
SERIE B � INFORMATIK

Average Case Analysis of Dynamic Graph

Algorithms

David Alberts�
Monika Rauch Henzinger��

B �����
March ����

Abstract

We present a model for edge updates with restricted randomness in dynamic graph
algorithms and a general technique for analyzing the expected running time of an up�
date operation� This model is able to capture the average case in many applications�
since ��� it allows restrictions on the set of edges which can be used for insertions
and �	� the type �insertion or deletion� of each update operation is arbitrary� i�e�� not
random� We use our technique to analyze existing and new dynamic algorithms for
the following problems
 maximum cardinality matching� minimum spanning forest�
connectivity� 	�edge connectivity� k�edge connectivity� k�vertex connectivity� and bi�
partiteness� Given a random graph G with m� edges and n vertices and a sequence
of l update operations such that the graph contains mi edges after operation i� the
expected time for performing the updates for any l is O�l log n � n

P
l

i��
��
p
m

i
� in

the case of minimum spanning forests� connectivity� 	�edge connectivity� and bipar�
titeness� The expected time per update operation is O�n� in the case of maximum
matching� We also give improved bounds for k�edge and k�vertex connectivity� Ad�
ditionally we give an insertions�only algorithm for maximum cardinality matching
with worst�case O�n� amortized time per insertion�

Key words� Average case analysis� Dynamic algorithms� Matching� Connectivity�

Bipartiteness�

�Freie Universit�at Berlin� Institut f�ur Informatik� Takustr� �� D�����	 Berlin� Germany� Email

alberts�inf�fu�berlin�de� Phone�Fax
 
�� �� ��� �	 �����	 ���� Graduiertenkolleg�AlgorithmischeDiskrete
Mathematik�� supported by the Deutsche Forschungsgemeinschaft� grant We ���	����� This research was
done in part while visiting theMax�Planck Institute for Computer Science� Im Stadtwald� ����� Saarbr�ucken�
Germany� This work was �partly� supported by the ESPRIT Basic Research Action No� ���� �ALCOM II��
��Department of Computer Science� Cornell University� Ithaca� NY ���	�� Email
 mhr�cs�cornell�edu�
This research was done in part while visiting the International Computer Science Institute� ���� Center St��
Suite ���� Berkeley� CA ����� and at the Max�Planck Institute for Computer Science� Im Stadtwald� �����
Saarbr�ucken� Germany�



�

� Introduction

In many applications a solution to a problem has to be maintained while the problem
instance changes incrementally	 Dynamic algorithms incrementally update the solution
by maintaining an additional data structure	 Their goal is to be more e
cient than
recomputing the solution with a static algorithm after every change	

Given an undirected graph G � �V�E
� a �fully
 dynamic data structure allows the
following three operations�

� Insert�u� v
� Insert an edge between the node u and the node v	

� Delete�e
� Delete the edge e	

� Query� Output the current solution	 �Depending on the the particular problem a
query might be parametrized	


Two nodes u and v are k�edge �k�vertex� connected for �xed k if there are k edge�
disjoint �k vertex�disjoint
 paths between u and v	 A query in the case of connectivity
���edge connectivity
 has � parameters u and v and returns �yes� if u and v are connected
���edge connected
	 In the case of k�edge �k�vertex
 connectivity a query returns �yes�
if the graph is k�edge �k�vertex
 connected	 A matching is a subset of the edge set such
that no two edges are incident to the same vertex	 A maximum matching is a matching
of maximum possible cardinality	 In the case of maximum matching a query outputs a
current maximum matching	 Alternatively� a query could also be� �Is the edge e in the
current graph in the current maximum matching��

Recently� a lot of work has been done on dynamic algorithms for various connectivity
properties ������� ��� ������	 The current best deterministic bound for maintaining con�
nected or ��edge connected components of a graph is O�

p
n
 ����	 The best randomized

algorithm achieves O�log� n
� resp	 O�log� n
 per update ����	 It is an open problem if
the connected or ��edge connected components of a graph can be maintained determinis�
tically faster than O�

p
n
	 A second interesting question is if a maximum matching can

be maintained in time o�m
 per update	 Note that a dynamic algorithm which executes
one phase of the static algorithm by Tarjan ���� for each update operation achieves an
update time O�m
	 This was used for example in ���	 It is already an improvement over
recomputation from scratch which takes time O�

p
nm
 �������	

We achieve better �average case
 bounds for both problems in the following model of
restricted randomness �rr�model�� Given a random graph G with n vertices and m edges�
an adversary can determine whether the type of the next operation is an insertion or a
deletion	 If the type is an insertion� an edge chosen uniformly from all �allowed� edges
not in G is inserted	 If the type is a deletion� an edge chosen uniformly from all edges in
G is deleted	 Thus� only the parameter of the next operation is chosen at random� but
not the type of the next operation	

The rr�model is especially suited to capture the average case in many applications�
since ��
 it allows restrictions on the set of edges which can be used for insertions and ��

the type �insertion or deletion
 of each update operation is arbitrary� i	e	� not random	
Related Work Karp ���� gave a deletions�only connectivity algorithm	 If the initial
graph is random and random edges are deleted� the total expected time for a sequence of
deletions is O�n� logn
	



Average Case Analysis of Dynamic Graph Algorithms �

In ���� a di�erent random input model for dynamic graph algorithms is presented�
called fair stochastic graph process �fsgp�	 It assumes that the type of the next operation
as well as its parameter are chosen uniformly at random	 Since the rr�model does not
make any assumptions about the distribution of the types of update operations� it is more
general than a fsgp� which assumes that insertions �deletions
 occur with probability ���	
The algorithm� presented in ���� takes expected time O�lk log� n
 maintaining the k�vertex
connected components �k constant
 for a sequence of l � n� logn update operations	 This
bound is better than our bound in the case of connectivity if the sequence of update
operations is long enough and the graphs are not dense� but since the model is weaker�
the results are incomparable	

The rr�model is a variation of a model for random update sequences used before in
computational geometry �see� e	g	� ��� �� ������
	 Eppstein ��� considers the dynamic �geo�
metric
 maximum spanning tree problem and related problems for points in the plane	
Exploiting their geometry� he gives data structures with polylogarithmic expected update
times for these problems	
New Results

� We show that a conceptually simple dynamic algorithm for maximum cardinality
matching has an average update time of O�n
 per update with respect to the rr�
model	 The space needed is linear and the preprocessing time is O�

p
nm
	 Ad�

ditionally we give an insertions�only algorithm for maximum cardinality matching
with O�n
 amortized time per insertion	

� Assuming that the weight of an edge is arbitrary� but �xed� we show that a modi�ed
version of Frederickson�s topology tree data structure ���� for dynamic minimum
spanning forests has an average case update time of O�logn � n�

p
m
 plus amor�

tized constant time	 The data structure needs linear space and linear expected
preprocessing time	 The best worst case update time for this problem is O�

p
n
 ����	

� Dynamic connectivity� ��edge connectivity� and bipartiteness ��Is the current graph
bipartite��
 are closely related to the dynamic minimum spanning forest problem	
They can be updated within the same bounds for space and time	 In the worst case
the best deterministic bound is O�

p
n
 ���� and the best randomized algorithms take

polylogarithmic time per update ����	

In the case of k�edge and k�vertex connectivity we slightly improve the known bounds�

� Eppstein et al	 ���� describe an algorithm for dynamic k�edge connectivity with
worst case update time O�k�n log�n�k

 using a minimum edge cut algorithm by
Gabow ����	 We show that �with a slight modi�cation
 its average case update
time is O�min��� kn�m
k�n log�n�k

 plus O�k
 amortized time	 This gives time
O�min��� n�m
n logn
 plus amortized constant time for constant k	 The data struc�
ture is able to answer a query whether the current graph is k�edge connected in
constant time	 The data structure needs O�m� kn
 space and preprocessing time	

� We create a dynamic k�vertex connectivity algorithm� using the algorithm by Nag�
amochi and Ibaraki for �nding sparse k�vertex certi�cates ���� and the O�k�n��	 �
k�n�
 minimum vertex cut algorithm by Galil ����	 A query takes constant time	 The
average update time is O�min��� kn�m
�k�n��	 � k�n�

� which is O�min�n�� n��m


for constant k	 The preprocessing time and the space requirement is linear	



�

Note that our algorithms are deterministic and not randomized	 The average case
performance of all algorithms matches the best known worst case bounds in the case of
sparse graphs� but it is signi�cantly better if there are more edges	 In the case of dense
graphs these improvements are exponential for some of the problems	

After presenting the rr�model in Section � we give a general technique for analyzing the
expected running time of an update operation using backwards analysis ���� in Section �	
As far as we know� this is the �rst application of backwards analysis to dynamic graph
problems	 In Section �� �� �� �� �� � we apply this technique to analyze the expected running
time of dynamic algorithms for maximum matching� minimum spanning forest� connectiv�
ity� bipartiteness� ��edge connectivity� and k�edge and k�vertex connectivity� respectively	
A preliminary version of this paper appeared in ���	

