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Abstract

In this report, we introduce the graph rewriting formalism on which the HyperView System
is based. We first present a data model for clustered graphs and our notion of graph schemata
and graph layers. Then we formalize our concept of nondeleting typed graph rewriting rules
with application conditions on attributes based on the Algebraic Single Push Out Approach to
graph transformation and present the construction of the derived graph resulting from apply-
ing a rule.

The main contribution of this report is the formalization of an efficient strategy for mate-
rializing HyperViews based on demand-driven rule activation. We introduce the notion of an
oracle against which queries in form of graph patterns can be posed. We show how to combine
the rule set of a HyperView with an oracle to form a more powerful oracle that materializes this
HyperView as a response to queries against it.

Finally we treat the problem of avoiding the introduction of redundancies in view graphs
by reusing already materialized graph elements.



1 Clustered Graph Data Model (CGDM)

1.1 Motivation

The HyperView methodology perceives the WWW as a part of a large data graph, where each
syntax tree of a HTML page forms a subgraph connected to other syntax trees by edges modeling
hyper links. Traversing these edges causes the target pages to be loaded, parsed, and added to
the graph on the fly. This structure motivates a modularization of the graph into so-called clusters.

Each HTML page is modeled by a cluster of the graph. On top of these HTML clusters a
hierarchy of views is established. Each view extracts, combines, and restructures information
to build a view-cluster at a higher level of abstraction. In particular, we introduce the Abstract
Content Representation (ACR) level to organize the relevant information from each Web Site in a
cluster of its own, the ACR cluster. In this cluster all irrelevant details of the layout are omitted
while its overall structure is preserved. At the database level this information is integrated into
the site independent and domain specific database cluster. Finally, the result level contains HTML
clusters for result pages returned to the user’s browser.

Each cluster in the data graph is structured according to a (sub)schema which forms a cluster
of the global schema. There is a generic schema for HTML pages, an ACR schema for the ACR of
each Web Site, and a database schema for the database cluster.

We introduce the Clustered Graph Data Model (CGDM) by extending the concept of directed
labeled graphs. In a clustered graph, each vertex belongs to a cluster, and each edge between
two clusters belongs to a dependency connecting these clusters. The term “dependency” stems
from the fact that in our view mechanism, clusters containing derived data are connected to the
clusters containing the original data by dependencies.

Edges between elements of the same cluster belong to a circular dependency from the cluster
to itself. Vertices belonging to the same cluster form together with the edges connecting these
vertices a subgraph of the global graph. In our data model clusters and dependencies are special
vertices and edges which form a graph that specifies the module structure of a clustered graph.
In Figure 1, an example of a clustered graph is shown.
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Figure 1: Example of a clustered graph

1.2 Basic definitions

As data model, we use a clustered graph data model called CGDM. The idea of clustered graphs
is to modularize a large graph by introducing clusters and dependencies as first class objects
which group vertices and edges, respectively. To each edge there exists a corresponding depen-
dency which connects the cluster of its source with the cluster of its target. Hence, clusters and
dependencies form a graph inside the clustered graph which summarizes the graph formed by
vertices and edges.



Definition 1.1 (Plain Graph, Plain Graph Morphism)
An (A-labeled) plaingraph G = (V, E, A, s, t, a) consists of:

1. disjoint finite sets V' of vertices, E of edges

2. an universal algebra A (the attribute algebra)

3. total functions s,t : E — V indicating the source and target of an edge
4. atotal attribute functiona : VW E — A

LetG = (Vg, Eq, A, sa,ta,acg) and H = (Vy,Ey, Ay, su,ty,an) be plain graphs. A plain
graph morphism f : G — H is a pair f = (fyertez, fedge), Where fuertes : Vo — Vi, fedge :
Es; — Ep are total functions commuting with the source and target functions (fyertez © S¢ =
SH © fedge and fvertez otg =tgo fedge)' o

Remark 1.1 A plain graph morphism f : G — H is a purely structural mapping which does
not pose any constraints on the attribute function Agy. |

Definition 1.2 (Clustered Graph)

A clustered (A-labeled) graph G = (G pase, Gstruct, ¢) cOnsists of two plain A-labeled graphs
Gbase = (V; E, A; Sedge tedge, abase) (the base graph) and Gstruct = (Cy D: A, Sdep tdep; astruct) (the
structure graph) together with a plain graph morphism ¢ : Gpase —> Gsiruct, the clustering
morphism. We call the carrier sets C' and D clusters and dependencies, respectively. O

Remark 1.2 Let G = (Gpase, Gstruct, ¢) @ clustered graph as defined above. Without loss of gen-
erality we require that all carrier sets V, E, C, D, and A are pairwise disjoint. We use the no-
tation G = (V,E,C,D, A, s,t,a,c) by using the definitions s := scgge W Saep, t = teage W taep,
A := Gpgse W Astryct, ANA € 1= Cyertes W Ceage. TO distinguish between different graphs, the graphs
will be used as subscript, i.e., Eg, sg etc.

Furthermore, we call edges, vertices, clusters, and dependencies graph elements and use the
notation z € G to statethat z € Vg W Eg W Cq W D¢ is an element of the clustered graph G.

