and that only if the edge creates a five cycle), so the
variance of each query is at most 4/a;(1 + o(1)).

Therefore the total variance is at most ZOd%ﬁ /a;(1 4+ o(1)). Proposition 1 then implies that

Pr [|Y — Bx[Y]] > 4,/50d2, /ai(1 + 0(1))] < 2%

for all 0 < ¢ < (5/ 4)dz2’7 /a;(1 + o(1)). We will require that the exceptional probability be 2/n* so
that we can accommodate such an application of the large deviation inequality per edge per colour
per round. In any case, this forces ¢ = 4Inn. The condition that dy > Inn and the fact that
during Phase I d;, d; , and a; all have order dy (since « is a constant) imply that the side condition
is satisfied and that Y’s deviation is negligible compared with its expectation. Therefore, with high

probability,
aag + dip1

LI (14 o).

Turning to the second step of the transition, how many of these Y edges incident with u survive

Y = Ex[Y](1+0(1)) = d;, (

this step? That is, how many of them manage not to colour themselves with some other colour?
We already know from the first step which edges tentatively chose «y. Since the number of edges
incident with vertex v which chose 7 is binomially distributed with mean d;,/a;, the Chernoff
bounds easily imply that this number is asymptotically negligible to d; , with probability sufficiently
close to one.
Thus, the probability that a given edge e successfully colours itself with a colour other than v

is the sum of disjoint events:

24,5 (1-o(1) o
y L (1_i> (1+0(1)) :exp{%}(l—l—o(l)) — pi(1+ o(1).

seAi(en{r} Y

Therefore,

aap + di—l—l)
= (1 —p;)d; — (1 1
(pz)dz,7< aag + d; (+0())

aao—l—di aa0+dz~+1>
= (1 —pi)d; 1 1
(1= pds (HHER) (L) (14 0(1)

aag + d;

This is the right expectation, so we just need to show that this quantity is also highly concen-

trated about its mean. Again we use Proposition 1. This time, the underlying probability space
is generated by the independent, tentative colour choices of those edges of G; known not to have
chosen colour . Note that now we have to consider the entire graph, and not just G/ ,.

Here’s a strategy for determining how many of the Y neighbours from the first step survive the
second: first query all edges joining u and vertices other than those which were discarded in the
first step. Each tentative choice can affect the number of successes by at most 2. That’s all we
know, so we bound the variance of each query by 22/4 = 1. There are of course at most d;(1+0(1))
such queries.

Call an edge connecting v and one of the Y neighbours which still might succeed in colouring
itself (because its colour was unique among the edges incident with u), a half-successful edge and the
neighbour a half-successful vertex. Next query all edges joining two half-successful vertices. Each
such edge could kill the chances of one half-successful edge or the other, but not both since they
have different tentative colours. This effect of 1 happens with probability at most 2/a;(1 + o(1))
(“at most” since the edge might not even have the necessary colours in its palette). Thus, each
such query has variance at most 2/a;(1 4 o(1)).

Lastly, query all remaining edges incident with a half-successful neighbour. Each such edge
could kill only one half-successful edge, so each query has variance at most 1/a;(1 + o(1)).

The strategy’s total variance is therefore
di(1+ 0(1)) + diydi/ai(1 + o(1)),

which, when we put ¢ = 41lnn, leads to a deviation of

4\/di(1 +diy/ai) Inn(l + o(1)),

which is asymptotically negligible compared with deg; +lyﬂr(u)’s expectation. Thus we conclude that,
with high probability,

aag + diy1

degis (0) = (1= p)Y (14 0(1)) = diua (2T

) @+ o(w),

as desired. That finishes the proof of the 7 4+ 1 version of (8).
Now we can prove the statements made in the lemma. In the first, we are given a fixed vertex u
and a set X of colours, none of which have been used by any edge incident with u, and we ask how

many edges incident with u succeed in colouring themselves with colours in X. Call this quantity
Y.

11

Fix a colour v € X. There are d; ,(1+0(1)) edges incident with u which might colour themselves
v. Equation (9) tells us that the probability that one of these edges succeeds is

d; —2d; d; —2d; pid;
> > 1 1 = - _]_]_ :71 1 .
% exp {222 1 o) = e {22} (14 0(1)) = %1+ 0(1)

Since there are | X| colours and only one edge can succeed for each colour, the expected number of
edges which succeed in colouring themselves from X is

Ex[¥] = | X| (#‘f:d) (14 o(1)).