� A Model for Random Update Sequences

To model the average case it is common practice to consider the expected performance
with respect to a �random� input	 So we have to de�ne a probability distribution on
possible updates	 An update consists of two parts� its type� i	e	� either insert or delete�
and its parameter� i	e	� the speci�c edge to be inserted or deleted	 If the type and the
parameter of an operation are given by an adversary� we are in a worst case setting	 For
the average case analysis at least the edge to be inserted or deleted should be given with
some probability distribution	 Now two cases are possible� either the type of the update
operation is random or not	 Reif� Spirakis� and Yung ���� studied a model in which the
probability of an insertion �deletion
 is ���	 In contrast� we do not make any assumptions
on the distribution of types of update operations	 Thus� our analysis also applies if an
adversary provides the �worst case
 types of update operations	

We adopt a generic model for random update sequences from computational geometry
�see� e	g	� ��� �� ��� ���
	 The dynamically changing object is a set E which is a random
subset of a �xed set �E� the universe	 An update is arbitrarily either a deletion of an
element of E which has to be chosen uniformly at random from the elements which are
currently in the set E� or an insertion of an element chosen uniformly at random from the
set �E n E	 Since the type of an update operation is not random� the cardinality of E is
also not random	 Applied to the dynamic graph algorithms setting we get the following
model which we call the model of restricted randomness or rr�model	 We have a �xed set
of vertices V of cardinality n	 �E is a subset of

�
V
�

�
called the set of allowed edges and we

call G � �V�E
 the current graph	 If we start with a random subset of �E of cardinality m�

�for any m�
 and apply a sequence of updates as described above we get a current graph
with a certain number m of edges depending on the type of updates	 This graph is with
equal probability any of the possible m�edge subgraphs of �G � �V� �E
	 If �E is equal to�V
�

�
� then G is a random graph in the well�known Gn�m model ���	
Note that there are two ways to control the graphs in the rr�model to suit the needs of

a particular application	 First� we can prescribe �E	 In consequence we can impose some
structure� e	g	� bipartiteness on the graphs which occur	 Moreover� if certain edges never
occur� we can model this by excluding these edges from �E	 Second� we may assume that
an adversary gives us a worst case sequence of update types	 Thus� we can also handle
highly regular update patterns� e	g	� l insertions� l deletions� l insertions� and so on	



Average Case Analysis of Dynamic Graph Algorithms �

� Average Case Analysis

In this section we present an abstract setting for the average case analysis of dynamic data
structures with respect to the rr�model	 We use a technique called backwards analysis�
which already lead to a variety of elegant proofs for randomized incremental geometric
algorithms� see ���� and its references	 If all updates are performed in approximately the
same time bound� there is no need for an average case analysis	 We are interested in
dynamic data structures where we employ two update algorithms� a slow algorithm that
works in any case and a fast algorithm that works only when certain conditions are met	
We assume that these conditions depend on some structural property S of the current
graph G and the update� namely we can apply the fast algorithm if and only if the update
does not change S	 In our case the structural property S will be a subgraph of the current
graph	

�In the following we could also handle asymmetric update times for insertions and
deletions� e	g	� the slow insertion time is not the same as the slow deletion time	 Since we
do not need this for our applications� we stick to the symmetric case	


In this paper a graph property P is either a predicate on the graph �e	g	 bipartiteness
�
or a predicate on pairs of nodes �e	g	 connectivity
� or a set of subgraphs �e	g	 maximum
cardinality matching
	 To e
ciently maintain a graph property under updates we maintain
a �stronger� graph property S that can be represented by a set of subgraphs	 In the
following we will map every current graph G to such a set of its subgraphs S�G
	 The
property S is stronger than the property P in the following sense� if P is di�erent for two
graphs G and G�feg then no element of S�G
 is contained in S�G�feg
	 This guarantees
that to test if P changes after an update it su
ces for our algorithms to maintain one
element of S�G
 instead of the whole set	 In order to use backwards analysis to analyze
the average case behavior we pose two additional constraints on S	

To be precise� for a given graph property P and a given graph �G a mapping SP from
every subgraph G of �G into the set of subgraphs of G is a suitable property for P and �G
if it has the following properties�

�	 Let G and G�feg be subgraphs of �G with e �� G	 If P�G
 is not equal to P�G�feg

then every S � SP�G� feg
 contains e	

�	 Let G and G � feg be subgraphs of �G with e �� G	 If P�G
 is equal to P�G � feg

then SP�G
 is equal to the set of all S � SP�G � feg
 which do not contain e	

�	 There exists a function s such that every element of SP�G
 has size at most s�n
	

We de�ne a suitable subgraph S for P and G to be an arbitrary element of SP�G
	
If P is understood we say S is a suitable subgraph for G	 For example in the case of
connectivity we can choose S�G
 to be the set of all possible spanning forests of G	

We want to analyze a dynamic algorithm which maintains a suitable subgraph along
with other information	 For a current graph and a current suitable subgraph S we de�ne
an update to be a good case if S is also suitable for the new current graph	 If S is no
longer suitable we de�ne the update to be a bad case	 The dynamic algorithm performs an
update by testing whether it is a good or a bad case and then performing the fast update
algorithm in the good case and the slow update algorithm otherwise	 Properties � and �
guarantee that a current suitable subgraph S has the following properties�



�

� The deletion of an edge which is not in S is always a good case	

� If the insertion of an edge e is a bad case� then e has to be in any possible suitable
subgraph S� for the new graph	

We now want to derive a bound on the expected running time of one update according
to the rr�model	 We do not consider the time for testing here	 Let D be the dynamic data
structure	 Let g�n�m
 �b�n�m

 be the running time of the fast �slow
 update algorithm	
We assume that m � s�n
	 Otherwise we get a bound of b�n�m
	 First we analyze a
deletion	 Let Tdel�n�m
 be the expected running time for deleting an edge in a random
m�element subset of �E	 Let E be an arbitrary m�element subset of �E and let �m � j �Ej	 Fix
one suitable subgraph S for E	 Let Tdel�E� e
 be the worst case running time for updating
D when e � E is deleted	 Since the bad case occurs only if e � S� we get

Tdel�n�m
 �
�� �m

m

�
m

X

E� �E
jEj�m

X

e�E

Tdel�E� e
 � �� �m
m

�
m

X

E� �E
jEj�m

s�n
b�n�m
 � �m� s�n

g�n�m


� O�
s�n


m
b�n�m
 � g�n�m

�

Next� we consider the insertion of an edge	 Let Tins�n�m
 be the expected time needed to
insert a random edge if the current random graph has n vertices and m edges	 In analogy
to Tdel�E� e
 let Tins�E� e
 be the time needed to update D if e � �E nE is inserted into E	
Then we have

Tins�n�m
 �
�� �m

m

�
� �m�m


X

E� �E
jEj�m

X

e� �EnE

Tins�E� e
�

since every pair �E� e
 is equally likely according to the rr�model	 Now backwards analysis
appears on the scene	 We formulate the cost in terms of the edge set E� which results by
inserting e into E	 Choosing m elements from �E and afterwards an additional one from
the remaining set is the same as choosing m � � elements from �E �rst and then selecting
one of the chosen elements	 Thus� we get

Tins�n�m
 �
�� �m

m
�

�
�m � �


X

E�� �E
jE�j�m
�

X

e�E�

Tins�E
�� e� e
�

Now� we look at the inner sum	 Let G� � �V�E�
 and let S� be a suitable subgraph for G�	
If the insertion of e was a bad case� then e has to be contained in S�	 Since jS�j � s�n
�
this happens at most s�n
 times	 So� we get

Tins�n�m
 � �� �m
m
�

�
�m � �


X

E�� �E
jE�j�m
�

s�n
b�n�m
 � �m� �� s�n

g�n�m


� O�
s�n


m
b�n�m
 � g�n�m

�

This implies the following theorem	



Average Case Analysis of Dynamic Graph Algorithms �

Theorem ��� Let �G be a graph on n vertices� let P be a graph property� let there be a
suitable property SP for P and �G� let D be a dynamic data structure for P with

� a query time of q�n�m
�

� a bad case update time of b�n�m
�

� a good case update time of g�n�m
� and

� a bound of t�n�m
 for testing whether an update is a good case�

Then there is a dynamic graph algorithm for P with an expected update time with respect
to the rr�model of O�t�n�m
�g�n�m
�min��� s�n
�m
b�n�m

� Its worst case query time
is q�n�m
�

Note that the gap between average case and worst case performance is the largest if
the graph is dense	

� Maximum Cardinality Matching

��� Terminology

The cardinality of a maximum matching is the matching number of the graph	 In general
a maximum matching is not unique	 All of the following de�nitions are with respect to a
�xed matching M 	 A path P in G is an alternating path with respect to M i� the edges in
P are alternately in the matching M and not in M as we walk along P 	 We will drop the
phrase �with respect to M� whenever there are no ambiguities	 A free vertex is a vertex
which is not incident with any matching edge	 An alternating forest is a forest in G with
the free vertices as roots whose paths are alternating	