In the following we call clustered graphs simply graphs. O

Definition 1.3 (Graph Morphism) A graph morphism f : G — H between (clustered) graphs
G = (Gbase:Gstruct:cG) and H = (Hbase:Hstruct:cH) is a triple f = (fbaseafstruct:fattr) where
fbase . Gbase — Hbasei fstruct : Gstruct — Hstruct are plain graph morphisms CommUting
with the clustering morphisms (cg © frase = fotruct © ¢g) and four : A — Ag is an algebra
homomorphism compatible with fyuse aNd fotruct (fattr © ag = ag © (frase W fstruct))-

The graph G is called the domain of f, denoted dom(f). |

Remark 1.3 Using the flat notation for the graphs G = (Vg, E¢,Cq, Dg, A, sa, ta, ag,cq) and
H = (VH7EH,CHaDH,AH,SHatH,U‘H,CH)’ a graph morphism f = (fbase;fstruct,fattr) G —
H can be represented by a family (fyertes, fedges fetuster, faep, fattr) OF total functions which map
each of the sets Vi, Eg, Cq, Dg, Ag of G to the corresponding sets of H (i.e., fuertes : Vo — Vi,
fedge : E¢ — Eg, ...) and commute with the functions s, ¢, a and ¢ in all possible compositions
(e.9., fvertex ©5G = SH © fedger fetuster © G = CH © fertexr)-

This implies that the category of clustered graphs with graph morphisms forms an instance
of an attributed graph structure with total morphisms as defined in [5, 4]. O

This definition implies in particular that the source (target) of an edge is always mapped to
the source (target) of the image of this edge. Graph morphisms may not be injective in general.
A path in a graph can be mapped to a circular edge, and several edges emanating from a vertex
can be mapped to the same edge. Since we have graph morphisms defined to be total, all graph
elements are included in the mapping. In the following, we denote the image of a graph element
(i.e., vertex, edge, cluster, or dependency) z under a graph morphism m with m(z).



Definition 1.4 (Compatible Functions or Morphisms) Let f,g be two functions or morphisms
defined on overlapping domains dom/(f) and dom(g).

Then f and g are compatible (denoted fVg) if they coincide on the intersection of their do-
mains, i.e., f|p = g|p where D = dom(f) N dom(g). m|

In the HyperView methodology we group the clusters of a graph into different layers with
dependencies only within layers or between succeeding layers.

Definition 1.5 (Layered Graph) Let G = (V,E,C, D, A,s,t,a,c) be a clustered graph and [ :

C — {1,...,N} afunction which assigns each cluster ¢ € C a level [(c) such that for all de-
pendencies d € D the level of the target is equal to or the predecessor of the level of its source,
i.e.,Vd € D :1(s(d)) € {l(¢t(d)),l(t(d)) + 1}. |

Since clustered graphs are a special case of attributed graph structures which in turn are many-
sorted algebras [6], the notion of subgraph is inherited directly from the notion of subalgebra:

Definition 1.6 (Subgraph) Let G = (V,E,C,D, A, s,t,a,c) be a clustered A-labeled graph. A
clustered A-labeled graph G’ = (V',E',C',D', A’, s',t',a’,c') is a subgraph of G (denoted G' C
Q) ifthe carriersets V', E', C', D' of G' are subsets or equal to the respective carriersets V, E, C, D
of G and the operations s',t', a', ¢’ are restrictions of the respective operations s, ¢, a, c. |

Definition 1.7 (Reachability) Let G = (V, E, A, s,t,a) be a plain graph. Then the reachability
relation ~» is defined by (s~1 U t)*.

Let G = (Gpase, Gstruct, ¢) @ clustered graph. Then reachability between vertices and edges is
defined as reachability on G.s., and reachability between clusters and dependencies is defined
as reachability on Ggycq- O

Definition 1.7 implies that every edge is reachable from its source and the target of an edge is
reachable from the edge.

Corrolary 1.1 If an element y € V W E of the base graph is reachable from another element
x € V W E of the base graph (z ~ ), then the same holds for the corresponding elements
c(z),c(y) € C'W D in the structure graph (c(z) ~ ¢(y)).

Proof: Since cisagraph morphism, it commutes with the source and target functions s, t. Hence
x=s(y) = c(z) =s(c(y)) and t(z) =y = t(c(z)) = c(y) proves this correspondence for the
case (s~ U t)?, where i = 1. By induction, it follows for (s—1 U ¢)*. O

1.3 Schemata and instances

Definition 1.8 (Atomic Data) We fix a multi-sorted signature ¥ = (T, Q) forasetT = {T,...T,}
of sorts and @ of operation symbols on these sorts.

With 7% (V) we denote the multi-sorted term algebra for signature ¥ over a multi-sorted set
V of variables.

We denote by type : Tx.(V) — T the algebra homomorphism which assigns each term its
typeinT.

We define the universe U of atomic data to be the multi-sorted term algebra T () of ground
terms over signature X.

|

Definition 1.9 (Pattern Graph, Data Graph, Schema Graph) A pattern graph (with variable set
V) is a Tx:(V)-labeled clustered graph, i.e., its labels are (possibly non-ground) terms over X.
A data graph is a pattern graph whose labels are ground, i.e. it is a U-labeled clustered graph.
A schema graph is a T-labeled clustered graph, i.e., its labels are atomic data types 7'; € T. O



Remark 1.4 A data graph is a pattern graph carrying ground labels only. |

Example 1.1 (Schema for EJournal Publishers) Figure 2 shows a part of the schema developed
for the integration of electronic journals in a Digital Library. This diagram shows only the ACR
schema cluster for the Web Site of a particular publisher !, together with the database schema
cluster describing electronic journals in a publisher-independent way.
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Figure 2: Clustered schema for Database and Springer ACR. Uppercase labels denote type pred-
icates (e.g. INTEGER) which are fulfilled by all elements of that type, lowercase labels denote
predicates matching only the constant indicated by their name (e.g. journal).

Correspondences between nodes of the ACR and database schema are indicated by source-
edges. Note that certain nodes of the ACR schema appear in two versions (with and without
extension _us, e.g., journal and journal_us). This is due to the fact that journals published by the
US branch of Springer have a different layout, even though they are part of the same Web Site. O

To define the structural conformance of a data graph to a schema, we introduce the notion of
an interpretation for the data graph in terms of a schema graph.

Ispringer Berlin Heidelberg New York, <link.springer.de>



Definition 1.10 (Typing, Interpretation, Conformance, Instance) Let S be a schema and G be a
pattern graph.