Now we use a large deviation argument similar to that used in the second step of the inductive
proof of (8). Here we consider the whole probability space generated by all tentative colour choices.
First query the d;(1 + o(1)) edges incident with u. Each can affect Y by at most 2. Thus, each of
these queries has variance at most 22/4 = 1.

Given this partial information, call the edges which might still colour themselves successfully
from X (because their colour was unique and in X) and the corresponding neighbours half-
successful. Next query all edges joining two half-successful vertices. Each such query has effect
at most 1 with probability at most 2/a;(1 + o(1)). Then query all remain edges incident with
the half-successful vertices. These queries also have effect at most 1, but probability at most
1/a;(1 4 o(1)).

This strategy then has a total variance of at most d;(1 + o(1)) + |X|d;/a;(1 + o(1)), which
leads to a deviation of at most 4/d;(1 + | X[/a;) Inn(1 + o(1)). Since |X| > v/dyInn, this is again

negligible compared with the mean, which proves statement (i) of the lemma.

In statement (ii), we have two vertices u and v and a set X of colours, none of which has been
used by an edge incident with u or v. We ask how many pairs of edges e and f incident with « and
v, respectively, will succeed in colouring themselves with the same colour from X.

For a specific colour v € X, the probability that there is a pair which colours itself v is the
number of pairs times the probability given by (10). There are between deg; . (u) - deg; ,(v) and
(deg; ,(u) — 1) - (deg; ,(v) — 2) pairs. In any case, the number of pairs is d?ﬁ(l + 0(1)). Therefore
the probability that there is a pair which colours itself v is

dz?v —4d; pidi \?
: — 5 (1))={——) (1 1)).
e T o) = (L2) o)

Since there are | X| colours, the expected number of successful pairs is

1 (24 (o),

A large deviation argument very similar to that given in the proof of statement (i) works here
too. First, we query the edges around the vertices v and v. Changing the tentative colour of one of

these edges can create at most one new pair or kill at most two pairs (and this only if the edge in

12

question formed a pair) but not both. Hence, we have 2d;(1 + o(1)) queries with maximum effect
of 2. Call the pairs which survive the exposure of these queries the half-succesful pairs.

Next, we query the edges not yet queried which connect two distinct half-succesful pairs. There
are at most 4| X |?(1+ o(1)) queries to be made. Changing the tentative colour of one of these edges
creates no new pairs and can kill at most one of the two pairs. The maximum effect of each query
is then 1 with probability at most 2/a;(1 4 o(1)), since there are two out of a;(1 + o(1)) colours to
choose from. Finally, we query the remaining edges incident to edges forming a pair. The number
of such queries is at most 2|X|d;(1 + o(1)) minus twice the number of queries made in the previous
group, each with a maximum effect of 1 and probability of at most 1/a;(1 + o(1)).

This strategy’s total variance is at most 4d;(1 + 2|X|/a;)(1 + o(1)) leading to a deviation of at

most 4+/¢d; (1 + 2| X[/a;)(1 + o(1)). By choosing ¢ = 31Inn, we get an exceptional probability of
n~3, which can accomodate |E| < n? edges for constantly many rounds.

Statement (iii) is proved almost identically. For a particular colour v, the number of triples
incident with u, v, and w which might potentially all be coloured ~ is df’ﬁ(l + o(1)). Each triple
succeeds with the probability given by (11). Since there are |X| colours, this means that the
expected number of successful triples is

d? —6d; pidi \?
x| % #} 14 o(1) = X (#) 1+ o(1)).
X1 e { | (o) = IX] (2) ot

The familiar large deviation argument finishes the proof. O

Given all of this, how large must s be? If we define ; by d;/ag, we see that (7) implies that

)

and from the initial conditions, Sy = 1 — a. Since we wish to find an s such that

de.(v) _ 5 14 0(1)) < &,
ap 4

it suffices to find an s such that 85 < o?/8. It is then immediately clear that s depends only on a.
A little computation reveals that
s~ 15log;o(1/a)

suffices.

5 Analysis: Phase 11
The second phase of the analysis follows the progress of the algorithm until

deg,(v) < 10(1 4+ @)’ Inn (12)
for every vertex v. The surprising thing is that t = s +4 + (3/2) In(1/a) + 3Inlnag suffices.

13

We will show that the quantities defined by ds = (@?/4)ag and the recurrence

div1 = 78(:;:00() d; ++/10d; Inn (13)
satisfy with high probability deg,;(v) < d; for every vertex v and integer s < ¢ < ¢. Then we will
solve the recurrence to determine how large ¢ need to be in order to satisfy (12).