An augmenting path is an alternating path which starts and ends with a free vertex	 A
matching can be augmented along an augmenting path P by removing the matching edges
on P from the matching and inserting the non�matching edges on P into the matching	
This yields a matching M � which contains one more edge than M 	

A graph H is factor�critical if H � v has a perfect matching for every vertex v � V �H
	
This implies that jV �H
j is odd and H itself has no perfect matching	 Let G � �V�E
 be
a graph with some matching M 	 A blossom B in G with respect to M is a factor�critical
subgraph of G which contains k matching edges where jV �B
j � �k � �	 One vertex is a
trivial blossom	 The easiest nontrivial case is just an odd cycle where all vertices but one
are matched	 Note that the de�nition of a blossom is not unique in the literature� we de�ne
it similar to ����	 A blossom which is not properly contained in another one is a maximal
blossom	 A blossom forest with respect to M is a subgraph F of G containing vertex�
disjoint blossoms such that contracting each blossom in F to a single vertex � which is
called shrinking the blossom � leads to an alternating forest	 A maximum blossom forest
is a blossom forest with maximal cardinality of its vertex set	 In the following we only
deal with maximum blossom forests and drop the word �maximum�	 Since one can add
an arbitrary number of edges to a blossom and it remains a blossom� blossom forests are
not necessarily sparse	 But it is easy to see that there always exist sparse blossom forests	

Now let M be a maximum matching again	 If there exists an alternating path with
respect to M from some free vertex to a certain vertex v� then v is reachable	 If one of the



�

alternating paths from a reachable vertex v to some free vertex is of even length then v is
an even vertex	 The length of a path is the number of edges it contains	 If v is reachable�
but only using odd alternating paths� then it is an odd vertex	 Free vertices are also even	
The sets of even and odd vertices are unique� i	e	� they are independent of the particular
choice of a maximum matching	 Edmonds also proved this in ���	 A non�reachable vertex
is called out�of�forest vertex	

��� The algorithm

The data structure we maintain consists of a sparse blossom forest� parity informations
�even� odd� or out�of�forest
 for the vertices� and a list consisting of the edges in a current
maximum matching	 The matching and forest edges are marked for quick recognition	
Thus� it is trivial to answer a query	 Additionally� we store at each node in the blossom
forest a pointer to the tree that it belongs to	 A blossom forest is a well�known data
structure used in static maximum cardinality matching algorithms� see� e	g	� ��� ��� ���	
We will show below that the union of a maximum matching of the current graph and a
blossom forest with respect to it is a suitable subgraph for the current graph	 It follows
that s�n
 � O�n
	 Conceptually� the data structure is a sparse subgraph of the current
graph G� which has the same matching number and the same parities as G	

Tarjan ���� describes a static algorithm for computing a maximum matching in general
graphs	 It proceeds in phases	 In each phase it either constructs a sparse blossom forest or
it �nds an augmenting path with respect to an intermediate matching computed so far and
augments this matching in O�n�m
 time	 The algorithm computes the reachable vertices�
their parities� the blossoms and informations to retrieve augmenting paths	 It grows an
alternating forest and shrinks nontrivial blossoms reachable via an even alternating path
when they are detected	

To analyze when S has to be changed we look �rst at deletions	 A change occurs only
if we delete an edge in the forest or the matching	 Since they are marked� we can easily
test this condition	 Now suppose we insert an edge e into the current edge set E	 Let
E� � E � feg	 We have to update the blossom forest or the matching only if one of the
following three conditions applies	 By using the information stored at the nodes we can
test in constant time if one of these conditions applies ����	

��
 The insertion of e increases the matching number	 In this case we �nd an augment�
ing path when e is inserted� we augment the matching and have to rebuild the blossom
forest	 If there is a maximum matching in E� not containing e� then the deletion of e from
E� does not decrease the matching number� a contradiction� since the matching number
is unique	 So e has to be in every maximum matching in E�	

��
 The insertion of e increases the number of reachable vertices	 In this case the
blossom forest grows	 Since the reachable vertices are unique and they form the vertex
set of every blossom forest� we can argue in the same way as in the previous case that e
is in every possible blossom forest for the new graph	

��
 The insertion of e does not change the number of reachable vertices but changes
the parity of some odd vertices to even	 In this case there is a new blossom in the forest	
Since the parities of the reachable vertices within the blossom forest are the same as in the
whole graph and they are unique� we can again deduce that e has to be in every possible
blossom forest for the new graph	

Assume that in a bad case we simply recompute the data structure by using one phase



Average Case Analysis of Dynamic Graph Algorithms �

of Tarjan�s algorithm	 If the change also a�ects the current maximum matching� we have
to apply the algorithm twice� once for augmenting and once for computing a new blossom
forest with respect to the new maximum matching	 These bad cases take O�n � m

time	 All good cases can be handled in constant time� since we just update the adjacency
structure of the graph	 For preprocessing we use the static O�

p
nm
 algorithm of Micali

and Vazirani ���� ��� to construct a maximum matching in the initial random graph and
one phase of Tarjan�s algorithm to construct a sparse blossom forest with respect to the
initial maximum matching	 Using Theorem �	� we get the following result	

Theorem ��� There exists a data structure for dynamic maximum matching which can be
updated in O�n
 expected time with respect to the rr�model� It returns a current maximum
matching or answers the question whether a particular edge is in the current maximum
matching in optimal time�

Even� odd� and out�of�forest vertices correspond to the Gallai�Edmonds�Decomposition
of a graph	 For a de�nition and properties of this decomposition see ����	 Since our
algorithm maintains the partition of the vertices into even� odd� and out�of�forest vertices�
it also maintains the Gallai�Edmonds�Decomposition of the graph	

��� Insertions only

We sketch below an insertions�only maximum cardinality matching algorithm with O�n

amortized time per insertion of an arbitrary �not random
 edge if the initial edge set is
empty	

A close look at Tarjan�s algorithm ���� shows that each phase is essentially a semi�
dynamic algorithm	 It is guided by the edges reachable via even alternating paths in the
growing blossom forest	 It does not depend on a particular order on these edges	 Thus� as
long as an inserted edge changes only the blossom forest� but creates no augmenting path
there is no need to recompute the data structure from scratch	 A sequence of insertions
of this type plus an edge which increases the matching number corresponds to one phase
of Tarjan�s algorithm with a special order of scanning edges	 All the work which has to
be done in one such phase� i	e	� growing the forest� shrinking blossoms� augmenting the
matching at the end of the phase� and rebuilding the blossom forest with respect to the
new maximum matching afterwards can be charged to the edges which are involved	 By
doing so� each edge is charged only for a constant amount of work per phase	 Since there
are at most n�� phases� an insertion can be done in O�n
 amortized time	

� Minimum Spanning Forests

Frederickson ���� introduced the topology tree data structure to maintain a minimum
spanning forest dynamically	 In this section we modify the topology tree data structure
to give a dynamic minimum spanning forest algorithm with good average and the same
worst�case performance as the algorithm in ����	 The new variant of topology trees is the
key data structure for a number of other dynamic graph algorithms� like di�erent kinds of
connectivity and bipartiteness� presented in the following sections	

The worst case update time of the topology tree data structure is O�
p
m
	 By using

improved sparsi�cation ���� this can be reduced to O�
p
n
	 To apply our technique of



��

Section � we modify the topology trees such that updates involving tree edges take time
O�
p
m
 �bad case
 and updates involving non�tree edges take time O�logn
 plus amor�

tized constant time for rebuilding parts of the data structure �good case
	 The minimum
spanning forest is its own suitable subgraph	 It is sparse so by Theorem �	� we get an
average case update time with respect to the rr�model of O�n�

p
m� logn
 expected time

plus O��
 amortized time if we consider an arbitrary but �xed weight for every edge in
�G	 We cannot use the sparsi�cation technique of ���� ��� since in their data structure a
constant fraction of the edges causes expensive updates	

��� Basic De�nitions

We �rst review the data structure by Frederickson and make some changes needed to
speed up the good case	 We always keep the graph connected by dummy edges of weight
�	 To build a topology tree we map G to a graph G� of maximum degree � by replacing
a vertex x of G of degree d � � by a cycle of d new vertices x�� � � � � xd in G�	 The edges
connecting xi and xi
� and the edge connecting xd and x� get a weight of ��� so they
always stay in the minimum spanning forest of G�	 They are called dashed edges	 Every
edge �x� y
 is replaced by an edge �xi� yj
� where i and j are the appropriate indices of
the edge in the adjacency lists for x and y	 Note� that the edges of a minimum spanning
forest of G are a �subset� of those for G�	 The topology tree data structure decomposes
G� based on a minimum spanning tree T of G�	 In the following whenever we use the term
tree edge we refer to an edge of the current minimum spanning tree in case of a deletion
or the new minimum spanning tree in case of an insertion	

To achieve fast updates for non�tree edges we modify the de�nitions of clusters given
in ����	 A basic cluster is a set of vertices that induces a subgraph of T that is connected	
An edge is incident to a cluster if exactly one of its endpoints is in the cluster and it is
internal to a cluster if both endpoints are in the cluster	 The tree degree of a cluster is the
number of tree edges incident to the cluster	 We call a cluster blue if it has tree degree �
or if it has tree degree � and is not incident to a tree degree � cluster	 A dynamic restricted
partition of order k with respect to T is a partition of the vertices so that