A graph morphism 7 : G — S is a typing of G w.r.t. S, if its attribute component is the
typing function, i.e., 7,4 = type : U — T such that 7 assigns to each element z of G a schema
element whose label as(:(z)) equals the type type(aq (z)) of the label of z.

A pattern graph G conforms to a schema S, if there exists a typing 7 : G — S.

A typing ¢ : G — S is called an interpretation if G is a data graph (i.e., has ground labels
only). In this case we call G an instance of S. i

This definition extends the typing concept of [3] to attributed graph structures. It implies follow-
ing:

e there may be several interpretations for G w.r.t. S
e several parts of the instance graph may be interpreted by the same part of the schema
e an interpretation must cover all elements of the instance graph

e not all schema elements must have corresponding data elements. In particular, the empty
data graph conforms to any schema.

In [1] a schema concept is presented which is based on schema graphs labeled with unary
predicates. Conformance depends on the existance of a simulation relation between instance and
schema graph. This schema concept is more general than ours. In particular, predicates may
have overlapping solution sets whereas our atomic data types are disjoint. Predicates can model
application specific data types like movie titles or names of months which are subtypes of more
general types, e.g., string.

However, this limitation can be overcome by introducing application specific atomic data
types and use conversion functions in rules (discussed in the next section) to convert instances of
general data types into instances of application specific types.

Definition 1.11 (Type-Compatible Morphism) A morphism f : G — H for pattern graphs
with typings 7 : G — S and p: H — S is type-compatible if it satisfies po f = 7. a

Corrolary 1.2 Let S be a layered schema graph (according to definition 1.5and : : G — S an
interpretation of a data graph G. Then G is a layered graph with the level function lg = ls o
induced by .

2 Rules

A View defines the content of a new cluster of the global data graph (called view cluster) as the
result of a mapping from one or more other clusters (called source clusters). This mapping is
defined by a set of rules. In Section 3, we describe how views can be materialized on demand
by invoking appropriate rules. When a rule is invoked, it matches some parts of the source
clusters and produces new elements in the target cluster. Therefore we have chosen to use graph
transformation rules for this purpose.

We base our definition of rules on the well-established algebraic single pushout approach to
graph transformation as described in [5, 4]. This kind of graph transformation has the advantage
that it does apply not only to conventional graphs, but to a wide range of graph data models
including our notion of clustered graphs.

Since we do not need single pushout rules in their full generality, we can simplify the original
definition. On the other hand, we need to add two new features, a typing morphism which
ensures that a rule conforms to the schema, and a set of application constraints which is used
to control rule application by posing additional restrictions on the matched labels in the data
graph. Both additions restrict only the applicability of rules, but do not change the semantics of



rule application. In summary, we use typed attributed Single Push Out graph transformations with
application conditions on attributes.

In Sec. 3 we will enhance our rule concept further. Hence the following definition is prelimi-
nary.

Definition 2.1 (Rule) — preliminary definition
Arulep = (L,R,T, ) for aschema S consists of:

1. aclustered pattern graph R (see definition 1.9), called the right hand side (RHS) graph.
2. asubgraph L of R, called the left hand side (LHS) graph.

3. atyping morphismr: R — S.

4. aboolean term I from T (V) interpreted as an application constraint for p.

O

Example 2.1 An example of a rule is shown in Figure 9. The rule get_issue matches a journal
vertex in the database cluster EJournal DB together with some elements of the Springer ACR
cluster and adds the elements shown in boldface to the database cluster.

The application constraint is shown below the ACR cluster. It defines some integrity con-
straints for the occurring variables. The typing morphism 7 is not shown explicitly, but is rather
indicated by the graph labels. It maps the RHS of the rule into the schema graph shown in Fig-
ure 2. Variable labels are notated as “Variable: Type”.
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Figure 3: ACR Rule get_issue

O

Definition 2.2 (Variable Substitution) Let V and V' be disjoint sets of variables. A variable sub-
stitution (short: substitution) is a function o : V — T (V") such that type(o (X)) = type(X) for
every X € V.

Let ¢ € T (V") over some variable set V"'. Then the result of replacing all occurrences of a
variable v € V by o(v) in t is denoted by to. m|

Remark 2.1 The disjointness of V and V' guarantees several nice properties:
1. asubstitution is free of redundancies since the case o(v) = v is excluded.
2. asubstitution does not allow cyclic variable definitions such aso(X) = f(Y),o(Y) = f(X).

3. to is well-defined since every variable occurrence in ¢ has to be replaced at most once.



4. applying a substitution to a term does not change its type since variables are replaced only
by terms of the same type

5. applying a substitution to a term is an idempotent operation.
|

Corrolary 2.1 Let V and V' be disjoint sets of variables. Let f : T (V) — Tx(V’) be a term
algebra homomorphism. LetV, := {v € V | f(v) # v}.

Then o := f|v, is the substitution induced by f.

Conversely, every substitution o : Vo — Tx (V') defines uniquely an algebra homomorphism
fg : TE(V) — TE(VI).

Definition 2.3 (Variable Substitutions for Graphs) Let G be a pattern graph and ¢ : V —
T (V') a substitution.
Then Go is a copy of G where ag,(z) = (ag(x))o for all elements z of Go. |

Corrolary 2.2 (Preservation of typings under substitutions) Let G be a pattern graph having a
typing 7 : G — S. Let o be a substitution.
Then 7 : Go — S is a typing for Go since applying o to the labels of G does not change their

type.

Corrolary 2.3 (Induced Substitution) Let ¢ and G be T's:(V)-labeled pattern graphs.

Let o be a substitution defined for a subset of V. and m : Q — Go be a morphism such that
o extends the substitution oy, induced by m 4.

