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Abstract

A neural architecture based on linear predictability is used to separate linear

mixtures of signals. The architecture is divided in two parameterers groups, one

modeling the linear mixture of signals and the other computing the linear predic-

tions of the reconstructed signals. The network weights correspond to the mixing

matrices and coefficients of the linear predictions, while the values computed by

the network units correspond to the predicted and reconstructed signal values. A

quadratic error is iteratively minimized to approximate the mixing matrix and to

maximize the linear predictability. Experiments with toy and acoustic signals show

the feasibility of the architecture.

1 Introduction

The blind source separation (BSS) problem consists on recovering a set of source sig-

nals s(τ) = (s1(τ), . . . , sm(τ))T from a set of mixtures x(τ) = (x1(τ), . . . , xn(τ))T

formed with a mixing matrix A:

x(τ) = ATs(τ), (1)

where τ ∈ T is an index representing temporal or spatial variation of the signals. The

term blind means that the values of the mixing matrix A and the source signals s(τ)
are unknown.

The BSS problem is solved by finding an unmixing matrix W to reconstruct the

sources via the transformation

y(τ) = W Tx(τ), (2)

such that

y(τ) = DPs(τ), (3)
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where D is a diagonal matrix, and P is a permutation matrix. This means that the

reconstructed signals do not keep the original order of the source signals but their

“wave” form.

A general approach to solve the BSS problem is assuming that the source signals

si(τ) satisfy a property P , and that they minimize (maximize) a measure q(s) related

to the property P . Thus, the BSS problem is yet regarded as an optimization prob-

lem: the unmixing matrix W is an optimal parameter used to transform linearly the

mixtures x(τ) into the signals y(τ), which minimizes (maximizes) the “quality” of the

reconstructed signals q(y(τ)) = q(W Tx(τ)).
In particular, many researchers use the described approach within a statistical frame-

work [5]. They consider the signals as data drawn from an (unknown) probability dis-

tribution, which satisfies some statistical property. One of the best known assumptions

is that the source signals si(τ) are (mutually) independent. The matrix W is estimated

as the parameter which yields the minimal mutual information between the variables

yi(τ). The mutual information is an statistical measure which takes non-negative val-

ues and is zero for the case independent variables. Other widely used assumption is

that the sources si(τ) have non-gaussian probability distributions. Under this assump-

tion, the measure which is maximized depends on a quadratic error between the dis-

tributions of the signals yi(τ) and multivariate Gaussian distributions. Such measure

normally involves some high-order cumulants, such kurtosis, which characterize the

non-gaussianity of the signals yi(τ).

1.1 Maximum Predictability

Another assumption which has received relatively little attention is related with the

predictability of signals. This assumption is motivated by the property of speech or

audio signals to be predicted (approximated) by a linear combination of their values in

the past [9]. The values in the past are the values of the signal at the neighborhood of

τ formed by the indexes τ1 = τ − 1, τ2 = τ − 2, . . . , τk = τ − k.

Motivated by such a property, we define the prediction of the signal y(τ) as the

linear combination

ỹ(τ) = θTy(τ), (4)

where θ = (θ1, . . . , θk)T is the vector of linear coefficients, and y(τ) is the vector

constructed with the values of yi at a neighborhood τ1, . . . , τk of the index τ :

y(τ) =
(
y(τ1), . . . , y(τk)

)T

. (5)

The maximum predictability assumption leads to express the solution of BSS problem

as the matrix W which optimize a measure involving the residual

e(y,θ, k, τ) = ỹ(τ) − y(τ). (6)

Some authors have already used this assumption to solve the BSS problem. For

example, Hyvärinen follows the principles of information theory to characterize the

predictability of signals [6]. He reduces the BSS problem to the minimization of a

function closely related with the Kolmogorov complexity of the residual:

K̂(W ,x,θ) =
∑

τ∈T

H
(
e(yi,θ, k, τ)

)
, (7)
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Figure 1: Parameter group in the architecture modeling the unmixing-mixing process.

where the function H is the entropy. He uses gradient descendent schema to iteratively

find both the unmixing matrix W and he linear coefficients θ which minimize an ap-

proximation of K̂. His results are closely related with the nongaussianity assumption

used in other methods.