At the end of Phase I we know that deg,(v) < (a2/4)ay for every vertex v and that |A,(e)| =
ao (a + 2—3)2 (14 0(1)) > a?ayp for every edge e in G;. Together these imply that the edge palettes
can never become empty, since even if every edge incident with edge e chose a different colour from

e’s palette, there would still be (a?/2)ag colours. Formally, for every i > s and every edge e in G,

2
«
[Aie)] = S-ao.

Also from Phase I we know that for any two edges e and f and i = s,

N3
|Ai(e) N A;(f)] = ao <a + Z—;) (1+0(1)) <ag (a + a2/4)3 (1+0(1) < (1 + a)aia.

Furthermore, since the palette intersections can only get smaller over time, the same upper bound
holds for any ¢ > s.

The proof that the d;’s defined by (13) satisfy deg;(v) < d;, proceeds by induction. The base
case i = s follows immediately from the definition of d, = (a?/4)ay.

Assume that the claim is true for G; and consider the step from G; to G;y;. Here, an edge

e = uv does not succeed in colouring itself with probability at most

Z Pr[e and f choose the same colour] = Z ||:;11(€) NAi(/f)l < (deg;(u) + degi(v))4(1 + a)
f 7

R ()[4 aag
Therefore, by induction, the expected new degree of a fixed vertex v is

8(1 +)

Ex[deg; (v)] = Z Pr[e does not colour itself] < oy

esv

daz. (14)
A large deviation argument very similar to those given in the proof of Lemma 2 shows that deg; | (v)
deviates from its mean by more than \/5pd; with probability less than e~¥. We need that the degree
is within this deviation for every vertex in every round of Phase II, so we set ¢ = 21nn. Therefore,
with high probability
degin(v) < 2@ 4 0 T = die,

as desired.

All that’s left is to “solve” the recurrence (13). Of course, we're really only interested in
determining how large ¢ must be in order to guarantee that d; < 10(1 +) Inn.

A close look at (13) reveals that the first term dominates when d; is large—that is, initially—and

the second term dominates as d; becomes smaller. We will break the analysis into two sub-phases

14

to reflect this behaviour. In order to optimize the constants later, we define the transition point r
as the minimum integer such that

8L 2 < 4ot + a)y/T0d, Tam.

aa

This is equivalent to saying that r is the minimum integer such that d® < (5/2)a*ag Inn.

Fors<i<r,

8(1 4+« 2

gd?_'_ 3
aa a“a

using the fact that o < 1/10. Therefore, for s <i <r,

d. _ (3 >2i51 d2i_s B < 3 >2i51 a2a0 t—s - a2a0 <§>2zs
"= \a?ay s \a2ag 4 3 4 '

Thus, r is at most the solution to the equation

d? <

—

dit1 <

3

lai’ao (%)2] = (5/2)a ap Inn.

This is equivalent to
(4)3'2T_S B 202 a3 9
3 T 135n

which is implied by

So, r is at most s + 1+ (3/2) Inlnay.
For r <1i <t
dis1 < (4a(l + @) 4+ 1)4/10d; Inn < (1 + a)*/10d; Inn

Thus, d; is asymptotic to the solution of z = (1 4+ «)*V10zInn. Namely, d; is asymptotic to
10(1 + «)®Inn. In fact,

2—27’ r—1 —(i—
12 (i=7)
)

b 0 o A (14 VIO <100+

Since we intend to follow d; until d; < 10(1+«)? Inn, we require that ¢ be no more than the solution

to the equation

(t—r)

10(1 +a)¥(Inn)d*> " =10(1 + @) Inn.

This is just
(1+) " =d, <a,

which is implied by
t—r < (lnlnay—Inln(l +«@))/In2 < (3/2)Inlnap + (3/2) In(1/c) + 1.
Therefore, t is at most 7+ 1 + (3/2) In(1/a) + (3/2) Inlnap < s+ 2+ (3/2) In(1/a) + 3Inlnayp.

15

6 Analysis: Phase III

The third and final phase of the analysis follows the algorithm until every edge is coloured. Up
to this point we’ve been able to control the individual vertex degrees, but from now on they are
too small to have good statistical properties. For this reason we now take a global perspective and
concentrate on the number of edges remaining in the entire graph.