Then there is a unique minimal substitution o, extending o,,,,,. such thatm : Q — Goy. This
substitution oy is a restriction of o. It is called the substitution induced by m.

Furthermore, m is also a morphism m : Qog — Gog since m .., is the identity function for
terms to which o has been applied already.

In the case that G is a data graph, g9 = o,
ground and therefore Goy = G.

and m : Q — @G since the labels of G are all

attr

Proof: Let oy be a substitution which is a minimal extension of oy,,,, such thatm : Q@ —
Goy. To show that o, is the substitution induced by m we have to show that ¢, is unique and a
restriction of o.

By the definition of graph morphisms and variable substitution for graphs, ag(m(z))ec =
ag(z) = ag(m(z))o, holds for all elements = € Q. By structural induction, one can show that for
every variable X occuring in one of the terms ag(m(z)) the equation Xo = X oy holds. (Note,
that Xo = X if o is not defined for X).

Both substitutions are extensions of o,,,,,., hence they coincide also on all variables occurring
in labels of Q.

Finally, since o, is minimal, it cannot be defined for any further variables. Therefore o, is a
uniquely defined restriction of o. a

Example 2.2 Let @ consist of a singleton vertex u labeled by f(X,d,Z) and G consist of two
vertices v, w labeled by f(c,Y, Z) and g(Y'), respectively. Assume that all variables and terms
have the same type.

Then the only possible morphism m : Q — Go maps u to v. The induced substitution oy
consists of the bindings X = cand Y = d. Since g is minimal, it does not bind Z. Hence Goy
has the labels f(c, d, Z) and g(d). |

Definition 2.4 (Match, Match Set) Let S be a schema graph.

Let G and @ be pattern graphs over a variable set V with typing morphisms . : G — S and
T:Q — S, respectively.

A graph morphism m : Q — G is called a match for @) in G.

We denote the set of all matches for @ in G by Matches(Q, G). m|



Remark 2.2 A match does not permit ground terms occurring in a label of () to be mapped to
variables occurring in labels of G. This can be remedied by applying an appropriate substitution
o to G first. If G is a data graph it does not carry variables and hence this case is excluded. O

Definition 2.5 (Rule Match) Let S be a schema graph. Let G be a data graph conforming to S
with interpretation . : G — S.

Letp = (L,R,T,7) arule. Amatch forpisamatchm : L — G for LinG.

Accordingly, a partial match is a partial match for L.

A full match is a match m : R — G for R where G J G such that the substitution induced
by m satisfies T'. |

Remark 2.3 From the definition of full match it follows that application constraints in T can be
used to compute bindings for variables occurring in R, but not in L. For instance, L could contain
variables X and Y. Then the value of a variable Z occurring in R could be determined by a linear
constraint X +Y — Z =0. |

A variable substitution (whether it is induced by a partial match or not) can be applied to a
rule, resulting in an instantiation of this rule. The instantiation of a rule can be used just like the
original rule, but is more specific.

Definition 2.6 (Rule Instantiation) Letp = (L, R,I',7) bearuleand o : V— T'x(V') a variable
substitution. Then po, the result of applying o to p is the rule (Lo, Ro,T'o, 7o) obtained by replac-
ing any variable v € V which occurs in a label of R orin T by o(v). The new typing 70 : Ro — S
is identical with 7. |

2.1 Rule application

Before we give a formal construction for the result of applying a rule p = (L, R,T', 7) to a match
m, we explain its intuitive meaning: the match m : L — G specifies the subgraph m(L) of G
to which the rule is to be applied. This subgraph is extended with a new copy of R — L whose
labels have been fully instantiated with respect to the substitution ¢ induced by m : L — G and
the application constraint I'. The resulting graph G is constructed in such a way that the match
m can be extended to a full match m : R — G. figure 4 illustrates this description.

Rule p

Data Graph »

|
|
! 1
' 3
I

Schema

~— L -

Figure 4: Application of a rule p to a data graph G.
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Definition 2.7 (Rule Application) Letp = (L, R,T',7) be arule and m : L — G a match for its
LHS in the data graph G.

Let p’ be a an extension of the substitution p induced by m which binds all variables occurring
in R and satisfies I'. We use the notation R' := Rp'.

Letr : L — R' be the inclusion morphism for the left hand side L in the right hand side R'.
Let m, 7 be the pushout of m, r and the data graph G be the corresponding pushout object (see
figure 2.1).

We call G a result of the application of rule p to match m.

We denote by Apply(p|m) the set of all morphisms m : R' —s G resulting from the application

of p to m with respect to different substitutions p'. |
Remark 2.4 The morphism m is a full match for the rule p. |
r
L R
r _
G G

Figure 5: The push out defining the result of the application of rule p = (L, R, T, 7) (represented
by the inclusion morphism r : L — R’ where R’ = Ro) to a match m as specified in defini-
tion 2.7.

Theorem 2.1 The graph G resulting from applying a rule p to a data graph G at match m w.r.t.
to a substitution p’ of the right hand side is defined uniquely up to isomorphism and different
attributes of the new elements.

Proof: Therulep = (L,R,T, 1) defines a single pushout rule r : L — R which is the inclusion
morphism r : L. — R embedding L in R. In [4] it is shown that in the category of attributed
graph structures the pushout object G of the graph morphisms r and m exists. Since the category
of clustered graphs is an instance of this category, this result applies also to clustered graphs. By
its definition, a pushout object (i.e., G) is defined uniquely up to isomorphism. O

We now give a set-theoretic construction for the result of a rule application. Informally speak-
ing, the pushout object of m : L — G and r : L — R in the domain of attributed graph struc-
tures is created by taking the disjoint union of G and R and gluing all elements with common
preimages in L together. The attributes of old elements (in 7(G)) are kept, and the attributes of a
new element = € m(R) is the the attribute of its preimage in R under the substitution p' induced
by m. Since p’ is an extension of the substitution induced by m no conflicts for the attributes of
the elements in the intersection of 7#(G) and m(R) occur.