��
 each cluster with tree degree � has cardinality ��

��
 each set in the partition is a basic cluster with tree degree � � and cardinality � �k�

��
 each blue cluster has cardinality at least k��	

These conditions guarantee that there are O�m�k
 basic clusters in a dynamic restricted
partition of order k	 A dynamic restricted multilevel partition of order k is a hierarchy of
dynamic partitions� one partition per level	 A level�� cluster is a basic cluster created by
a dynamic restricted partition of order

p
k	 A level�i cluster is

��
 the union of two level��i��
 clusters that are connected by a tree edge such that one
of them has tree degree � or both have tree degree �� or

��
 one level��i��
 cluster if the previous rule does not apply	

The topmost partition consists of just one set	



Average Case Analysis of Dynamic Graph Algorithms ��

��� Data Structure

A topology tree TT is a tree which represents a dynamic restricted multilevel partition such
that each node C at level i of the tree corresponds to a level�i cluster in the multilevel
partition	 If C is the union of two clusters C� and C� at level i��� then C� and C� are
the children of C and the tree edge �C�� C�
 is stored at C� If C consists of one level��i��

cluster C� at level i� then C� is the only child of C in TT�

A 	�dimensional topology tree �TT is a tree that contains a node C 	D at level i for
every pair �C�D
 of level�i clusters	 A level��i��
 node C�	D� is a child of a level�i node
C 	D i� C� is a child of C and D� is a child of D�

We maintain a minimum spanning tree T of G� in a dynamic tree data structure	 We
implicitly maintain a dynamic restricted multilevel partition of order

p
m by means of a

topology tree TT and a two�dimensional topology tree �TT 	
At every node C 	 D of �TT with C �� D we keep a bit that is set to � i� there is

an edge between cluster C and cluster D	 Let min�C�D
 be the edge of minimum cost
between C and D	 At each leaf C 	 D of �TT we keep a priority queue of all non�tree
edges with one endpoint in C and one endpoint in D and min�C�D
	 �This priority queue
is not part of the original topology tree data structure� but added to speed up updates	

At an internal node C 	 D of �TT we only keep min�C�D
 which can be computed in
constant time from the min value of the �at most four
 children of C 	D	

��� Updating the Mapping from G to G�

Whenever an edge �x� y
 is inserted into G and the degree d of x �or y
 is already greater
than two� we have to update the mapping from G to G�	 In general we just add a new
node x� at a suitable location in the cycle representing x in G� and a new edge �x�� yj
 for
an appropriate index j to G�	 A special case occurs when the degree of u in G is exactly
�� u is represented by just one vertex u� in G� before the insertion and by � vertices after
the insertion	 In order to stay within the claimed space bound we also have to remove a
node from the cycle in G� representing a particular vertex in G when an edge is deleted	

��� Updating the Dynamic Partition

The insertion or deletion of a node in G� might invalidate the partition by violating some
of the conditions	 We restore them by the following rebuild procedure	

�	 If Condition ��
 is violated then

� If this rebuild is caused by a tree�edge then we just restore Condition ��
 by
splitting all a�ected clusters into subclusters that ful�ll Condition ��
	

� If this rebuild is caused by a non�tree edge �x� y
 in G then we do the following�

� If x� or x� lies in a cluster with tree degree less than three� we add the new
node x� to this cluster	

� Otherwise we create a new cluster containing x� between the �tree degree
�
 clusters containing x� and x�	

The vertex y is handled symmetrically	



��

�	 If the cardinality of a cluster is larger than �
p
m �thus violating Condition ��

� the

cluster is split using the splitting procedure of ���� which splits a cluster into two
clusters of size at most ���

p
m and at least ���

p
m	

�	 If a cluster violates Condition ��
 we join it with one of its neighbors resulting in
either a non�blue cluster or a cluster with cardinality at least ���

p
m� �	 If in the

latter case this cardinality is larger than ���
p
m� this cluster split again resulting in

two clusters of size at most �����
p
m �

p
m��� �
 � ���

p
m and at least ���

p
m	

In each step of the rebuild procedure previously restored conditions are preserved	 We say
that a cluster C is touched by an update if one of the vertices of the updated edge is an
element of C	 Note that C grows or shrinks by at most � vertices when it is touched	

It is easy to see that only a constant number of clusters are involved in a rebuild	 Thus�
its cost is O�

p
m
	 In the good case �a non�tree update
 we can even show an amortized

constant rebuild cost per operation	 For this purpose we show the following lemmas	

Lemma ��� Each cluster of tree degree 
 or 	 created by a non�tree operation has cardi�
nality less than ���

p
m�

Proof� Let C be such a cluster	 Consider the rebuild which created C	 If C was created in
Step � it has cardinality �	 If C was created either in Step � or Step � it has cardinality
less than ���

p
m	 �

Lemma ��� Each blue cluster created by a non�tree operation has cardinality at least
���

p
m�

Proof� Let C be such a cluster	 Consider the rebuild which created C	 Since C is a blue
cluster resulting from a non�tree update C was not created in Step �	 If C was created
either in Step � or Step � it has cardinality at least than ���

p
m	 �

Lemma ��� A non�tree update does not convert a non�blue cluster into a blue cluster�

Proof� Tree degree � clusters can only be destroyed� but cannot become blue during a
non�tree update	 The only possibility to convert a non�blue cluster C into a blue one
during a non�tree update is to insert a new cluster between C and its neighboring tree
degree � cluster	 We explicitly excluded it in Step �	 It also cannot happen in Step � or
�	 �

Lemma ��� The amortized rebuild cost of a non�tree update is constant�

Proof� Step � clearly takes O��
 worst case time for a non�tree update	 Thus a rebuild can
incur non�constant worst case cost only if Step � or Step � are executed	 Step � is executed
if the a�ected cluster C becomes larger than �

p
m	 If less than ����

p
m non�tree updates

touched C since its creation we know that its size at creation was at least ���
p
m	 Thus

by Lemma �	� it was created by a tree update	 Since each rebuild creates only a constant
number of new clusters we can charge the cost of destroying C to the tree update that
created C	 If more than ����

p
m non�tree updates touched C we can charge a constant

amount of the cost for destroying C to each of these operations	



Average Case Analysis of Dynamic Graph Algorithms ��

Step � is executed if a blue cluster becomes too small	 If this cluster was non�blue when
created by Lemma �	� there must have been a tree update which converted this cluster
from non�blue to blue	 Since each tree�edge operation converts only a constant number of
clusters we can charge the cost of destroying C to the tree update which converted it	 If C
was created by a tree update we charge the cost of destroying it to the tree update which
created it	 Otherwise� C was created as a blue cluster by a non�tree operation	 Thus
by Lemma �	� it had size at least ���

p
m when it was created	 Thus� at least ����

p
m

updates must have touched C since its creation	 We can charge a constant amount of the
cost for destroying C to each of them	 �

��� Updating the Data Structure

To decide whether we are in a good or a bad case� we have check if the updated edge
is a tree edge	 In the case of a deletion� this is easy to decide� since we know for each
edge in G if it is in T 	 In the case of an insertion we use an additional dynamic tree data
structure ���� �described below
 to decide in time O�logn
 which case occurs	

The algorithm in ���� updates TT and �TT in time O�
p
m
 after an arbitrary edge

insertion or deletion	 Building and maintaining the priority queues at the leaves of �TT
increases this time only by a constant factor	 A rebuild in the dynamic partition causes
additional costs of O�

p
m
 to update TT and �TT 	 In the good case these costs can

be amortized as described above	 Thus� we omit these additional costs in the following
discussion	

We are left with showing that TT and �TT can be updated in time O�logn
 if a non�
tree edge �u� v
 is inserted or deleted	 Note �rst that TT has not to be modi�ed �when
there are no rebuilds
	 Furthermore the insertion or deletion of �u� v
 only a�ects the min
value of ��
 the node C 	D� where C is the cluster that contains u and D is the cluster
that contains v� and ��
 ancestors of C 	 D	 Adding or deleting �u� v
 from the priority
queue of C 	 D takes time O�logn
	 Afterwards we compute bottom�up the new min

value of every ancestor of C 	D	 Using the min value of its children this takes constant
time per ancestor	 Since �TT has depth O�logn
 ����� updating all ancestors takes time
O�logn
 as well	 Thus� updating �TT takes time O�logn
 if we know that �u� v
 is not
a tree edge	 To determine if an edge �u� v
 that has to be inserted becomes a tree edge�
we use the dynamic tree data structure for T 	 We compare the cost of �u� v
 with the
maximum cost on the tree path between u and v	 Testing this and updating the dynamic
tree takes time O�logn
 per operation	

The space requirement for the data structure is linear	 Using the linear expected time
algorithm for minimum spanning trees ���� during preprocessing gives the following lemma	