As noted at the beginning of the previous section, already at the end of Phase I we know that
for any 7 > s and any edges e and f in G, |A;(e)| > (a?/2)ap and |A;(e) N A;(f)] < (1 + @)aap.
The stopping condition for Phase II guarantees that for any ¢ > ¢ and any vertex v, deg;(v) <
10(1 + @)? Inn. Therefore, for any i > ¢, in the transition from G; to G;,1, the probability that an

edge e does not succeed in colouring itself is at most

|Ai(e) N A;(f)] < 80(1 +a)PInn

aa

Z Pr[e and f choose the same colour] = Z
fe#£d

~
&
&
&
S
|

The expected number of edges in G; is at most this probability to the (i —¢)th power times the

number of edges in G;. This is at most

i—t
80(1 +) 0Inn]’
l (1+a) nn] 5(1 + a)nlnn.
aagp
When the expected number of edges is less than p, Markov’s inequality implies that the probability
that there exists an uncoloured edge is less than p. Setting p = 1/1Inn and simplifying, we want to
determine the minimum ¢ such that

{ aay
80(1 + «)¥1nn

i—t
} > 5(1 + a)?nln®n.

This is equivalent to

In particular, if Inag = Q(lnn/Inlnn), we require only O(Inlnn) rounds to completely edge colour
the graph.
Taking a bit more care with the constants, to ensure that Phase III completes within £Inlnn

rounds, we require
aag klnlnn

80(1 + «)%Inn
which, when k£ > 1, is implied by

> 5(1 + a)’nln?n,

4 1 19
a0 00(1 + @) pl/klninny2

«

Note that it is possible to replace the constant 400 by the constant 100(1 + «)? by changing the
stopping point of Phase I. If we follow Phase I until deg,(v) < a®ao/2(1 + a), we get |A;(e)| >

a?ap/(1 +) for every i > s, giving improvements both here and in Phase II.

16

7 Analysis: The irregular case

If the value of the maximum degree A could be inexpensively distributed to all of the edges, the
regular case analysis would also be valid in the general case. However in a distributed architecture
this might be too costly, so it is important that the algorithm rely on local information alone. This
motivates the initial palette size of (1 + ¢) max{deg(u),deg(v)} for edge e = uv.

In fact what happens in the case when neighbouring edges receive different sized initial palettes
is that the probability of conflict is decreased and so the edges succeed in colouring themselves even
more rapidly than in the regular case. We will argue that the graph will be completely coloured
at least as fast as a regular graph where all edges have the same initial palette size as the edge in
our irregular graph with the smallest initial palette size. We’ll do this by fixing an edge e and a
round ¢ and showing that the probability that e succeeds in colouring itself in this round is at least
as high as if the graph were locally as in the regular case.

We modify e’s neighbourhood in several ways, all of which decrease the probability of e’s success.
First of all, for every edge f incident with e, we ignore every colour from f’s palette which was
not in e’s initial palette. This increases the probability of conflict between e and f by forcing f
to choose a tentative colour which e at least has a chance of choosing and therefore decreases the
probability of e’s success. Next we add phantom edges to the vertex of e with lower degree. Say
e = uv and deg;(u) < deg;(v), so we add phantom edges to u. To create the phantom edges’
palettes and fill out the real edges’ short palettes, we randomly add colours from e’s initial palette
until deg, ,(u) = deg; ,(v) = d; for all colours . This only decreases e’s probability of success,
since it creates more opportunities for conflict.

But now the situation is locally just as if the graph were max(deg(u), deg(v))-regular and so
the probability of e’s success is as in the regular case analysis. And thus, in the original irregular
graph, the probability of e’s success is at least as high. In particular, if every edge’s initial palette

size is large enough, the entire graph will be coloured within O(loglogn) rounds.

8 Concluding Remarks

If we are willing to spend O(logn) rounds, we can lower the condition on the minimum initial
palette size to ag > logn. In this case, we skip Phase II entirely and jump to an argument similar
to Phase III. Already at the end of Phase I, the probability that an edge does not succeed in
colouring itself is less than (see equation (14))

8(1+ «)

aa

di <2(1 + a)a.
Therefore the expected number of edges remaining in G; is at most

2(1 + a)a]"* a?agn/8.

17

This quantity is less than 1/Inn when i — s = Q(In(agnlnn)) = Q(logn). The other way around,
O(logn) rounds suffice to colour all edges. The condition ag > logn comes only from the hypothesis
of Lemma 2 in Phase .