Construction 2.1 (Rule Application) Let p = (L,R,T,7) aruleand m : L — G with m =
(Muyertez, Medge, Melusters Mdep, Mar) & Match for p in G. Let p’ a substitution assigning ground
terms to all variables occurring in R such that p’ extends the substitution induced by m and
satisfies the application constraint IT".

We call the U-labeled result graph to be constructed G. For each carrier set X of G (i.e.,
vertices, edges, clusters, and dependencies), the corresponding carrier set X~ of G is a disjoint

11



union X W Xg_y, of X and anew copy Xg_1, = mx(Xgr — X)) of Xz — X1, under an arbitrary
bijection mx which satisfies mx(Xgr — X1.) N Xg = 0. Therefore the respective component
mx : Xk — Xq of the match m can be extended to a function mx : Xg — Xz by defining
mx :=mx Wmx.

The attribute component 1,4, is the term algebra homomorphism induced by p'.

Together this yields an extension of the match m to a full match m : R — G with m =
(mverteza medge: M cluster) mdep: mattr)-

For each function fz : X5 — Yz which is one of the source, target, labeling, and clustering
functions (s, ts, aa, ca) of G, f is defined as an extension of the respective function f; of G
which is compatible to the respective function fr of R. This requires that f~ satisfies the equation
fa omx =my o fgr. Since mx is injective on Xr — X, f= is defined uniquely. O

Example 2.3 In order to demonstrate this construction, we show the effect of applying the rule
get_issue (depicted in Figure 3) to a small fragment of a data graph. Since for this rule only the
database cluster and the Springer ACR cluster are relevant, we show in Figure 6 only fragments

of these clusters and disregard the HTML clusters on which the ACR cluster depends. O
! | ejournals name,, "Computer Science" title  / Intl. Journal on Digital Libraries 1EJournal DB | 3
discipline .
~ journal volume, Issue _
discipline: [issue
volno
|ssue :
B [issue ! dependency
k volume volno
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e lsewee L _source ™\ . source,
¢ Hlink - fibraries Lo
*
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Ylibrary_ref & years| 1998] |
library_ref ‘\a\/ \)‘«a e’é‘ }00 f,
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\\
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N
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Figure 6: Two applications of the rule get_issue, corresponding to the issues 174 and 2/1 of the
“International Journal on Digital Libraries”. New elements are indicated by bold lines, elements
matched by the left hand side by normal full lines, and irrelevant elements which are not matched
and further matching elements which have been omitted are denoted with dotted lines.

3 Oracles and Queries

In the last section we have defined the application of single rules. In this section, we define how
a set of rules is used for answering queries. Roughly speaking, a query is a pattern graph and the
solutions of a query are matches from this graph into data graphs which result from extending a
given data graph by applying rules to it. Later we will extend the definition of rules slightly to
use left hand sides of rules as queries.
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Definition 3.1 (Query) Let S be a schema.
A query on a data graph Gy is atuple (@, Qo, T, 7) consisting of:

a pattern graph ) over a variable set V, the query graph
asubquery Qo C @, the anchor,

a constraint I' being a boolean term from Tx.(V),
atypingr: @Q — Sof @

el NS s

O

Definition 3.2 (Solution) Let G be a data graph with interpretation o : Go — S. Let ¢ be a
query as defined above.

A solution for ¢ is a triple (G, ¢, m) consisting of a supergraph G of G, having the extension
L : G — S of 1y as extension and the match m : @ — G of @ in G such that the substitution
induced by m on the variables of () satisfies the query constraint I. |

Definition 3.3 (Oracle) An oracle @ is a functor which takes a query ¢ = (Q, Qo, T, 7) and a data
graph G, (with interpretation .o : Go — S) and returns a set ®(q, Gy) of solutions (G, ¢, m) for ¢
w.r.t. Gg.

For notational ease we write (m : Q — G) € ®(q, Go) instead of (G,:,m) € ®(q, Go).

Furthermore we use the abbreviation ®(g|lmo) = {m € ®(q,Go) | m|g, = mo} to express a
call of an oracle with a fixed initial match mg : Qo — Go.

We say an oracle ® is competent for schema clusters ¢y,... ,¢, € Cg of a schema S if it
answers only such queries where all elements of ) (except of those in ()y) must be typed by

elements from one of the schemaclusters¢;, i.e.,Vz € Q : z € Qo = cs(7(z)) € {c1,... ,cn € Cs}.
O

The solutions of a query are matches which extend existing matches for the anchor @, of the
guery in the given data graph. Furthermore each solution must be compatible with the typing
7 and satisfy all constraints in I'. An oracle can be seen as a “black box” which computes for a
given query and a data graph a solution set satisfying all these requirements. The result of such
an oracle for a query ¢ against a data graph G is shown schematically in figure 7.

The exception for the typing of the elements of )y in the definition of an oracle competent for
schema clusters ¢y, ... , ¢, is motivated by the fact that )y may have to match already existing
inter-cluster edges leading to the clusters for which the oracle is competent.

Figure 7: Aquery g = (@, Qo, T, 7) against an oracle ® w.r.t. an initial data graph G,. The solution
set is indicated by dashed lines.

Example 3.1 The HyperView System provides one builtin oracle, the WWW oracle. As anchor @)
of a query it assumes a graph which matches a part of an existing HTML cluster. Every element
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of the rest of the query graph @ must be reachable from within @y or from a node labeled by an
URL.

Then the WWW oracle will try to find matches for ) in the already materialized HTML
clusters and for each of these matches it will try to complete this matches to matches for the whole
query graph . To do so, it will load HTML pages from the WWW, triggered by the attempt to
match edges representing hyperlinks, e.g., the href_target edge in the query depicted in figure 8.
The WWW oracle supports sub edges to denote a transitive descendent relation among HTML
page elements.