Lemma ��� There exists a data structure that maintains a minimum spanning forest of a
graph with any real�valued cost�function on the edges� The data structure can be updated in
time O�

p
m
 if a tree edge is inserted or deleted and in time O�logn
 plus O��
 amortized

time if a non�tree edge is inserted or deleted� The data structure needs linear space and
linear expected preprocessing time�

Now we want to analyze the average case update time of this data structure according
to the rr�model	 We consider an arbitrary but �xed weight for every edge in �G �i	e	 when�
ever an edge is in G it has the same weight
	 Every minimum spanning forest is a suitable



��

subgraph	 Therefore we can apply Theorem �	� to analyze the expected time per opera�
tion� ignoring the cost of rebuilds	 Since we showed before that the total time spent for
rebuilds during l updates is O�l
� this implies the following result	

Theorem ��	 There exists a data structure for maintaining a minimum spanning forest
such that for any l the expected time for a sequence of l updates starting with a random
subgraph of �G of size m� for any m� is O�l logn�

Pl
i�� n�

p
mi
� where mi is the number

of edges in G after operation i�

� Connectivity

For dynamic connectivity we achieve an average update time according to the rr�model
which consists of two parts� an expected time of O�n�

p
m� logn
 and an amortized cost

of O��
� where m is the number of edges in G after the update operation	
To maintain connectivity dynamically Frederickson ���� assigns cost � to edges in the

current graphs and connects di�erent connected component by cost � �dummy
 edges	
Then he augments the topology tree data structure in order to answer connectivity queries
in constant time	 However his algorithm modi�es the additional parts of the data structure
only if the minimum spanning tree of G changes� i	e	� in the bad case	 Using the minimum
spanning forest data structure presented in the previous section gives the following result	

Theorem 	�� There exists a data structure that answers connectivity queries in constant
time and that can be updated in total expected time O�l logn �

Pl
i�� n�

p
mi
 during a

sequence of l update operations starting with a random subgraph of �G of size m� for any
m�� where mi is the number of edges in G after operation i�

� Bipartiteness

In this section we analyze the average case performance of an algorithm for dynamic
bipartiteness due to Eppstein et al	 ���� ���	 As before we give each edge cost � and
connect di�erent connected components by dummy edges of cost �	 The algorithm uses
again the topology tree data structure �see Section �
	 The basic idea is to maintain a
minimum spanning tree T of the graph G and to use TT and �TT additionally to maintain
the parities of the cycles which are induced by the non�tree edges	 The graph is bipartite
if and only if no non�tree edge induces an odd cycle	

For a non�tree edge e let �e denote its induced cycle	 Let d�u� v
 be the distance
of the vertices u and v in T � i	e	� edges introduced to satisfy the degree constraints are
not counted	 A boundary vertex of a cluster is an endpoint of a tree edge connecting the
cluster with a di�erent cluster at the same level of the topology tree	 The following lemma
is shown in ����	

Lemma 
�� Let Vj and Vr be any two clusters at the same level of the topology tree�
and let f� and f� be any two non�tree edges between Vj and Vr� Let wj be a boundary
vertex of Vj� and let wr be a boundary vertex of Vr� Let j� and j� be respectively the
endpoints of f� and f� in Vj and let r� and r� be respectively the endpoints of f� and
f� in Vr� The two cycles �f� and �f� have the same parity if and only if the quantity
d�j�� wj
 � d�j�� wj
 � d�r�� wr
 � d�r�� wr
 is even�



Average Case Analysis of Dynamic Graph Algorithms ��

We can partition the edges joining two clusters Vj and Vr at the same level of TT by
means of this lemma in two parity classes using only local information� i	e	 information
available in Vj and Vr	 This is useful� since updates which are not local to Vj and Vr may
nevertheless change the parities of the cycles induced by edges joining Vj and Vr but the
two classes remain the same	 This leads to a data structure which is a slight modi�cation
of the data structure given in ���� consisting of

�	 a MST T �

�	 a dynamic tree data structure ���� of T �for determining distances between nodes in
T 
 giving dashed edges length � and non�dashed edges length ��

�	 a topology tree TT for T where we store at each node Vj the distances between every
pair of boundary vertices of Vj �

�	 the corresponding ��dimensional topology tree �TT 	 The nodes of �TT are aug�
mented with the following labels�

�a
 At each leaf Vj 	 Vr of �TT we keep two lists� each one containing the non�tree
edges of G between Vj and Vr of the same parity	 We added this data structure to
speed up updates in the good case	

�b
 Associated with each node Vj 	 Vr of �TT are up to two edges which represent
the two parity classes	 These are called the selected edges	 For each selected edge we
maintain the distances of its endpoints to the boundary vertices of the corresponding
clusters	

Note that at each node of TT and �TT we store only a constant amount of distance
information because every cluster has tree degree at most three	 In contrast to ���� we do
not need to maintain selected edges of minimum weight	 However� we could do this by
replacing the lists in �	�a
 by priority queues	

We answer a query as follows� If the root node V 	V of �TT does not have a selected
edge� then G is a forest and hence bipartite	 If V 	V has two selected edges� one of them
introduces an odd cycle	 Thus� G is not bipartite	 If exactly one selected edge is stored
at V 	 V � we determine after each update the length of the cycle induced by this selected
edge	 This takes logarithmic time using the dynamic tree data structure of T 	

As shown in ���� the worst�case update time for this data structure is O�
p
m
	 We

show next that the insertion or deletion of a non�tree edge e � �u� v
 that does not modify
the dynamic restricted partition takes time O�logn
	 If the dynamic restricted partition
does not change� Part �� �� and � of the data structure do not change	 We describe below
how to update Part �	

First assume that e is inserted	 Let u � Vj and v � Vr	 We have to compute the parity
class of e in order to insert it into the right list at the leaf node Vj	Vr in �TT 	 If j � r we
use the dynamic tree data structure to determine the parity of e and of the selected edges
of Vj 	 Vj 	 If j �� r we determine the distance of u �v
 to a boundary vertex of Vj �Vr
 by
determining the number of non�dashed edges on the path in T between them	 This can be
computed in time O�logn
 using the dynamic tree data structure for T 	 Then we compare
the parity of e with the parities of the selected edges stored at Vj 	 Vr �if they exist
 in
constant time using the distance information in the data structure and Lemma �	�	



��

After determining the parity class of e we insert e in the appropriate list	 This takes
constant time	 If the selected edges of Vj	Vr change� we percolate this change up in �TT 	
Since we can update each level in constant time using Lemma �	� the whole procedure
takes time O�logn
	

If e is to be deleted� we delete it from the list L at Vj 	 Vr in which it is contained	 If
e was a selected edge we replace it by the next edge in L if there exists one	 This takes
constant time	 Updating the ancestors of Vj 	 Vr takes time O�logn
 as in the case of
insertions	

As before we take the minimum spanning tree to be the suitable subgraph	 Rebuilds
caused by non�tree edges add constant amortized time to each update as in Section �	 The
analysis for minimum spanning trees carries over� so we get the following theorem	

Theorem 
�� There exists a data structure that answers bipartiteness queries in constant
time and that can be updated in total expected time O�l logn �

Pl
i�� n�

p
mi
 during a

sequence of l update operations starting with a random subgraph of �G of size m� for any
m�� where mi is the number of edges in G after operation i�

� �	Edge Connectivity

Frederickson gives a data structure� called ambivalent data structure� that answers ��edge
connectivity queries in time O�logn
 ����	 It can be updated in time O�

p
m
	 This data

structure is also based on the topology tree data structure	 We can modify the ambivalent
data structure and the update algorithm in order to speed up the good case	 We call
the modi�ed ambivalent data structure good�average case ambivalent data structure �gaca
data structure� and describe it below	

As before we give each edge G cost � and then connect G by dummy edges of cost � and
maintain a minimum spanning tree T of G	 The basic idea for testing ��edge connectivity
is the concept of covering	 A tree edge e is covered if there exists a non�tree edge �x� y

such that e lies on the tree path between x and y	 As shown in ����� two nodes u and v

are ��edge connected i� all edges in the tree path between u and v are covered	 Thus� to
answer ��edge connectivity queries the ambivalent data structure maintains for every tree
edge a bit indicating if it is covered	 To update the data structure fast if non�tree edges
are modi�ed� the gaca data structure maintains instead a cover value for each tree edge
which is a lower bound on the number of non�tree edges covering the tree edge	

To do this e
ciently we partition T into chains� called complete paths� as in ����	
Subpaths of complete paths are called partial paths and are used to compute the cover

values of edges on complete paths e
ciently while traversing the topology tree bottom�up	

��� Partial and Complete Paths

The partial path of a basic cluster C is

�	 the unique node v of C that is incident to the tree edge incident to C� if the tree
degree of C is ��

�	 the tree path between the nodes of C that are incident to the tree edges incident to
C� if the tree degree of C is �� and



Average Case Analysis of Dynamic Graph Algorithms ��

�	 empty� if the tree degree of C is �	

The partial path of a level�i cluster C with i � � is

�	 the concatenation of the partial paths of the two children of C in TT � if C consists
of the union of two clusters and one of them has tree�degree ��

�	 the unique vertex in the child with tree degree �� if C is the union of a tree degree
� and a tree degree � cluster�

�	 empty� if C is the union of two clusters of tree degree �� and

�	 the partial path of the child of C in TT � if C consists of one cluster of level i� �	

The complete path of each basic cluster C is empty	 The complete path of a level�i cluster
C with i � � is

�	 the partial path of the child with tree degree �� the tree edge connecting it to its
sibling with tree degree �� and the �only
 node of its sibling� if C is the union of a
cluster with tree degree � and a cluster with tree degree � �which is called the head
of the complete path


�	 the concatenation of the partial paths of the children of C in TT � if C is the union
of two clusters with tree degree �� and

�	 empty in all other cases	

The data structure PP �C
 �CP �C

 for the partial �complete
 path of a cluster C is a
binary search tree of depth O�logn
 whose leaves in left�to�right order correspond to the
vertices on the partial path	 This data structure is described in detail in Section �	�	 We
share the data structures among several paths in the following way�

�	 If C is a non�basic cluster with one child� its PP �C
 and CP �C
 are identical to the
data structures of the child of C	

�	 If C is a non�basic cluster with children C� and C� and one of them has tree�degree
�� then CP �C
 is empty and the data structure PP �C
 representing the partial path
of C consists of a new root whose children are PP �C�
 and PP �C�
	

�	 If C is a non�basic cluster with a child C� with tree degree � and a child C� with tree
degree �� then PP �C
 is empty and CP �C
 consists of a new root whose children
are a newly created node X and the root of PP �C�
	 We store at X the tree edge
between C� and C�	

�	 If C is a non�basic cluster with a child C� with tree degree � and a child C� with tree
degree �� then PP �C
 is empty and CP �C
 consists of a new root whose children
are the roots of PP �C�
 and PP �C�
	

Every node of TT except for the root or a leaf with tree�degree � has a non�empty
partial path	 Thus� every cluster that is incident to a non�tree edge has a non�empty
partial path	 We extend the dynamic path data structure of ���� to the following extended
dynamic path data structure	 It represents a set of paths such that two paths are either



��

vertex�disjoint or one path is contained in the other one	 Note that each edge on one
of the paths is represented just once because of the sharing of data structures described
above	 There is a cover value associated to each edge e� in one of the paths	 It counts the
number of edges which cover e�	

� Initialize�P�E�
 Build a data structure for a partial path P with a set of covering
edges E�	

� Cover�P� e
 Increase the cover value of each edge e� in P which is covered by e	

� Uncover�P� e
 Decrease the cover value of each edge e� in P which was covered by e	

� Link�P�� P�� e
 Link the data structures for P� and P� by the edge e	 This is allowed
if neither P� nor P� are subpaths of another path in the data structure	

� Unlink�P 
 Undo the Link operation that created P 	 This is allowed if P is currently
not linked with another path	

� RightUncovered�P 
 Return the rightmost uncovered edge on P if it exists	

� LeftUncovered�P 
 Return the leftmost uncovered edge on P if it exists	

A sequence of Link and Unlink operations results in a �linkage tree�	 Let d be the depth of
this tree	 Below we describe an implementation of this data structure that takes constant
time for Link and Unlink O�d�logn
 time for RightUncovered� LeftUncovered� Cover�
and Uncover and O�jP j� jE�j
 time for Initialize�P�E�
	

We use this data structure to maintain the complete and partial paths together with
their coverage information	 Note that the head of a complete path can be contained in
another complete path	 To make them vertex�disjoint we simply create a second copy of
these shared nodes in the extended path data structure	

Since d is O�logn
 in our application RightUncovered� LeftUncovered� Cover� and
Uncover take time O�logn
	 While inserting and deleting edges in G we Cover and
Uncover partial and complete paths such that we maintain the following invariant�
�I
 An edge on a complete path is covered by no edges i� it is a bridge in G�

��� The Complete Data Structure

The gaca data structure maintains a minimum spanning tree T � a dynamic restricted
partition of order O�

p
m
� a topology tree TT � and a ��dimensional topology tree �TT

with additional information stored at the nodes of the topology trees	
To describe the labels we need some further de�nitions	 The distance between two

nodes in a basic cluster is de�ned to be the number of edges on the unique tree path
connecting them	 If the non�tree edge �u� v
 is incident to C and u lies in C� let proj�u

be the node on the partial path of C that is closest to u and let dist�u� e
 be the number
of edges on the partial path of C between proj�u
 and the tree edge e incident to C	
For each tree edge e incident to C we denote by maxcover�C�D� e
 the maximum of of
dist�u� e
 over all nodes u � C that are connected by a non�tree edge to a node in D	 We
often denote by maxcover�C�D� e
 also the node on the partial path that has distance
maxcover�C�D� e
 from e� since it simpli�es the description	



Average Case Analysis of Dynamic Graph Algorithms ��

At each node C 	D of �TT with C �� D we keep the integer value maxcover�C�D� e

for every tree edge e incident to C	 For two basic clusters C and D and each tree edge
e incident to C we keep a heap max�C�D� e
 that contains dist�u� e
 for all nodes u � C

that are connected to a node in D by a non�tree edge	 The maximum of max�C�D� e

is maxcover�C�D� e
	 For two level�i clusters C and D with i � � and every tree edge
e incident to C the value maxcover�C�D� e
 can be computed in constant time from the
maxcover values of the children of C 	D in �TT ����	

For each level�i cluster C we keep at its node C	C of �TT the following data structure�

�	 If C is a basic cluster� we keep a dynamic tree data structure of the spanning tree
of C	 For each tree edge e not on the partial path of C we maintain the number
of non�tree edges covering e� its cover�counter	 The cover�counter of e is used as its
cost in the dynamic tree for C	 Edges on the partial path have cost zero	

�	 If C has a non�empty complete path� we maintain an additional heap max�C
	 Let
C� be the degree�� child of C� and let e be the tree edge incident to C�	 Note
that C� is a level��i��
 cluster	 The heap max�C
 maintains the maximum of all
maxcover�C�� D� e
 values for all level��i��
 clusters D �� C�	

�	 We maintain partial and complete paths in a data structure as described in the
previous section	

�	 We keep an integer value length�C
 which denotes the length of the partial path of
C	

�	 If C has a complete path� we also keep an integer value toptobr�C
� which denotes
the distance between the head of the complete path and the uncovered edge on the
complete path closest to the head	

To speed up the good case we added the heaps max�C�D� e
� the dynamic tree data
structures� the heaps that maintain the max�C
 to the data structure of ����� and we
replaced the data structure for partial and complete paths	

The algorithm of ���� uses the maxcover values and the maximum elements stored in
the max heaps to maintain the invariant �I
 as follows	 Let C� and C� be children of a clus�
ter C and let e be the tree edge connecting them	 If the neither C� nor C� has tree degree
� then the partial path of C is covered by maxcover�C�� C�� e
 and maxcover�C�� C�� e
	 If
the tree degree of C� is �� the maximum element of max�C
 is used to cover the complete
path of C	

We employ the query algorithm ���� which uses the length and toptobr values of the
partial and complete paths and some information at basic clusters	 �The remaining data
structures are actually only needed to maintain these values e
ciently	


��� Updates

The ambivalent data structure can be updated in time O�
p
m
 after every edge insertion

or deletion ����	 Our modi�cations increase the worst case running time only by a constant
factor	 As shown in Section � rebuilding the dynamic partition creates only O��
 amortized
cost per non�tree update� so we do not consider rebuilds in the following	 To show the
good average case behavior of the gaca data structure we show below that an insertion or
deletion of a non�tree edge requires time O�logn
	



��

The insertion or deletion of a non�tree edge �u� v
 does not a�ect the structure of TT
or �TT or the length values	 Let C�u� v
 be the set of clusters at all levels containing u or
v� and let Ci�x
 be the level�i cluster containing x	 We show �rst that the update a�ects
only the data structures at clusters in C�u� v
 and discuss afterwards how to update these
data structures	

��
 The de�nition of maxcover implies that only maxcover�Ci�u
� Ci�v
� 

 and
maxcover�Ci�v
� Ci�u
� 

 values with Ci�u
 �� Ci�v
 are a�ected	

��
 The only dynamic trees a�ected are the ones of C�u
 and of C�v
	

��
 The only max heaps a�ected are the ones of the at most two clusters Cu and Cv

whose complete path contain the partial paths of C��u
 or C��v
	

��
 This implies that only for C � C�u� v
 the PP �C
 and CP �C
 data structures are
a�ected	

��
 This in turn shows that only the toptobr values of O��
 clusters are a�ected� namely�
those of Cu and of Cv	

Note that in C�u� v
 contains O�logn
 clusters� at most two at each level	 We update the
data structures at all of these clusters bottom�up starting with the level�� clusters	