Another application of the maximum predictability is the work by Stone [12]. He

deals with discrete-time signals and defines a measure of signal predictability

F (W ,x) = log

∑
τ∈T

e(yi,θ, k, τ)2∑
τ∈T

e(yi,θ
′, k′, τ)2

, (8)

where the coefficients θ and θ′ are fixed beforehand. The number of coefficients k′

is typically 100 times larger than k, what means that the sum involving e(yi,θ, k′, τ)
measures the prediction of yi(τ) in a long-term period, while the other sum measures

the signal prediction in a short-term period. Stone solves the BSS problem by express-

ing the minimization of (8) as an generalized eigenvalue problem.

The method presented in this work uses an artificial neural network architecture

based on the linear predictability assumption to solve the BSS problem. The network

weights correspond to the mixing matrices and the coefficients of the linear approxima-

tions, while the values computed by the network units correspond to the signal values.

Thus, a quadratic error involving the residual of the linear predictions is minimized

iteratively.

The next section describes the network architecture, and the equations used to com-

pute the optimal parameters which minimize the network error.

2 The Neural Network Architecture

The network architecture is divided into two main parameter groups. The first param-

eter group models the unmixing-mixing process and uses only the signal values at τ ,

see Fig. 1. This parameter group has three unit layers formed by the values xi(τ),
yj(τ), and x̃l(τ), which are connected by the weights Wij and Mjl. This is expressed

algebraically with the equations

y(τ) = W Tx(τ), (9)

x̃(τ) = MTy(τ). (10)

The last layer in the group computes a quadratic error in terms of the residual

e(x,M , τ) = x̃(τ) − x(τ). (11)

Observe that the minimization of this error means the approximation of the mixing

matrix A with the matrix M .

However, if we take any invertible matrix W and M = W−1, the quadratic error

involving Eq. (11) is zero. These trivial solutions mean that the architecture does not
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Figure 2: Parameter group in the architecture computing the linear predictions.

model completely the mixing process. In order to avoid the incompleteness of the net

we extend the architecture with parameters considering the linear predictability of the

reconstructed signals, what is explained below.

The second group computes the linear approximation model using the values of the

signals at the neighboring indexes τ1, . . . , τk. This group uses the unmixing weights W

to compute the reconstructed signals at the neighborhood, while the third layer uses the

matrix of the linear coefficients Θ = (θ1, . . . ,θm) to compute the linear predictions of

the reconstructed signals, see Fig. 2. The last layer computes a quadratic error whose

minimization stress the linear predictability of the signals yi(τ). The architecture of

this group corresponds algebraically to the equations

y(τl) = W Tx(τl), l = 1, . . . , k, and (12)

ỹi(τ) = θT

i yi(τ). (13)

The complete network architecture modeling the BSS problem is constructed by

connecting both parameter groups. The new elements added to this architecture are m
connections with a constant weight, whose value is minus one. These elements connect

the units yi(τ) of the first group to the error layer of the second group. See Fig. 3. The

last layer integrates the network errors of both parameter groups into the final network

error:

E(W ,M ,Θ, τ) =
1

2
‖x̃(τ) − x(τ)‖2 +

1

2
‖ỹ(τ) − y(τ)‖2. (14)

Finally, the partial derivatives corresponding to the architecture are

∂E

∂Mij

= yi(τ)
(
x̃j(τ) − xj(τ)

)
, (15)

∂E

∂Θij

= yj(τi)
(
ỹj(τ) − yj(τ)

)
, and (16)

∂E

∂Wij

= xi(τ)
( n∑

l=1

Mjl(x̃l(τ) − xl(τ)) − (ỹj(τ) − yj(τ))
)

+
k∑

l=1

xi(τl)Θjl(ỹj(τ) − yj(τ)). (17)

The next section gives some experimental results obtained by the application of this

architecture.
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Figure 3: The complete network architecture modeling the BSS problem. The thicker

lines represent the constant weights which connect the two parameters groups.
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Figure 4: Toy signals used in the experiments. Left: Mixed signals. Right: Original

signals (solid line) and their reconstruction (dotted lines).