- i SU0 e €X."Publications” |

Publications -

Figure 8: Query against the WWW oracle matching the hyperlink from the author’s home page to
his publications page. The home page is assumed to be already materialized in a cluster page_1.

To access a HTML page at a known URL directly, one can ask the WWW oracle for a root edge
from a vertex labeled by the given URL to a html vertex. This query will then cause the page
referenced by the URL to be loaded and its root node will become the target of root edge. |

3.1 Applying arule to a virtual data graph

If there is an oracle ® available for queries against a certain cluster of the data graph G, we can
use this oracle to apply a rule p = (L, R, T, 7) to it even though we cannot find matches for p in
Gy itself.

To do so, we have to formulate a query ¢ for ® which will return matches for L. It follows im-
mediately that L should be contained in the query graph; in fact, we choose ) = L. Furthermore,
it is clear that the application constraint should be used as a constraint for ¢ and the restriction
7|1, of the typing 7 as typing of (). The only open question is how to determine the anchor graph
Qo of ¢. One solution would be to determine @y by the form of L.

However, a more flexible approach is to add a graph A C L to the definition of p to indicate
the portion of L for which a match in the already materialized data graph is required. Thus a rule
gets the following form:

Definition 3.4 (Rule) — final definition
Arulep = (A,L,R,T, ) for aschema S consists of:

a clustered pattern graph R (see definition 1.9), called the right hand side (RHS) graph.
asubgraph L of R, called the left hand side (LHS) graph.

asubgraph A of L, called the anchor graph.

atyping morphismr: R — S.

a boolean term T from 7% (V) interpreted as an application constraint for p.

akrwpnpPE
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O

Hence, the query associated with this rule becomes ¢ = (L, A,T',7|). Using the oracle
we obtain a set ®(q,Go) of matches m : L — G each of which is an extension of a match
mgy : A — Gp. In figure 9 the rule get_issue already introduced in figure 3 is depicted with
anchor graph.

'
|
|
|

: volume
journal

source

year volume \ number
)
-+ Anchor ‘ Year: int‘ ‘VolumeNo: int‘ ‘ IssueNo: int‘ <=

N

VolumeNo >0 and IssueNo >0 and Year > 1900 and Year <2100

Figure 9: ACR Rule get_issue with anchor graph. Typically the source edge created by the right
hand side would provide a match for the anchor graph of another rule to be called after get_issue.

To each m € ®(g,Gy), the rule can be applied in the usual way, producing full matches m :
R — @. This application of p against the oracle ® over the initial data graph G is depicted in
figure 10.

Rule
R
A L
p
Output cluster m € ®(g,Go)

Input Cluster

Figure 10: Applying a rule to a virtual data graph with oracle ®. The match for Aismg : A — Gy,
the match for the left hand side m : L — G, and the full match for the right hand side is
m: R — G.

Definition 3.5 (Rule Application against Oracle) Let p = (A, L, R,T’,7) be a production, ¢ an
oracle, and mq : A — G a partial match for p.

Then we define Apply® (p|mo) := {m € Apply(p|m) | m € ®(q|lmo)} where ¢ = (L, A,T,7|L),
called the rule application functor for oracle ®. |

The rule application functor Applyq’(.|.) uses an oracle ® to extend a partial match m for a
rule p to a total match m and then applies p to this match using the functor Apply(.|.) for rule
application without oracle as defined in definition 2.7.
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3.2 Hyperviews

A hyperview defines a mapping which computes a cluster of a data graph as a function of several
other clusters of this graph. This mapping is specified by a set of rules defined with respect to a
subschema describing the input and output clusters of the hyperview.

Definition 3.6 (Hyperview) Let S be a schema. Let Out, In,,... ,In, be disjoint clusters of S
such that there exists in S a dependency from Owut to each In;, i = 1,... ,n. Let Sy C S be the
subschema constructed by ommitting all other clusters of S and their dependencies.

Let IT be a set of rules. We call II a hyperview with input clusters In4, ..., In, and output
cluster Out iffeach p = (L, R,T', 7) € II satisfies the following conditions:

1. pistyped w.rt. Sy, i.e., 7: R — Sy
2. each vertexv € Vg — V7, is typed by a schema vertex belonging to Out, i.e., ¢(7(v)) = Out

3. each edge e € Er — Ey, is typed by a schema edge belonging to a dependency emanating
from Out, i.e., s(c(7(e))) = Out

4. the variable set of p does not overlap with the variable set of any other rule in IT

3.3 Using arule to answer a subquery

Let IT be a hyperview (cf. Def 3.6) and ® an oracle for data graph clusters described by the input
clusters of II. Let p € II one of its rules.

Letg = (Q,Qo,T',7) beaqueryand B C Q. Wecanusep = (4,, Ly, R,,T';, 7,) to find a match
for B if we can come up with a suitable mapping between B and R. We call such a mapping a
binding morphism. B can be compared to the call site of a procedure in an imperative program. It
specifies which rule to activate, which parameters to supply, and where to use its result.

Definition 3.7 (Binding Morphism) Let ¢ = (Q, Qo,T'y,7;) aquery and B C Q.
Letp=(A,L,R,T,7) bearule.
A binding morphism b: B — R is a type-compatible graph morphism which does not map
Bentirely into into L, i.e., b(B) [Z L. We call B the binding region of b. m|

Remark 3.1 In general, p and ¢ will be the result of applying a variable substitution o to a rule
po and a query qo. This provides a means of communication by introducing common variables
in p and q. In particular, this mechanism can be used to instantiate variables occurring in p with
terms occurring as labels of B. ]

Applying rule p to a match m : L — G yields a full matchm : R — G. This match can be
lifted to a match mp : B — G for B by defining mp = m o b. This is illustrated by figure 11.