As we pointed out, if it were possible to distribute the maximum degree A to all edges, we could
assign initial palettes of size (1+¢)A and so guarantee completion in O(loglogn) rounds whenever
A =Q (nc/ 1°g1°g”). This isn’t feasible, however, unless the graph has diameter O(loglogn).
Failing this, we could spend a constant number of rounds (or, if n were known, O(loglog n) rounds)
distributing the maximum local degrees before setting the initial palettes and running the colouring
algorithm. Thus we would only require that each edge be “near” a vertex of sufficiently high degree
to ensure completion within O(loglogn) rounds.

Finally, note that the condition ag = 2 (nc/ loglog") is not an artifact of our analysis. There
really are graphs which the algorithm will not colour in O(log log n) rounds unless the initial palettes
are this large. Take as an example n/3 disjoint copies of the path on 3 vertices. For each path,
the two edges both succeed as soon as they pick different tentative colours and the paths succeed
independently. Thus, the expected number of paths surviving after ¢ rounds is n/3af. This means
that unless the initial palettes are of size (2 (nc/ log log"), the expected number of rounds until all

pairs are coloured is more than O(loglogn).

References

[1] N. Alon, personal communications.

[2] N. Alon, J. Spencer and P. Erdés, The Probabilistic Method, Wiley-Interscience Series, John
Wiley & Sons, Inc., New York, 1992.

[3] N. Alon, J.H. Kim, and J. Spencer, Nearly perfect matchings in regular simple hypergraphs,
preprint, 1995.

[4] B. Berger and J. Rompel, Simulating (log®n)-wise independence in NC, Journal of the ACM
38(4) (1991), 1026-1046.

[5] B. Bollobds, Graph Theory, Springer Verlag, New York, 1979.

[6] D. Dubhashi and A. Panconesi, Near-optimal distributed edge coloring, Proceedings of the 3rd
annual European Symposium on Algorithms (ESA 95), Springer Verlag, LNCS 979, 448-459.

[7] D. Durand, R. Jain and D. Tseytlin. Distributed scheduling algorithms to improve the perfor-
mance of parallel data transfers. Tech. Report 94-38, DIMACS, 1994.

[8] Z. Galil and D. Leven, NP-completeness of finding the chromatic index of regular graphs, J.
of Algorithms 4 (1983), 35—44.

[9] D.A. Grable, A large deviation inequality for functions of independent, multi-way choices,
preprint, 1996.

[10] I. Holyer, The NP-completeness of edge coloring, SIAM J. Comp. 10 (1981), 718-720.

18

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

R. Jain, K. Somalwar, J. Werth and J.C. Browne, Scheduling parallel I/O operations in mul-
tiple bus systems, Journal of Parallel and Distributed Computing 16(4) (1992), 352-362.

H.J. Karloff and D.B. Shmoys, Efficient parallel algorithms for edge coloring problems, Journal
of Algorithms 8 (1992), 39-52.

J. Kahn, Asymptotically good list-colorings, Journal of Combinatorial Theory, Series A, to
appear.

J.H. Kim, On Brooks’ theorem for sparse graphs, Combinatorics, Probability and Computing
4 (1995), 97-132.

J.H. Kim, The Ramsey number R(3,t) has magnitude #2/logt, Random Structures and Algo-
rithms 7 (1995), 173-208.

G. F. Lev, N. Pippenger and L. G. Valiant, A fast parallel algorithm for routing in permutation
networks, IEEE Transactions on Computers 30 (1981), 93-100.

N.A. Lynch, Upper bounds for static resource allocation in a distributed system, Journal of
Computer and System Sciences 23 (1981), 254-278.

R. Motwani, J. Naor and M. Naor. The probabilistic method yields deterministic parallel
algorithms, 30th FOCS, 1989, 8-13.

A. Panconesi and A. Srinivasan, Fast randomized algorithms for distributed edge coloring, in:
Proceedings of the ACM Symposium on Principles of Distributed Computing, 1992, 251-262,
SIAM Journal on Computing, to appear.

A. Panconesi and A. Srinivasan, The local nature of A—coloring and its algorithmic applica-
tions, Combinatorica 15(2) (1995), 255-280.

N. Pippenger and J. Spencer, Asymptotic behavior of the chromatic index for hypergraphs,
Journal of Combinatorial Theory, Series A 51 (1989), 24-42.

V. R6dl, On a packing and covering problem, European Journal of Combinatorics 5 (1985),
69-78.

19