3 Experimental Results

We experimented with two type of signals: sinusoidal functions and audio data. In all

cases, we mixed two signals using a random matrix, whose entries were generated from

a normal density with zero mean and standard deviation one. The sinusoidal functions

are

s1(τ) = sin(α) + 0.5 cos(2α), (18)

s2(τ) = cos(2.5α) − 1.3 sin(2α), (19)

with τ = 1, . . . , 100 and α = 4πτ/100. See figure 4. The audio data have a duration

of ten seconds and a frequency of 8MHz. They are recordings of a masculine voice and

applause, see Figs. 5-6.

The network error was minimized using a gradient-based schema. The optimal

parameters p
(t)
i of the network error E(p, τ) are computed at the iteration t + 1 using

the formula

p
(t+1)
i = p

(t)
i + ∆p

(t)
i . (20)

The increment ∆p
(t)
i where computed using the RPROP algorithm [10]. RPROP is

an adaptive step algorithm which updates the increment using the sign of the the av-

erage partial derivatives of the network error. The average of partial derivatives was

computed using batches with two to four hundred elements. The elements of batches
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Figure 5: Wave signals used in the experiment. Top: The original signals are voice and

applause. Middle: The mixed signals. Bottom: The reconstructed signals.
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Figure 6: Scatterplot representing mixed audio signals: The dotted segments are the

original independent components and the continuous segments are the found compo-

nents. Left: voice-applause mix. Right: another example of mixed music-applause

audio signals.

were selected randomly from the training set, and the parameters were updated using

simulated annealing.

The accuracy of the solutions were measured using the following property: if the

unmixing matrix W solves the BSS problem, the matrix P = AW is a permutation

matrix [4]. Thus, our quality function is defined as

Q(P ) =

n∑

i=1

( n∑

j=1

|Pij |

maxl |Pil|
− 1

)
+

n∑

i=1

( n∑

j=1

|Pij |

maxl |Plj |
− 1

)
. (21)

Note that this function is always nonnegative for all P , and it is zero if P is a permuta-

tion matrix.

Figure 7 shows how the quality Q(Pt) evolves respect to he number of iterations t.
The scatterplot shown in the figure corresponds to the solution of the BBS problem on

the audio signals, taken from then runs of the backpropagation algorithm with random

initializations.
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Figure 7: Accuracy of the solutions Q(Pt).

4 Discussion and Further Work

We presented a neural architecture used to solve the blind source separation problem.

The assumption used to overcome the inherent lack of information is the linear pre-

dictability of signals. Our experiments show good results for the separation of toy and

acoustic signals.

One drawback of the method is that it can reach a local minimum. This can be

overcome by running the algorithm several times, and using stochastic learning. Other

drawback in the method were found when we mixed more than three audio signals. In

this case, some reconstructed signals were a multiple of another, i.e. yi = αyj with

i 6= j and α 6= 0. This can be interpreted as a local minimum, where the overall linear

approximation is minimized.

Despite these mentioned drawbacks we think that one of the good characteristics of

our method is the simplicity of the network architecture its quadratic error. Other good

characteristic is that the architecture can be interpreted and extended in several ways.

For example, after some algebra we can express the partial derivative (17) as

∂E

∂Wij

= xi(τ)

n∑

l=1

Mjl(x̃l(τ) − xl(τ)) + e(xi,θj , k, τ) · e(yj ,θj , k, τ). (22)

Interestingly, the left element of (22) is the product between the linear residual of yj(τ)
and the residual of the linear prediction of xi(τ) using the linear coefficient θj . This

can be interpreted as a kind of Hebbian learning, where the residuals are memorized

by W during the iterative update of the parameters. This reflects the influence of the

two parameter groups for the calculation of the unmixing matrix W .

An extension (or simplification) of the architecture can be done when the layer used

to approximate M is eliminated. This corresponds to the minimization of the quadratic

error

E(W ,Θ) =
1

2

T∑

τ=1

‖ỹ(τ) − y(τ)‖2. (23)
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We can interpret this error function as a simple projection pursuit method: the original

signals are projected to the components which have the best linear approximation. We

think this new architecture can lead to new and interesting results, although we did not

experiment with it.
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