3.4 Chaining rules to answer a query

To answer a whole query using a hyperview II, we introduce the notion of a query execution
plan. Such a plan consists essentially of a set of binding morphisms b; for rules p; € II which
cover (together with the anchor graph of the query) the whole query graph. If we can apply the
rules p; in such a way that the matches induced by the binding morphisms are compatible with
each other and with a match for the anchor graph, we yield a match for the whole query graph
being the union of all these matches.

Since a rule can be applied only if a match for its anchor graph can be found in the available
data graph, care must be taken to activate rules in the right order. The query can be answered
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Input Cluster

Figure 11: Using a binding morphism to obtain a match for a subquery B.

only if for each rule a subgraph matching its anchor graph already either exists in the initial data
graph or is materialized by a preceding rule.

We have chosen a plan concept which ensures statically that rules are executed in the right
order. This poses a slight restriction to the form of rule sets over which queries can be answered.
The key idea is to require that the anchor graph of a rule is either to be matched against the initial
data graph or there exists a so-called rule dependency morphism (see definition 3.8 below) which
maps it to the right hand side of a rule which is to be executed before. This idea is illustrated
schematically by figure 12 and can also be seen in the the example of a query execution plan
shown in figure 13.

Definition 3.8 (Rule Dependency) Let @) be a query graph and b; : B; — R; be binding mor-
phisms for rules p; = (A;, L;, R;, T, ;) for i = 1,2, respectively. Let F = B; Nby *(A,) be
nonempty. (F' contains the portion of the intersection of B; and B, which is mapped to the
anchor graph A, by bs.)

A rule dependency is a type-compatible morphism d : A, — R; mapping A, to the right
hand side R; of p;, that is compatible with the binding morphisms, i.e., b1 |r = d o b2|r holds. O

Definition 3.9 (Query Execution Plan) Let IT be a hyperview for a schema S.
Letq = (@, Qo, T, 7) be aquery.
A query execution plan (QEP) for ¢ is atuple P = (¢, B, D, T") consisting of:

1. avariable substitution o

2. asequence B = (by,...,b,) of binding morphisms b; : B, — R; where B; C Qo, p; =
(Ai,Li, Ri:FiaTi) = po for somep e 11

3. asequence D = (dy,...,d,) such that for each i either there is a j < 7 such that d; is a
rule dependency d; : A; — R; compatible with b; and b;, or d; = ) and b;(By) C A; for
Bg = Q()U.

Furthermore the query graph under the substitution ¢ has to be completely covered by bind-
ing regions and its anchor graph, i.e., J;_, B; = Qo.

A plan P = (0,B,D,T") for ¢ is called a subplan of plan P’ = (¢/,B',I),I") for ¢ if o is a
restriction of ¢/, and B and D are (possibly permuted) subsequences of B’ and IV, respectively.

A plan is minimal if it has no subplans other than itself. O

In figure 13 a simple QEP is shown. It involves only two productions, the rule p, =get_issue
shown in figure 9 and the rule p2 =get_article which retrieves an article from an issue of a journal.
The query selects all articles from issues of the “International Journal of Digital Libraries” having
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Figure 12: Chaining of rules p; and ps. Rule p; has already been applied, yielding a full match
m1. Morphism dy; maps the anchor graph of ps to the right hand side of p; and thus lifts the full
match m; for p; to a partial match myg for ps.

appeared in 1998. It is assumed that the vertex representing this journal is already present in the
EJournalDB cluster, hence it is put into the anchor graph @)y of the query. The rule dependency
morphism d»; maps the elements of the anchor graph of p, on the right hand side (excluding the
left hand side) of p;.

Definition 3.10 (Solution for a QEP, Plan Oracle)

Letq = (Q,Qo,T',7) be aquery and P = (0,B,D,I') be a minimal QEP for ¢ with binding
morphisms B = (b4, ... ,b,) and rule dependencies D = (dy,...,d,).

Let ® be an oracle.

Let G, be an initial data graph and mq : By — Go € Matches(By, Go) a match for By := Qoo
in Gy. Let G be a supergraph of Gy.

Letm; : R — G (i = 1,...,n) be full matches for the rules p; such that for each rule
dependency d; : A; — R; the match m; is compatible to m;, i.e., m;|4, = m; o d; and for each
d; = () the match /m; is compatible to my, i.e., mg = 1; o b;|g,. Let m; := m; o b;.

The union m = |J;_, m; is called a solution for plan P iff it forms a match m : Qo — G of
Qo indG.

We denote the set of all solutions for P w.r.t. ® by PlanOracle® (P|my). i

Construction 3.1 (Solution for a QEP, Plan Oracle) Using the names of definition 3.10, we de-
fine recursively a set M; of full matches for the first i rules in P. The initial set M is defined as
{(Go)}.

Let (Gi_l,fnl, . ,mi_l) € M;_1. Let my € Matches(Ai,Gi_l) in case that d; = ¢ and
Mo = M od; ifd; : A; — RJ
Then for every m; : R, — G; € Apply(pi|mqo) the set M; contains the tuple (G;,mq, ... ,1m;).
For each tuple of M,, which consists of compatible matches m;, m; fulfilling m;|p,n5;, =
B;nB, the corresponding union m = |J;._, m; is an element of PlanOracle® (P|my). O

m;
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Figure 13: Example of a query execution plan

Remark 3.2 This construction shows that all solutions for a plan P can be found algorithmi-
cally by enumerating the matches for By, and for each match executing the rules whose binding
regions B; intersect with By, and then recursively firing rules having dependencies to already
executed rules. By checking for each match for a new rule the compatibility with the matches for
the rules executed before, branches not leading to solutions can be pruned out early. The rule de-
pendencies ensure that matches for the anchor graphs are provided, thus avoiding the problem
that the data graph is not sufficiently materialized to fire a rule. |

Remark 3.3 The term QEP is used here slightly differently than in the field of databases since a
QEP defines an expression does not yield the complete result of a query, but rather a subset of it.