Now we discuss how to update each of the above mentioned data structures	

��
 First we discuss updating the maxcover values	 Using the dynamic tree data struc�
ture of the spanning tree of C��u
 we can �nd dist�u� e
 to each tree edge e in�
cident to C��u
 in time O�logn
	 Inserting or deleting dist�u� e
 from the heap
max�C��u
� C��v
� e
 determines the new value of maxcover�C��u
� C��v
� e
 in time
O�logn
	 Since at most four heaps are a�ected� updating all maxcover values
at level�� clusters takes time O�logn
	 Each maxcover value of an internal node
Ci�u
 	 Ci�v
 can be computed in constant time from the maxcover value of its
children and� thus� all maxcover values can be updated in time O�logn
	

��
 Next we update the dynamic tree data structures of C��u
 and C��v
	 If proj�u
 �
proj�v
 �and thus C��u
 � C��v

 then we increase the cover�counter of all tree edges
between u and v	 Otherwise we increment the cover�counters of all edges on the tree
path between u and proj�u
� and between v and proj�v
	 In any case this can be
done in time O�logn
 in the corresponding dynamic tree data structures	

��
 To update max�Cu
 and max�Cv
 we delete the old maxcover value of the corre�
sponding tree degree � child and insert the new one if the value has actually changed	
This takes time O�logn
	

��
 Now we discuss updating the partial and complete paths	 We distinguish three cases�

��a
 If u and v are contained in the same basic cluster C and the update is an
insertion� then we execute Cover�PP �C
� �proj�u
� proj�v

	 If they are in the same
cluster and the update is a deletion we execute Uncover�PP �C
� �proj�u
� proj�v

	

��b
 If u and v are not contained in the same basic cluster� but both belong to
the same complete path� let i be the highest level such that Ci�u
 �� Ci�v
	 We
can determine i in time O�logn
	 The only maxcover values that have changed



Average Case Analysis of Dynamic Graph Algorithms ��

and are used to cover a partial or complete path are maxcover�Ci�u
� Ci�v
� e
 and
maxcover�Ci�v
� Ci�u
� e
� where e is the tree edge connecting Ci�u
 and Ci�v
	 Let
m�u
 and m�v
 denote the former values of maxcover�Ci�u
� Ci�v
� e
 and
maxcover�Ci�v
� Ci�u
� e
 respectively� and let m��u
 and m��v
 be the current val�
ues	 We execute Uncover�PP �Ci
��u

� m�u

 and Uncover�PP �Ci
��u

� m�v

�
and then Cover�PP �Ci
��u

� m��u

 and Cover�PP �Ci
��u

� m��v

	

��c
 If v does not belong to the complete path of Cu� then the maximum maxcover

value in max�Cu
 is the only maxcover value that changes the coverage of some
partial or complete path containing u �namely the complete path of Cu
	 Thus� we
uncover CP �Cu
 from the old maximum element of max�Cu
 and cover it with the
new maximum element of max�Cu
	 We do the same for same for v	

��
 Finally we discuss updating the toptobr values	 Since at most � complete paths are
a�ected by the update and for a cluster C the toptobr�C
 value can be computed in
time O�logn
 using CP �C
� the data structure for the complete path of C� updating
all toptobr values takes time O�logn
	

This shows in a that the data structure can be updated in time O�logn
 in the case
of a non�tree update	 Using the analysis of Section � gives the following theorem	

Theorem ��� There exists a dynamic data structure that answers 	�edge connectivity
queries in time O�logn
 and that can be updated in O�l logn�

Pl
i�� n�

p
mi
 total expected

time during a sequence of l update operations starting with a random subgraph of �G of size
m�� where mi is the number of edges in G after operation i�

��� An Extended Dynamic Path Data Structure

In this section we present the extended dynamic path data structure for the maintenance
of the cover values of the edges of paths	 It is based on the dynamic paths data structure
which Sleator and Tarjan used for their dynamic trees ����	

We consider the following problem	 We are given a set of paths such that two paths are
either vertex�disjoint or one path is contained in the other one	 Each path has a leftmost
degree one vertex �also called the head
 and a rightmost degree one vertex �also called the
tail
	 There is a cover value associated to each edge e� in one of the paths	 It counts the
number of edges which cover e�	 The data structure allows the following operations�

� Initialize�P�E�
 Build a data structure for a partial path P with a set of covering
edges E�	

� Cover�P� e
 Increase the cover value of each edge e� in P which is covered by e	

� Uncover�P� e
 Decrease the cover value of each edge e� in P which was covered by e	

� Link�P�� P�� e
 Link the data structures for P� and P� by the edge e	 This is allowed
if neither P� nor P� are subpaths of another path in the data structure	

� Unlink�P 
 Undo the Link operation that created P 	 This is allowed if P is currently
not linked with another path	

� RightUncovered�P 
 Return the rightmost uncovered edge on P if it exists	



��

� LeftUncovered�P 
 Return the leftmost uncovered edge on P if it exists	

Multiple edges are allowed� but not self�loops	 A sequence of Link and Unlink operations
results in a �linkage tree�	 Let d be the depth of this tree	 In this section we describe an
implementation of the data structure that takes constant time for Link and Unlink O�d�
log jP j
 time for RightUncovered� LeftUncovered� Cover� and Uncover and O�jP j�jE�j

time for Initialize�P�E�
	

In their paper on dynamic trees ���� Sleator and Tarjan introduce a data structure for
the dynamic maintenance of a collection of vertex�disjoint edge weighted paths	 Each path
p has a head and a tail	 The data structure supports �� kinds of operations	 A subset of
them is quoted below from ����	 The operations path� head� tail� before� and after have
the obvious meaning	

pmincost�path p
� Return the vertex v closest to tail�p
 such that �v� after�v


has minimum cost among edges on p	

pupdate�path p� real x
� Add x to the cost of every edge on p	

reverse�path p
� Reverse the direction of p� making the head the tail and
vice versa	

concatenate�path p� q� real x
� Combine p and q by adding the edge
�tail�p
� head�q

 of cost x	 Return the combined path	

split�vertex v
� Divide path�v
 into �up to
 three parts by deleting the
edges incident to v	 Return a list �p� q� x� y�� where p is the subpath
consisting of all the vertices from head�path�v

 to before�v
� q is the
subpath consisting of all vertices from after�v
 to tail�path�v

� x is the
cost of the deleted edge �before�v
� v
� and y is the cost of the deleted
edge �v� after�v

	 If v is originally the head of path�v
� p is null and x is
unde�ned if v is originally the tail of path�v
� q is null and y is unde�ned	

Every path in the dynamic path data structure is represented by a balanced binary tree
whose leaves represent the vertices of the path� and whose internal nodes represent the
edges of the path	 At each internal node of such a tree a constant amount of local �weight

information is stored	

Every path in the extended dynamic path data structure is stored as a path or a sub�
path of a dynamic path data structure	 The edge weights are the cover values	 Whenever
an operation �except Link and Unlink
 involves a path P that is a subpath of another
path� we reconstruct P by a suitable sequence of Unlink operations	 After performing the
operation we execute the corresponding Link sequence	

� To execute Initialize�P�E�
 we compute �rst the cover value for the edges of P by
a left�to�right scan of P with each edge of E� stored at its endpoints in P 	 Then we
build a dynamic tree data structure for P using the cover values as edge weights	

� We realize Cover�P� �u� v

 by using split� pupdate� and concatenate as follows	
W	l	o	g	 assume that u is closer to head�P 
 than v	 If u is not the head of P then we
split P at before�u
	 If v is not the tail of P then we split the subpath containing u at
after�v
	 We add � to all edge weights in the subpath starting at u by using pupdate
and merge P together again using concatenate	 Obviously� Uncover�P� �u� v

 can
be realized in the same way� except that we subtract � instead of adding �	



Average Case Analysis of Dynamic Graph Algorithms ��

� To implement the Link�P�� P�� e
 operation we do not use the concatenate operation
because we want to execute this operation in constant time	 Instead we create a
new node for e whose children are the roots of the data structures for P� and P�	
Afterwards we update the local information	 An Unlink�P 
 is the reversal of the
Link operation	

� A LeftUncovered�P 
 query can be answered by using pmincost	 If we want to
answer a RightUncovered�P 
 query we �rst execute reverse�P 
� use pmincost�P 
�
and execute reverse�P 
 again	

The running time of Initialize�P�E�
 is O�jP j� jE�j
 since the scan can be executed
in linear time and the dynamic tree for a path P with given edge weights can be built in
time O�jP j
	 A Link or Unlink operation takes constant time since� as shown in ����� the
local information can be updated in constant time	 Any of the other operations is enclosed
in a sequence at most �d Unlink and Link operations	 The operation itself consists of a
constant number of dynamic path operations which take time O�log jP j
 giving a total of
time O�d� log jP j
	 This shows the claimed bounds on the running times	


 k	Edge Connectivity and k	Vertex Connectivity

Eppstein et al	 ���� give a dynamic algorithm for k�edge connectivity with worst case
update time O�k�n log�n�k

� which we slightly modify in order to speed up the good
case	 It uses an algorithm by Gabow ���� for the static problem and the following lemma	

Lemma ��� ���� ��� Let G be a graph and T� � U� a spanning forest of G� Let Ti be a
spanning forest of G n Ui�� and let Ui be Ui�� � Ti� Then G is k�edge connected if and
only if Uk is k�edge connected�

For notational convenience let U� be the empty graph	 For each i we store G n Ui��

in the above minimum spanning tree data structure to maintain Ti	 We choose Uk to
be the suitable subgraph	 If an update operation does not change Uk �good case
 we
incur amortized cost O�k logn
	 In the bad case we incur O�k

p
m � k�n log�n�k

 �

O�k�n log�n�k

	
The size of the suitable subgraph in this case is O�kn
� so by Theorem �	� we get the

following result	

Theorem ��� There exists a data structure that answers the question whether the current
graph is k�edge connected in constant time and that can be updated in amortized expected
time O�min��� kn�m
�k�n log�n�k


 with respect to the rr�model�

We discuss next how to test dynamically if the graph is k�vertex connected	 Lemma
�	� also holds for k�vertex connectivity provided that Ti is chosen to be a scan��rst search
forest of G nUi�� ��� ���	 To quickly test for the good case we de�ne a suitable subgraph S
as follows� we number all vertices during a preprocessing phase with a unique label between
� and n in an arbitrary� but �xed way	 Then� we use the linear�time algorithm of ���� to
�nd Uk 	 This algorithm sometimes makes arbitrary choices which vertex to select next	 We
make S unique by requiring that if more than one vertices can be selected� the algorithm
has to use the one with the minimum label	 Even with this additional requirement the



��

algorithm runs in time O�m � n logn
	 Thus� we can test if the insertion of an edge e

forces S to change by running this algorithm on S�e in time O�kn�n log n
	 If this is the
case we can construct a new suitable subgraph S � by running this algorithm on G � e in
time O�m�n logn
	 Testing if a deletion changes S is obvious� If an edge of S is deleted�
S has to be recomputed� otherwise nothing has to be done	

In the good case we are done	 In the bad case we additionally might have to check
whether the new suitable subgraph S� is k�vertex connected	 For this purpose we use the
�static
 O�k�n��	�k�n�
 time k�vertex algorithm by Galil ����	 This provides the following
result	

Theorem ��� There exists a data structure that answers the question whether the current
graph is k�vertex connected in constant time and that can be updated in
O�min��� kn�m
�k�n��	 � k�n�

 expected update time with respect to the rr�model�

Conclusion

We present a general technique for analyzing dynamic graph algorithms in the average
case setting	 Note that this technique can also be used for analyzing the expected time of
randomized incremental algorithms for static graph problems	 There we have a worst case
input graph and the algorithm works by maintaining a current solution while inserting
the edges one by one in random order	 In fact� backwards analysis �rst was used in
computational geometry for exactly this purpose by Chew ���	

Note that our technique can also be used to analyze the average case performance of
randomized dynamic graph algorithms	 �A randomized algorithm is an algorithm that
makes use of random choices for computing the solution to a worst case input	


For the connectivity problems considered in this paper the running time of an update
consists of two parts� an expected running time of O�n�

p
m � logn
 �where m is the

number of edges after the update
 plus an amortized constant time for rebuilds	 It is an
interesting open question whether the data structure can be improved by distributing the
costs of rebuilds over previous updates in a way that gives an expected time bound of
O�n�

p
m � logn
 per update	

Eppstein ��� suggested that a good average case behavior for some of the above prob�
lems can also be shown for node insertions and deletions	

Acknowledgments

The authors would like to thank Emo Welzl for helpful discussions	

References

��� D	 Alberts and M	 Rauch Henzinger	 Average case analysis of dynamic graph algo�
rithms	 In Proc� �th Symp� on Discrete Algorithms� pages ��� � ���� ����	

��� H	 Alt� K	 Mehlhorn� H	 Wagener� and E	 Welzl	 Congruence� similarity and symme�
tries of geometric objects	 Discrete Comp� Geom�� ����� � ���� ����	

��� B	 Bollob!as	 Random Graphs	 Academic Press� London� ����	



Average Case Analysis of Dynamic Graph Algorithms ��

��� J	 Cheriyan� M	 Y	 Kao� and R	 Thurimella	 Algorithms for parallel k�vertex connec�
tivity and sparse certi�cates	 SIAM J� Comput�� ������ � ���� ����	

��� L	 P	 Chew	 Building voronoi diagrams for convex polygons in linear expected time	
CS Tech Report TR������� Dartmouth College� ����	

��� K	 L	 Clarkson� K	 Mehlhorn� and R	 Seidel	 Four results on randomized incremental
constructions	 Comp� Geom�
 Theory and Appl�� ����� � ���� ����	

��� J	 Edmonds	 Paths� trees� and "owers	 Canad� J� Math�� ������ � ���� ����	

��� D	 Eppstein	 Average case analysis of dynamic geometric optimization	 In Proc� �th
Symp� on Discrete Algorithms� pages �� � ��� ����	

��� D	 Eppstein	 Personal communication� ����	

���� D	 Eppstein� Z	 Galil� and G	 F	 Italiano	 Improved sparsi�cation	 Technical Report
������ Dept	 of Inf	 and Comp	 Sc	� Univ	 of Calif	� Irvine� CA ������ ����	

���� D	 Eppstein� Z	 Galil� G	 F	 Italiano� and A	 Nissenzweig	 Sparsi�cation � a technique
for speeding up dynamic graph algorithms	 In Proc� ��rd Symp� on Foundations of
Computer Science� pages �� � ��� ����	

���� G	 N	 Frederickson	 Data structures for on�line updating of minimum spanning trees�
with applications	 SIAM J� Comput�� ������ � ���� ����	

���� G	 N	 Frederickson	 Ambivalent data structures for dynamic ��edge�connectivity and
k smallest spanning trees	 In Proc� �	nd Symp� on Foundations of Computer Science�
pages ��� � ���� ����	

���� H	 N	 Gabow	 A matroid approach to �nding edge connectivity and packing arbores�
cences	 In Proc� 	�rd Symp� on Theory of Computing� pages ��� � ���� ����	

���� Z	 Galil	 Finding the vertex connectivity of graphs	 SIAM J� Comput�� ����� � ����
����	

���� M	 Rauch Henzinger	 Fully dynamic cycle equivalence in graphs	 In Proc� ��th Symp�
on Foundations of Computer Science� pages ��� � ���� ����	

���� M	 Rauch Henzinger and V	 King	 Randomized dynamic algorithms with polyloga�
rithmic time per operation	 To appear in Proc� 	�th Symp� on Theory of Computing�
����	

���� R	 M	 Karp	 personal communications	

���� P	 N	 Klein and R	 E	 Tarjan	 A linear�time algorithm for minimum spanning tree	
In Proc� 	�th Symp� on Theory of Computing� pages � � ��� ����	

���� L	 Lov!asz and M	 D	 Plummer	 Matching Theory� volume �� of Annals of Discrete
Mathematics	 North�Holland� Amsterdam� ����	

���� S	 Micali and V	 Vazirani	 An O�V ���E
 algorithm for �nding maximum matching
in general graphs	 In Proc� 	
st Symp� on Foundations of Computer Science� pages
�� � ��� ����	



��

���� K	 Mulmuley	 Randomized� multidimensional search trees� dynamic sampling	 In
Proc� �th Symp� on Computational Geometry� pages ��� � ���� ����	

���� H	 Nagamochi and T	 Ibaraki	 Linear time algorithms for �nding a sparse k�connected
spanning subgraph of a k�connected graph	 Algorithmica� ����� � ���� ����	

���� M	 H	 Rauch	 Fully dynamic biconnectivity in graphs	 In Proc� ��rd Symp� on
Foundations of Computer Science� pages �� � ��� ����	

���� M	 H	 Rauch	 Improved data structures for fully dynamic biconnectivity	 In Proc�
	�th Symp� on Theory of Computing� pages ��� � ���� ����	

���� J	 H	 Reif� P	 G	 Spirakis� and M	 Yung	 Re�randomization and average case analysis
of fully dynamic graph algorithms	 Alcom Technical Report TR ��	��	�	

���� O	 Schwarzkopf	 Dynamic Maintenance of Convex Polytopes and Related Structures	
PhD thesis� Freie Universit#at Berlin� ����	

���� R	 Seidel	 Backwards analysis of randomized geometric algorithms	 In J	 Pach� editor�
New Trends in Discrete and Computational Geometry� pages �� � ��	 Springer Verlag�
Berlin� ����	

���� D	 D	 Sleator and R	 E	 Tarjan	 A data structure for dynamic trees	 J� Comput� Sys�
Sci�� ������ � ���� ����	

���� R	 E	 Tarjan	 Data Structures and Network Algorithms� volume �� of CBMS�NSF Re�
gional Conference Series in Applied Mathematics	 Society for Industrial and Applied
Mathematics� Philadelphia� Pennsylvania� ����	

���� R	 Thurimella	 Techniques for the Design of Parallel Graph Algorithms	 PhD thesis�
University of Texas� Austin� ����	

���� V	 V	 Vazirani	 A theory of alternating paths and blossoms for proving correctness of
the O�

p
VE
 general graph maximum matching algorithm	 Combinatorica� ����
���

� ���� ����	