In order to get the complete result of a query, all minimal plans for this query have to be
evaluated and the union of the returned partial results has to be built. |

Construction 3.2 (HyperView Oracle) Letq = (Q,Qo, T, 7) be a query.

Let Plans' be a functor which assigns to ¢ the set Plans" (¢) of all minimal query execution
plans for ¢ with respect to hyperview II.

Let ® be an oracle for the input clusters of II.

Then we define the query match functor Oracle®™ which returns all matches for ¢ when
starting from initial data graph G, with respect to the match functor ¢ and rule set IT:

Oracle®" (¢, Go) := {m € PlanOracle® (P|myg) | P € Plans™ (¢q), mo € Matches(Qo,Go)} O

Remark 3.4 The construction of Oracle®™ for a hyperview II with output schema cluster ¢ yields
an oracle competent for this cluster.

Different oracles competent for schema clusters ¢y, .. . , ¢, can be combined to one oracle com-
petent for all these clusters, provided that there are no dependencies between these clusters in
the schema.

A query against ¢, ... ,c, can be decomposed into subqueries ¢; against single clusters c;.
The anchor graphs Qq; may intersect because by definition 3.3 need not conform to ¢;. Unions of
solutions m; returned for the different ¢; are solutions for q if they are compatible with each other
and satisfy the constraint I of q.
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This enables us to compose hyperviews in a way that allows information from different
sources to be retrieved, restructured and combined on a higher level of abstraction. In a typi-
cal HyperView System several succeeding levels of abstraction exist, from the HTML layer up to
the result layer presented to the user. m|

4 Reuse of existing subgraphs

The problem of identifying entities uniquely by their properties applies not only to classical
databases, but to data graphs as well. Hence, the concept of key attributes must be adapted
appropriately. In particular, when applying rules, it must be avoided to create duplicates.

First we present a pragmatic solution based on Reuse Specifications, which has been imple-
mented in the current HyperView prototype.

Definition 4.1 (Reuse Specification) Letp = (A, L, R,T',7) arule. A reuse specification for rule
pisalist Ky,..., K, C R of subgraphs (called reuse graphs) of the RHS graph R. |

When applying rule p to a match m, we first check whether m can be extended to K. Only if
this is not possible, new copies of the elements in K; are added to the data graph G. This process
is repeated for the remaining graphs K, ..., K, (in that order). After that, new copies of the
remaining elements in R — L are added to G.

This approach can be formalized by introducing negative structural application conditions.
Then, each rule with a reuse graph can be splitted into a pair of rules, one having the reuse graph
as a negative application condition and the other including the reuse graph in the left hand side.

Reuse specifications have the advantage that they can be implemented efficiently. However,
they depend on the assumption that all K; are sufficiently selective to match at most one sub-
graph of the data graph. Otherwise the matching subgraphs have to be glued together or one
of them has to be chosen nondeterministically. To achieve determinism, the rule set has to be
carefully designed. The goal must be to specify key properties by schema annotations and to
generate reuse specifications for all rules. Furthermore, the rule application mechanism must be
enhanced in order to handle the case that a reuse graph is matched by several subgraphs of the
data graph.

5 Open Problems

Further problems which are not essential, but for which solutions would have useful applica-
tions:

1. Can we support regular path expressions for graph matches? Currently we do not give a
semantics for recursive rules. Hence we have to view transitive closure rules as built-in.

One possible solution would be to assume that all graphs are implicitly equipped with
all edges corresponding to regular path expressions. For instance, for every label a, there
would be edges labeled by ax* representing the transitive closure of edges labeled by a.

2. How can keys be specified as schema annotations instead of by redundant and possibly
inconsistent reuse specifications?

3. How can multi-valued primary keys for objects enforced? For instance, reports might be
identified by their title and the set of authors.

4. How do we cope with the fact that many multiple-valued attributes are ordered? Examples
are first names of a person, author lists of an article.
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5. Are atomic data types in schema graphs sufficient, or are probabilistic or other less strict
concepts like fuzzy sets more appropriate? Consider for instance the label sets describing
first and last names: either they are too restrictive or too admissive, but there is no way to
accumulate belief values from testing several labels.

6. How can inheritance of schema elements and rules be supported? A pragmatic solution
taken in this work is to copy rules for all possible target types. Since this is needed only for
a limited number of vertex types in HTML graphs, this approach is feasible. However, a a
more formal concept would be interesting.

6 Conclusion

In this report the formalization of the HyperView concept for graph transformation based
views has been presented. The introduced clustered data model CGDM uses term-attributed
graphs to represent data. It supports the modularization of large graphs into loosely connected
clusters. The schema concept of CGDM defines conformance by a graph morphism from an in-
stance graph to a schema graph. Our notion of graph transformation uses typed attributed Single
Push Our rules with application conditions on attributes. The main contribution of this work is a
novel demand-driven rule activation mechanism by which the incremental materialization of Hy-
perViews is achieved. This activation mechanism is based on the notion of Oracles against which
Queries in form of graph patterns can be posed. In particular, the WWW can be modeled by such
an oracle. HyperViews consist of rules which are evaluated against a number of existing oracles,
thus combining them to a more powerful oracle on a higher level of abstraction. This ensures
the composability of HyperViews which is essential for the layered architecture of the HyperView
System.

The formal framework presented here forms the theoretic basis on top of which the HyperView
System is implemented. The HyperView System is presented in [2]. Up-to-date information on
the HyperView and the forthcoming prototype can be found on the Web Site <http://www.inf.fu-
berlin.de/~faulstic/HyperView>.
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