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Chapter �

Introduction

M� Rauch Henzinger and V� King ��	� recently developed a new dynamic connectivity algorithmwhich for the
�rst time achieved a polylogarithmic update time� We implement this algorithm in C�� using LEDA ���� ����
The previous best bound was O�

p
n� �
� �� where n is as usual the number of nodes in the graph for general

graphs� For plane graphs ��� and for planar graphs ��� polylogaritmic algorithms were known�

We are given the following problem� Let G be a graph on a �xed node set of size n� We want to answer
quickly queries of the type �Are the nodes u and v connected in the current graph��� These queries are
intermixed with edge updates of the graph� i�e�� edges are inserted or deleted� We are thus looking for a data
structure that allows three kinds of operations�

ins�node u� node v� Insert an edge connecting u and v�
del�edge e� Delete the edge e�
connected�node u� node v� Return �True� if there is a path connecting the nodes u and v in

the current graph�

The data structure proposed by Henzinger and King achieves O�logn� worst case query time and O�log� n�
amortized expected update time� Here the expectation is over random choices in the update algorithm and
holds for any input� However� the amortization holds only if there are at least ��m�� updates where m� is
the number of edges in the initial graph� We base our implementation of the data structure on randomized
search trees ���� so we achieve only O�logn� expected query time� Choosing a di�erent variant of balanced
binary trees would yield O�logn� worst case query time� but in practice we expect a better behavior of
randomized search trees because they are comparatively easy to implement�

In all dynamic connectivity algorithms the basic idea is to maintain a spanning forest of the current graph�
If there are only insertions of edges� a situation often called semi�dynamic� then the trees in the forest
are implicitly represented by a UNION�FIND data structure ���� Queries are answered by comparing the
representatives of the two given nodes� When an edge is inserted� it is �rst checked whether its vertices are
already connected� If this is the case there is no modi�cation of the data structure necessary� If they were
not connected before the insertion their connected components are UNIONed together�

If deletions are also possible� it might occur that a forest edge is deleted� Then there are two cases possible�
The deleted edge is either a bridge� then one connected component is split into two or it is not a bridge�
then there is a replacement edge among those edges which were no forest edges before� So in contrast to
the easy semi�dynamic setting we also have to keep track of edges which do not immediately become forest
edges at the time of their insertion in order to �nd replacement edges fast or to see that there are no such
edges� This is the main di�culty in the setting with edge insertions and deletions� which is also called the
fully�dynamic setting�

The previous best algorithm �
� �� is based on an earlier approach by Frederickson ���� Frederickson uses a
sophisticated vertex decomposition scheme of the graph to achieve a bound of O�

p
m� per update and a con�

stant query time where m is the number of edges in the current graph� The algorithm in �
� uses an additional






edge decomposition scheme and achieves a bound of O�
p
n� and constant query time� These algorithms are

deterministic� The algorithm by Henzinger and King is randomized and uses a novel decomposition scheme
of the graph�

This report is structured as follows� In the next Chapter we describe the main ideas used in the Henzinger
and King algorithm� Randomized balanced binary trees form the core of the data structure� They are
implemented in Chapter � and in a variant with node weights in Chapter 
� In Chapter � we describe
and implement et trees� ed trees are described and implemented in Chapter �� These two structures
are derived form weighted balanced binary trees and they are the basis of the dynamic connectivity data
structure� A detailed presentation of the algorithm is given in Chapter �� It is followed by Chapter � on the
implementation of the dynamic connectivity algorithm�

The implementation is copyrighted by the author� Hereby permission is granted to use the sources for
non�commercial purposes at your own risk� There is absolutely no warranty� The sources are available via
anonymous ftp from ftp�inf�fu berlin�de��pub�misc�dyn con�dyn con	
���tar�gz�

Version���M �
f�� Version ��� ��g
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Chapter �

Main Ideas of the Algorithm

Like all previous algorithms the algorithm by Henzinger and King also maintains a spanning forest� All
trees in the spanning forest are maintained in a data structure which allows logarithmic updates and queries
within the forest� All we have to do is to keep it spanning� so the crucial case is again the deletion of a
forest edge� One main idea is to use random sampling among the edges incident to the tree T containing the
forest edge e to be deleted in order to �nd a replacement edge fast� The goal is a polylogarithmic update
time� so the number of sampled edges is polylogarithmic� However� the set of possible edges reconnecting
the two parts of T � which is called the candidate set of e in the following� might only be a small fraction of
all non�tree edges which are adjacent to T � In this case it is unlikely to �nd a replacement edge for e among
the sampled edges� If there is no candidate among the sampled edges the algorithm checks all adjacent edges
of T � Otherwise it would not be guaranteed to provide correct answers to the queries� Since there might be
a lot of edges which are adjacent to T this could be an expensive operation� so it should be a low probability
event� This is not yet true� since deleting all edges in a relatively small candidate set� reinserting them�
deleting them again� and so on will almost surely produce many of those events�

The second main idea prevents this undesirable behavior� The algorithmmaintains an edge decomposition of
the current graph G into O�logn� edge disjoint subgraphs Gi � �V�Ei�� These subgraphs are hierarchically
ordered� Each i corresponds to a level� For each level i there is a forest Fi of Gi such that the union �i�kFi

is a spanning forest of �i�kGi� in particular the union F of all Fi is a spanning forest of G� A spanning tree

on level i is a tree in �j�iFj� The weight w�T � of a spanning tree T at level i is the number non�tree edges
in Gi with at least one endpoint in T � If T� and T� are the two trees resulting from the deletion of e� we
sample edges adjacent to the tree with the smaller weight� If sampling is unsuccessful due to a candidate set
which is non�empty but relatively small� then the two pieces of the tree which was split are reconnected on
the next higher level using one candidate� and all other candidate edges are copied to that level� The idea is
to have sparse cuts on high levels and dense cuts on low levels� Non�tree edges always belong to the lowest
level where their endpoints are connected or a higher level� and we always start sampling at the level of the
deleted tree edge� After moving the candidates one level up they are normally no longer a small fraction of
all adjacent non�tree edges at the new level� If the candidate set on one level is empty� we try to sample on
the next higher level� There is one more case to mention� if sampling was unsuccessful despite the fact that
the candidate set was big enough� which means that we had bad luck� we do not move the candidates to the
next level� since this event has a small probability and does not happen very frequently�

If there are only deletions of edges a bound of O�logn� for the number of levels is guaranteed� If there are
also insertions there have to be periodical rebuilds of parts of the data structure � i�e�� we have to move some
edges down again � to achieve a logarithmic number of levels� too�

The spanning trees at each level are represented by a data structure called et tree ��et� means Euler tour
in this context�� It allows joining and splitting� find root queries� and � in conjunction with a secondary
data structure for storing non�tree edges adjacent to a node at a certain level� called ed tree � �nding a
random adjacent edge in expected logarithmic time�

�



Chapter �

Randomized Balanced Binary Trees

��� Introduction

A binary tree is a rooted tree such that every node has at most two children� Each child is either a left child

or a right child� Each node has at most one left and at most one right child� In the following we deal only
with binary trees� A tree on n nodes is balanced if its height is O�logn�� There is a canonical ordering on a
tree� It is called the In�order� In this order a node is bigger than all the nodes in its left subtree and smaller
than all the nodes in its right subtree� We often identify the In�order of a tree with the sequence of nodes
of the tree in In�order�

A given binary tree can be balanced by a sequence of rotations� A rotation changes the parent�child relation
of a constant number of nodes without destroying In�order� i�e�� the In�order of the nodes in the tree resulting
from a rotation is the same as the In�order of the initial tree �see Figure �����

Normally� balanced binary trees are used in a dynamic setting� This means that we can join two trees and
split a tree at a node� Joining two balanced binary trees T� and T� results in a balanced binary tree T with
an In�order which is the concatenation of the In�orders for T� and T�� The split operation is in some sense the
dual operation of join� but there are two possibilities� If we split a balanced binary tree T at a node u then
this results in two balanced binary trees T� and T�� such that the concatenation of their In�orders is again
the In�order of T � One possibility is that u is the last vertex in the In�order of T�� the other possibility is
that u is the �rst vertex in the In�order of T�� This has to be speci�ed as a parameter of the split operation�
Using join and split we can also insert or delete a node in a balanced binary tree�

A lot of useful queries can already be formulated in this basic setting� We describe four of the more important
ones� The �rst one is �nd root� It takes a node of some balanced binary tree and returns the root of this
tree� The second is pred which returns the predecessor of a node with respect to In�order� if it exists� The
third one is succ� which returns the successor of a given node� The fourth one takes two nodes and returns
true if the �rst is smaller than the second with respect to In�order�

The worst case running time of all of these operations is linear in the height of the involved tree�s�� so
it is O�logn� if they are balanced� There are several methods for keeping the balance of binary trees�
e�g�� ��� � ���� For the implementation we decided to take the simplest one which was given by Aragon and
Seidel ���� It is easy to implement and a single operation has small constants hidden in the O notation�
However� the bound is only on the expected time� not on the worst case time� The expectation is taken over
the random choices of the algorithm so it holds for any input and update sequence�

The randomized scheme for balancing binary trees in ��� works by giving each node in the tree a random
priority and by maintaining the Heap�order of the nodes� A tree is in Heap�order with respect to some
priorities of its nodes if the children of each node have smaller priorities than their parent� While there
are usually several trees with the same In�order� for given distinct priorities there is exactly one tree which

�



additionally is in Heap�order� Aragon and Seidel have shown that this tree is balanced with high probability
if the priorities are random� In the implementation we do not care about the distinctness of the priorities�
This is no problem as long as the set of possible priorities is much larger then the size of the trees� which is
a realistic assumption for our application�

��� Overview

We implement balanced binary trees with the randomized balancing scheme by Aragon and Seidel ��� as a
class in C��� There are two �les� the header �le rnb tree�h which declares the class and its methods� and
the �le rnb tree�c which implements the methods�

Actually� we rather de�ne a class containing the information of one tree node� called rnb node struct� A
rnb node is pointer to an instance of class rnb node struct� A randomized balanced binary tree eventually
is a rnb node with no parent� Note that we cannot express this in C��� so the types rnb node and rnb tree

are the same and rnb tree was only introduced to clarify some de�nitions�

At each node we store �pointers to� its parent and children and its priority for balancing� All methods will
be described in detail later� There are two output methods� namely print and traverse� for testing�

rnb tree	h��� �
f�� ������������������������������������������������������������� ��
�� rnb�tree�h� header file for rnb�trees ��
�� ��
�� comment� rnb�tree is an implementation of balanced binary ��
�� trees with a randomized balancing scheme� ��
�� See also the documentation in dyn�con�ps� ��
�� ��
Version���
�� ��
LEGAL NOTE���
�� ������������������������������������������������������������� ��

�� RCS ID ��
�� �Id� dyn�con�fw�v ���� �

������� ������� alberts Exp � ��

�ifndef RNB�TREE �� avoid multiple inclusion
�define RNB�TREE

�include�iostream�h�
�include�stdlib�h�

�� we define left and right
enum rnb�dir �rnb�left��� rnb�right����

�� we define a null pointer
�ifndef nil
�define nil �
�endif

�� we define true and false
�ifndef true
�define true �
�endif

�ifndef false
�define false �
�endif

class rnb�node�struct�
typedef rnb�node�struct� rnb�node�
typedef rnb�node rnb�tree�

class rnb�node�struct�

public�

rnb�node�struct�	 �par � child��� � child��� � nil� prio � random�	��
�� construct a new tree containing just one element

virtual �rnb�node�struct�	 � isolate�	� �
�� virtual destructor in order to deallocate the right amount of storage
�� even in derived classes

rnb�node find�root�	�



�� returns the root of the tree containing this node�
�� Prec�� this �� nil

rnb�node sub�pred�	�
�� returns the predecessor of this node in the �sub	tree rooted at this node
�� or nil if it does not exist
�� Prec�� this �� nil

rnb�node sub�succ�	�
�� returns the successor of this node in the �sub	tree rooted at this node
�� or nil if it does not exist
�� Prec�� this �� nil

rnb�node pred�	�
�� returns the predecessor of this node or nil if it does not exist
�� Prec�� this �� nil

rnb�node succ�	�
�� returns the successor of this node or nil if it does not exist
�� Prec�� this �� nil

rnb�node cyclic�pred�	 � return �this �� first�		  last�	 � pred�	� �
�� return the cyclic predecessor of this node �or nil	
�� Prec�� this �� nil

rnb�node cyclic�succ�	 � return �this �� last�		  first�	 � succ�	� �
�� return the cyclic successor of this node �or nil	
�� Prec�� this �� nil

rnb�node first�	�
�� Return the first node in In�order in the tree rooted at this node�

rnb�node last�	�
�� Return the last node of this tree�

friend int smaller�rnb�node u� rnb�node v	�
�� returns true iff u is smaller than v

friend rnb�tree rnb�join�rnb�tree t�� rnb�tree t!� rnb�node dummy	�
�� join t� and t! and return the resulting rnb�tree

friend void split�rnb�node at� int where� rnb�tree" t�� rnb�tree" t!�
rnb�node dummy	�

�� split the rnb�tree containing the node at before or after at
�� depending on where� If where �� rnb�left we split before at�
�� else we split after at� The resulting trees are stored in t� and t!�
�� If at �� nil� we store nil in t� and t!�

virtual void print�	�
�� prints the contents of this node to stdout for testing

friend void traverse�rnb�tree t	�
�� traverses the tree t and prints each node to stdout for testing

protected�

rnb�node par� �� parent node
rnb�node child�!�� �� children
long prio� �� priority for balancing

friend void rotate�rnb�node rot�child� rnb�node rot�parent	�
�� Rotate such that rot�child becomes the parent of rot�parent�
�� Prec�� rot�child is a child of rot�parent

virtual void after�rot�	 � �
�� This method is called for rot�parent after each rotation in order
�� to fix additional information at the nodes in derived classes�

virtual void init�	 � �
�� This method is used to initialize the dummy node in join and split
�� after linking it to the tree�s	�
�� Prec�� this �� nil

virtual void isolate�	�
�� Make this node an isolated node�
�� Prec�� this �� nil

��

�endif

g
This macro is attached to an output �le
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�� rnb�tree�c� implementation of rnb�trees ��
�� ��
�� comment� rnb�tree is an implementation of balanced binary ��
�� trees with a randomized balancing scheme� ��
�� See also the documentation in dyn�con�ps� ��
�� ��
Version���
�� ��
LEGAL NOTE���
�� ������������������������������������������������������������� ��

�� RCS ID ��
static char rcs���#�Id� dyn�con�fw�v ���� �

������� ������� alberts Exp �#�

�include#rnb�tree�h#

rnb tree methods���
g

This macro is attached to an output �le


��� Implementation

����� rotate

The method rotate takes two nodes� The �rst one has to be the child of the second one� The e�ect of this
method is best illustrated by a picture�

a m

b a

m b

rotate(x,y)

rotate(y,x)
x

y x

y

p p

Figure ���� The E�ect of a Rotation

There are two types of rotations depending on whether the �rst argument is the left child of the second

argument or the right one� Let us look at rotate�x�y�� This is called a right rotation� The edges in the

tree are directed since they are represented by parent and child pointers� The following edges disappear�

�m�x�� �x�y�� �y�p�� The following edges are created� �m�y�� �y�x�� �x�p�� Note that the subtree m

�changes sides�� rotate�y�x� is a left rotation�

rnb tree methods��� � �
f
inline void rotate�rnb�node rot�child� rnb�node rot�parent	
�� Rotate such that rot�child becomes the parent of rot�parent�
�� Prec�� rot�child is a child of rot�parent�
�
�� determine the direction dir of the rotation
int dir � �rot�parent��child�rnb�left� �� rot�child	  rnb�right � rnb�left�

�� subtree which changes sides
rnb�tree middle � rot�child��child�dir��

�� fix middle tree
rot�parent��child���dir� � middle�



if�middle	 middle��par � rot�parent�

�� fix parent field of rot�child
rot�child��par � rot�parent��par�
if�rot�child��par	
if�rot�child��par��child�rnb�left� �� rot�parent	

rot�child��par��child�rnb�left� � rot�child�
else

rot�child��par��child�rnb�right� � rot�child�

�� fix parent field of rot�parent
rot�child��child�dir� � rot�parent�
rot�parent��par � rot�child�

�� fix additional information in derived classes
rot�parent��after�rot�	�

�

g
This macro is de�ned in de�nitions 	� �� �� � �� ��� ��� ��� ��� ��� �	� ��� ��� and �


This macro is invoked in de�nition �


����� isolate

This method is called to safely isolate a node even in derived classes� It takes care of parent pointers
of the children of the node and the appropriate child pointer of its parent� Derived classes may store
additional information at the nodes� The additional information of other nodes in the tree may be a�ected
by the removal of this node� Since this is a virtual function the appropriate steps can be added to the
implementation in each derived class�

rnb tree methods��� � �
f
void rnb�node�struct��isolate�	
�� Make this node an isolated node�
�� Prec�� this �� nil
�
�� adjust child pointer of parent if it exists
if�par	
if�par��child�rnb�left� �� this	
par��child�rnb�left� � nil�

else
par��child�rnb�right� � nil�

�� adjust parent pointers of children if they exist
if�child�rnb�left�	 child�rnb�left���par � nil�
if�child�rnb�right�	 child�rnb�right���par � nil�

�

g
This macro is de�ned in de�nitions 	� �� �� � �� ��� ��� ��� ��� ��� �	� ��� ��� and �


This macro is invoked in de�nition �


����� find root

We simply follow the parent pointers as long as possible�

rnb tree methods��� � �
f
rnb�tree rnb�node�struct��find�root�	
�� returns the root of the tree containing this node�
�� Prec�� this �� nil
�
for�rnb�node aux � this� aux��par� aux � aux��par	�
return aux�

�

g
This macro is de�ned in de�nitions 	� �� �� � �� ��� ��� ��� ��� ��� �	� ��� ��� and �


This macro is invoked in de�nition �




����� sub pred and sub succ

The predecessor of a node u in the subtree rooted at u in In�order is the biggest node in its left subtree� If
u has a left subtree we follow the chain of right children of the left child of u as long as possible� We end up
at the desired node�

rnb tree methods��� � �
f
rnb�node rnb�node�struct��sub�pred�	
�� returns the predecessor of this node in the subtree rooted at this node
�� or nil if it does not exist
�� Prec�� this �� nil
�
�� handle the nil case first
if��child�rnb�left�	 return nil�

�� find the last node with no right child in the left subtree of u
for�rnb�node aux � child�rnb�left�� aux��child�rnb�right��

aux � aux��child�rnb�right�	�
return aux�

�

g
This macro is de�ned in de�nitions 	� �� �� � �� ��� ��� ��� ��� ��� �	� ��� ��� and �


This macro is invoked in de�nition �


We do the same for the successor� � �

rnb tree methods�� � �
f
rnb�node rnb�node�struct��sub�succ�	
�� returns the successor of this node in the subtree rooted at this node
�� or nil if it does not exist
�� Prec�� this �� nil
�
�� handle the nil case first
if��child�rnb�right�	 return nil�

�� find the first node with no left child in the right subtree of u
for�rnb�node aux � child�rnb�right�� aux��child�rnb�left��

aux � aux��child�rnb�left�	�
return aux�

�

g
This macro is de�ned in de�nitions 	� �� �� � �� ��� ��� ��� ��� ��� �	� ��� ��� and �


This macro is invoked in de�nition �


����� pred and succ

In contrast to the method sub pred we now also may have to look at the ancestors of the given node u in
order to �nd its predecessor� If there is no left subtree but there is a parent p of u such that u is the right
child of p then p is the predecessor of u� If u is the left child of p� then we follow the chain of parents of p
until we arrive at the root or at a node which is the right child of its parent q� In the former case there is
no predecessor� In the latter case q is the predecessor�

rnb tree methods��	� � �
f
rnb�node rnb�node�struct��pred�	
�� returns the predecessor of this node or nil if it does not exist
�� Prec�� this �� nil
�
�� search for predecessor in the subtree of this node first
rnb�node sub�pr � sub�pred�	�
�� if it exists we can return it
if�sub�pr	 return sub�pr�

�� otherwise we have to look for the ancestors of this node
if�par	 �� if there is a parent
if�this �� par��child�rnb�right�	



�� this is a right child
return par�

else
�� this is a left child
�
for�rnb�node aux � par� aux��par� aux � aux��par	
if�aux �� aux��par��child�rnb�right�	 return aux��par�

�

�� there is no predecessor
return nil�

�

g
This macro is de�ned in de�nitions 	� �� �� � �� ��� ��� ��� ��� ��� �	� ��� ��� and �


This macro is invoked in de�nition �


rnb tree methods���� � �
f
rnb�node rnb�node�struct��succ�	
�� returns the successor of this node or nil if it does not exist
�� Prec�� this �� nil
�
�� search for successor in the subtree of this node first
rnb�node sub�s � sub�succ�	�
�� if it exists we can return it
if�sub�s	 return sub�s�

�� otherwise we have to look for the ancestors of this node
if�par	 �� if there is a parent of u
if�this �� par��child�rnb�left�	
�� this node is a left child
return par�

else
�� this node is a right child
�
for�rnb�node aux � par� aux��par� aux � aux��par	
if�aux �� aux��par��child�rnb�left�	 return aux��par�

�

�� there is no predecessor
return nil�

�

g
This macro is de�ned in de�nitions 	� �� �� � �� ��� ��� ��� ��� ��� �	� ��� ��� and �


This macro is invoked in de�nition �


����� first and last

We simply walk as long to the left as possible starting at this node�

rnb tree methods���� � �
f
rnb�node rnb�node�struct��first�	
�� Return the first node in In�order in the tree rooted at this node�
�
�� remember one node before current node
rnb�node last � nil�
for�rnb�node current � this� current� current � current��child�rnb�left�	

last � current�

return last�
�

g
This macro is de�ned in de�nitions 	� �� �� � �� ��� ��� ��� ��� ��� �	� ��� ��� and �


This macro is invoked in de�nition �


We simply walk as long to the right as possible starting at this node�

rnb tree methods���� � �
f
rnb�node rnb�node�struct��last�	
�� Return the last node of this tree�
�



�� remember one node before current node
rnb�node last � nil�
for�rnb�node current � this� current� current � current��child�rnb�right�	

last � current�

return last�
�

g
This macro is de�ned in de�nitions 	� �� �� � �� ��� ��� ��� ��� ��� �	� ��� ��� and �


This macro is invoked in de�nition �


����� smaller

The method smaller takes two nodes u and v as its arguments and returns true i� the �rst node is smaller
than the second one with respect to In�order� If u and v are incomparable� i�e�� in di�erent trees� we return
false�

We �rst check whether u and v have the same root� If this is the case then the path from the root to u

and the path from the root to v are recorded as sequences of left and right moves in two arrays� We decide
whether u is smaller than v by comparing these sequences�

rnb tree methods��
� � �
f
int smaller�rnb�node u� rnb�node v	
�� returns true iff u is smaller than v
�
if��u $$ �v	 return false�
if�u �� v	 return false�

�� determine the height of u and v
rnb�node aux�u � u�
for�int u�height � �� aux�u��par� aux�u � aux�u��par� u�height%%	�
rnb�node aux�v � v�
for�int v�height � �� aux�v��par� aux�v � aux�v��par� v�height%%	�

�� if u and v have different roots they are incomparable and we return false
if�aux�u �� aux�v	 return false�

�� we represent the paths from u and v to their roots by arrays
�� create arrays
int �u�path � new int�u�height��
int �v�path � new int�v�height��

�� insert left and right moves
int u�i � u�height � ��
for�aux�u � u� aux�u��par� aux�u � aux�u��par� u�i��	
�
if�aux�u��par��child�rnb�left� �� aux�u	 u�path�u�i� � rnb�left�
else u�path�u�i� � rnb�right�

�

int v�i � v�height � ��
for�aux�v � v� aux�v��par� aux�v � aux�v��par� v�i��	
�
if�aux�v��par��child�rnb�left� �� aux�v	 v�path�v�i� � rnb�left�
else v�path�v�i� � rnb�right�

�

�� compare the paths
�� skip identical prefix
for�int i � �� ��i�u�height	 "" �i�v�height		 "" �u�path�i� �� v�path�i�	�

i%%	�

�� at least one path is not completely scanned because u��v
�� but u��find�root�	 �� v��find�root�	
�� at i they are different
int result�
if� �i�u�height	 "" �u�path�i� �� rnb�left	 	
result � true�

else
if� �i�v�height	 "" �v�path�i� �� rnb�right	 	
result � true�

else
result � false�

�� delete the paths



delete�� u�path�
delete�� v�path�

return result�
�

g
This macro is de�ned in de�nitions 	� �� �� � �� ��� ��� ��� ��� ��� �	� ��� ��� and �


This macro is invoked in de�nition �


����	 rnb join

We implement the rnb join method by creating a dummy node� Its children become the two trees to be
joined� Note that the resulting tree already has the right In�order� We only have to remove the dummy
node� The dummy node is trickled down the tree using rotations that do not change the In�order� We only
have to take care of the additional Heap�order� This can be done by always choosing the child with biggest
priority for the next rotation� When the dummy node eventually is a leaf of the tree we can simply remove
it�

rnb tree methods���� � �
f
rnb�tree rnb�join�rnb�tree t�� rnb�tree t!� rnb�node dummy	
�� join t� and t! and return the resulting rnb�tree
�
�� handle the trivial t� �� nil $$ t! �� nil case
if��t� $$ �t!	
�
if�t�	 return t��
if�t!	 return t!�
return nil�

�

dummy��par � nil�
dummy��child�rnb�left� � t��
dummy��child�rnb�right� � t!�
t���par � dummy�
t!��par � dummy�
�� fix additional information in derived classes
dummy��init�	�

�� trickle dummy down
while� �dummy��child�rnb�left�	 $$ �dummy��child�rnb�right�	 	
�� while there is at least one child
�
�� rotate with child with biggest priority

�� find child with biggest priority���
rnb�node bigger � dummy��child�rnb�left��
if�dummy��child�rnb�right�	
�
if�dummy��child�rnb�left�	
�
if�dummy��child�rnb�right���prio � dummy��child�rnb�left���prio	
bigger � dummy��child�rnb�right��

�
else bigger � dummy��child�rnb�right��

�

�� ���and rotate with it
rotate�bigger�dummy	�

�

�� disconnect dummy from the new tree
dummy��isolate�	�

�� return root of the new tree
if�t!��par	 return t��
else return t!�

�

g
This macro is de�ned in de�nitions 	� �� �� � �� ��� ��� ��� ��� ��� �	� ��� ��� and �
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����
 split

The e�ect of the operation split�at�where�t
�t� is the following� The tree T containing at is split into
two trees which are assigned to t
 and t� t
 contains the pre�x of the In�order of T up to but including
or excluding at� t contains the rest of the In�order of T � Whether t
 contains at depends on where� If
where has a value of rnb left then the T is split left of at� so t
 does not contain at� If where is set to
rnb right then T is split right of at�

This is implemented by inserting a dummy node dummy immediately before or after at with respect to In�
order� This node is rotated up until it becomes the root of T � Then the left subtree of dummy is t
 and the
right subtree of dummy is t�

rnb tree methods���� � �
f
void split�rnb�node at� int where� rnb�tree" t�� rnb�tree" t!� rnb�node dummy	
�� split the rnb�tree containing the node at before or after at
�� depending on where� If where �� rnb�left we split before at�
�� else we split after at� The resulting trees are stored in t� and t!�
�� If at �� nil� we store nil in t� and t!�
�
�� handle the trivial at �� nil case first
if��at	
�
t� � nil�
t! � nil�
return�

�

dummy��child�rnb�left� � nil�
dummy��child�rnb�right� � nil�

�� insert dummy in the right place �w�r�t� In�order	
�� where �� rnb�left �� split before at
�� where �� rnb�left �� split after at
if�where �� rnb�left	 �� split after at
�
�� store dummy as left child of the subtree successor of at
�� or as right child of at if there is no subtree successor
rnb�node s � at��sub�succ�	�
if��s	
�
at��child�rnb�right� � dummy�
dummy��par � at�

�
else
�
s��child�rnb�left� � dummy�
dummy��par � s�

�
�
else �� split before at
�
�� store dummy as right child of the subtree predecessor of at
�� or as left child of at if there is no subtree predecessor
rnb�node p � at��sub�pred�	�
if��p	
�
at��child�rnb�left� � dummy�
dummy��par � at�

�
else
�
p��child�rnb�right� � dummy�
dummy��par � p�

�
�
�� fix additional information in derived classes
dummy��init�	�

�� rotate dummy up until it becomes the root
for�rnb�node u � dummy��par� u� u � dummy��par	 rotate�dummy�u	�

�� store the subtrees of dummy in t� and t!
t� � dummy��child�rnb�left��
t! � dummy��child�rnb�right��

�� disconnect dummy



dummy��isolate�	�
�

g
This macro is de�ned in de�nitions 	� �� �� � �� ��� ��� ��� ��� ��� �	� ��� ��� and �


This macro is invoked in de�nition �


������ print and traverse

rnb tree methods���� � �
f
void rnb�node�struct��print�	
�� prints the contents of this node to stdout for testing
�� Prec�� this �� nil
�
cout �� #node at # �� this �� #�&n#�
cout �� # parent� # �� par �� #&n#�
cout �� # left child� # �� child�rnb�left� �� #&n#�
cout �� # right child� # �� child�rnb�right� �� #&n#�
cout �� # priority� # �� prio �� #&n#�

�

g
This macro is de�ned in de�nitions 	� �� �� � �� ��� ��� ��� ��� ��� �	� ��� ��� and �


This macro is invoked in de�nition �


rnb tree methods���� � �
f
void traverse�rnb�tree t	
�� traverses the tree and outputs each node to stdout for testing
�
if�t	
�
t��print�	�
traverse�t��child�rnb�left�	�
traverse�t��child�rnb�right�	�

�
�

g
This macro is de�ned in de�nitions 	� �� �� � �� ��� ��� ��� ��� ��� �	� ��� ��� and �


This macro is invoked in de�nition �


This method traverses the given tree in Pre�order� i�e�� root �rst� then left subtree� then right subtree� It
prints each encountered node�



Chapter �

Randomized Balanced Binary Trees

with Node Weights

In this chapter we describe a randomized balanced tree as above with additional non�negative integer weights
at the nodes� The sum of the weights in the subtree rooted at a certain node is maintained and it is possible
to locate the node which �represents� a certain integer in the �weight range� of such a tree�

In addition to the methods implemented for randomized balanced binary trees the following methods are
supported by the weighted version�

� A node weight or the weight of the subtree rooted at a certain node is returned in constant time�

� A node weight can be updated in logarithmic expected time�

� For a node u let T �u� be the subtree rooted at u� Let weight�u� be the weight associated to the
node u� and let weight�T � be the sum of weights of nodes in T � Given a node u and a weight w
with 	 � w � weight�T �u��� a node v with the following properties is returned by the rnbw locate

function�


 v is a member of T �u��


 Let fu�� � � � � uk� uk�� � v� uk��� � � � � urg be the In�order of T �u�� Then the following holds�

kX

i��

weight�ui� � w �
k��X

i��

weight�ui�

We have to augment the implementation of the rotate method for randomized balanced binary trees in
order to maintain the sums of weights�

��� Overview

There are two �les� the header �le rnbw tree�h which declares the class and its methods� and the �le
rnbw tree�c which implements the methods�

The class rnbw node struct is derived from the base class rnb node struct� The weight of a node is stored
in its weight �eld� There is an additional �eld sub weight which stores the weight of the subtree rooted at
this node� The weight �eld is not really necessary� but it simpli�es the implementation of some methods�

There are methods to get or set the weight of a node and to get the weight of a subtree� There is a function
which locates the node which represents a certain weight as described in the Introduction� In order to handle
the sub weight �eld correctly some virtual functions of the base class have to be rede�ned�

In order to get return values of the right type some conversion functions are de�ned�

��



rnbw tree	h��� �
f�� ������������������������������������������������������������� ��
�� rnbw�tree�h� header file for the rnbw�trees ��
�� ��
�� comment� rnbw�trees are derived from rnb�trees� They have an ��
�� additional non�negative weight at each node and ��
�� subtree weights� ��
�� See also the documentation in dyn�con�ps� ��
�� ��
Version���
�� ��
LEGAL NOTE���
�� ������������������������������������������������������������� ��

�� RCS ID ��
�� �Id� dyn�con�fw�v ���� �

������� ������� alberts Exp � ��

�ifndef RNBW�TREE
�define RNBW�TREE

�include#rnb�tree�h#

class rnbw�node�struct�
typedef rnbw�node�struct� rnbw�node�
typedef rnbw�node rnbw�tree�

class rnbw�node�struct � public rnb�node�struct �

public�

rnbw�node�struct�int w � �	 � rnb�node�struct�	 � weight � sub�weight � w� �
�� construct a new tree containing just one node with weight w�
�� By default each node gets a weight of one�
�� Prec�� w �� �

int get�weight�	 � return weight� �
�� returns the weight of this node

int get�subtree�weight�	 � return sub�weight� �
�� returns the weight of the subtree rooted at this node

void set�weight�int w	�
�� sets the weight of this node to w
�� Prec�� w �� �

void add�weight�int a	�
�� adds a to the weight of this node
�� Prec�� a �� ��weight of this node	

friend rnbw�node rnbw�locate�rnbw�tree t� int w� int" offset	�
�� returns the node in the tree rooted at t which corresponds to
�� w with respect to In�order�
�� Prec�� � � w �� weight of tree rooted at t

Conversion Functions for rnbw trees��	�

virtual void print�	�
�� we redefine print in order to output also the additional fields

protected�

void after�rot�	�
�� We fix the weight fields after a rotation� This is called as
�� a virtual function in the base class rnb�tree�

void init�	�
�� This method is used to initialize the dummy node in join and split
�� after linking it to the tree�s	� It is a virtual function in the base
�� class�

virtual void isolate�	�
�� We fix the sub�weight fields of the ancestors of this node�

private�

int weight� �� stores the weight of this node
int sub�weight� �� stores the weight of the subtree rooted at this node

��

�endif

g
This macro is attached to an output �le




Using the methods from the base class as they are can sometimes lead to type con icts� A cast of a pointer
to an instance of a derived class to a pointer to an instance of its base class is done automatically by the
compiler whereas a cast in the other direction has to be explicit�

As an example for the undesirable consequences of this problem consider the following example� If we simply
join to rnbw trees using the rnb join method from the base class rnb node struct the return value is a
rnb tree and not a rnbw tree� So we cannot assign the resulting tree as it is to another rnbw tree� There
has to be an explicit cast� However� there are also methods which do not pose this problem like� e�g�� the
smaller method�

In order to provide a consistent interface to the class rnbw node struct we de�ne new methods corresponding
to the critical ones in the base class which have the desired type� We also de�ne methods returning the
parent and the children of a node with the correct type�

Conversion Functions for rnbw trees��	� �
f�� ��� Conversion Functions ���
rnbw�node parent�	 � return �rnbw�node	 par� �
rnbw�node left�child�	 � return �rnbw�node	 child�rnb�left�� �
rnbw�node right�child�	 � return �rnbw�node	 child�rnb�right�� �
rnbw�tree find�root�	 �return �rnbw�tree	 rnb�node�struct��find�root�	� �
rnbw�node pred�	 � return �rnbw�node	 rnb�node�struct��pred�	� �
rnbw�node succ�	 � return �rnbw�node	 rnb�node�struct��succ�	� �
friend inline rnbw�tree rnbw�join�rnbw�tree t�� rnbw�tree t!� rnbw�node dummy	

� return �rnbw�tree	 rnb�join�t��t!�dummy	� �g
This macro is invoked in de�nition ��


rnbw tree	c���� �
f�� ������������������������������������������������������������� ��
�� rnbw�tree�c� implements rnbw�trees ��
�� ��
�� comment� rnbw�trees are derived from rnb�trees� They have an ��
�� additional non�negative weight at each node and ��
�� subtree weights� ��
�� See also the documentation in dyn�con�ps� ��
�� ��
Version���
�� ��
LEGAL NOTE���
�� ������������������������������������������������������������� ��

�� RCS ID ��
static char rcs���#�Id� dyn�con�fw�v ���� �

������� ������� alberts Exp �#�

�include#rnbw�tree�h#

rnbw tree methods����
g

This macro is attached to an output �le


��� Implementation

����� after rot� init� and isolate

rnbw tree methods���� � �
f
void rnbw�node�struct��after�rot�	
�
�� the parent gets the sub�weight of this node
parent�	��sub�weight � sub�weight�

�� recalculate the sub�weight field of this node
sub�weight � weight�
if�left�child�		 sub�weight %� left�child�	��sub�weight�
if�right�child�		 sub�weight %� right�child�	��sub�weight�

�

g



This macro is de�ned in de�nitions ��� ��� ��� �	� ��� ��� and �


This macro is invoked in de�nition ��


A rotation a�ects the subtree weights so we have to update some sub weight �elds� namely those of this
node and its parent� since this method is invoked for the node who was the parent of its new parent after
the rotation�

rnbw tree methods���� � �
f
void rnbw�node�struct��init�	
�
�� initialize the sub�weight field of this node
sub�weight � weight�
if�left�child�		 sub�weight %� left�child�	��sub�weight�
if�right�child�		 sub�weight %� right�child�	��sub�weight�

�

g
This macro is de�ned in de�nitions ��� ��� ��� �	� ��� ��� and �


This macro is invoked in de�nition ��


In the join and split methods of the base class rnb node struct a dummy node is created and linked to
the tree�s�� Its sub weight �eld has to be initialized at least for join�

rnbw tree methods��
� � �
f
void rnbw�node�struct��isolate�	
�� We fix the sub�weight fields of the ancestors of this node�
�
�� fix sub�weight fields
for�rnbw�node aux � parent�	� aux� aux � aux��parent�		
aux��sub�weight �� sub�weight�

�� fix base class
rnb�node�struct��isolate�	�

�

g
This macro is de�ned in de�nitions ��� ��� ��� �	� ��� ��� and �


This macro is invoked in de�nition ��


In addition to �xing parent and child pointers pointing to this node which is done in the the base class
rnb node struct we also have to �x the sub weight �elds of the ancestors if they exist�

����� set weight and add weight

If the weight �eld of a node is changed this has an in uence on its sub weight �eld and the sub weight

�elds of its ancestors�

rnbw tree methods���� � �
f
void rnbw�node�struct��set�weight�int w	
�� sets the weight of this node to w
�� Prec�� w �� �
�
�� remember the difference between the new and the old weight
int w�diff � w � weight�

�� update the weight and subweight fields of this node
sub�weight %� w�diff�
weight � w�

�� update the sub�weight fields of the ancestors of this node
for�rnbw�node aux � parent�	� aux� aux � aux��parent�		
aux��sub�weight %� w�diff�

�

g
This macro is de�ned in de�nitions ��� ��� ��� �	� ��� ��� and �


This macro is invoked in de�nition ��




rnbw tree methods���� � �
f
void rnbw�node�struct��add�weight�int a	
�� adds a to the weight of this node
�� Prec�� a �� ��weight of this node	
�
�� update the weight and subweight fields of this node
sub�weight %� a�
weight %� a�

�� update the sub�weight fields of the ancestors of this node
for�rnbw�node aux � parent�	� aux� aux � aux��parent�		
aux��sub�weight %� a�

�

g
This macro is de�ned in de�nitions ��� ��� ��� �	� ��� ��� and �


This macro is invoked in de�nition ��


����� rnbw locate

See the introduction for a description of the e�ect of this method� It is implemented by following a way
down in the tree guided by two values lower and upper� In lower we maintain the sum of weights of nodes
in In�order up to but excluding the current node� In upper we maintain lower plus the weight of the current
node� The interval of weights represented by the current node is �lower� upper�� Depending on whether the
given weight w is left or right of this interval for the current node� we proceed with the left or right child�
Eventually w� �lower� upper�� We return the corresponding rnbw node and store w�lower in offset�

rnbw tree methods���� � �
f
rnbw�node rnbw�locate�rnbw�tree t� int w� int" offset	
�� returns the node in the tree rooted at t which corresponds to
�� w with respect to In�order�
�� Prec�� � � w �� weight of tree rooted at t
�
�� current node
rnbw�node curr�node � t�
�� sum of weights up to but excluding current node
int lower � curr�node��left�child�	  

curr�node��left�child�	��sub�weight � ��
�� sum of weights up to and including current node
int upper � lower % curr�node��weight�

while�w �� lower $$ w � upper	
�� weight w not represented at current node
�� so we have to proceed at a child of the current node
�
if�w �� lower	
�� proceed at left child
�
curr�node � curr�node��left�child�	�
�� update lower
lower �� curr�node��sub�weight�
if�curr�node��left�child�		
lower %� curr�node��left�child�	��sub�weight�

�� update upper
upper � lower % curr�node��weight�

�
else
�� proceed at right child
�
curr�node � curr�node��right�child�	�
�� update lower
lower � upper % curr�node��sub�weight � curr�node��weight�
if�curr�node��right�child�		
lower �� curr�node��right�child�	��sub�weight�

�� update upper
upper � lower % curr�node��weight�

�
�

�� store offset of w from lower
offset � w � lower�

�� return the node representing w



return curr�node�
�

g
This macro is de�ned in de�nitions ��� ��� ��� �	� ��� ��� and �


This macro is invoked in de�nition ��


����� print

rnbw tree methods���� � �
f
void rnbw�node�struct��print�	
�� we redefine print in order to output also the additional fields
�
�� output base fields
rnb�node�struct��print�	�

�� output new fields
cout �� # weight� # �� weight �� #&n#�
cout �� # sub�weight� # �� sub�weight �� #&n#�

�

g
This macro is de�ned in de�nitions ��� ��� ��� �	� ��� ��� and �


This macro is invoked in de�nition ��




Chapter �

Euler Tour Trees

��� Introduction

In the dynamic connectivity algorithmvarious spanning trees are maintained� They are represented implicitly
by some encoding� The encoding of a spanning tree T at level i is a sequence ET �T � of the vertices of T in
the order in which they are encountered during a traversal of T starting at an arbitrarily selected vertex r�
the root of T � The traversal is an Euler tour of a modi�ed T where each edge is doubled� Thus� each node v
occurs exactly d�v� times except for the root which appears d�r�� � times� In total the sequence has �k� �
occurrences where k is the number of nodes in T �

The tree T is subject to changes� It may be split by removing an edge or joined with another tree by inserting
an edge� We quote the description of the counterparts of these operations for Euler tour sequences from ��	��

Procedures for modifying encodings

�� To delete edge fa� bg from T � Let T� and T� be the two trees which result� where a � T�
and b � T�� Let oa� � oa� � ob�� ob� represent the occurrences encountered in the two traversals
of fa� bg� If oa� � ob� and ob� � ob� then oa� � ob� � ob� � oa� � Thus ET �T�� is given by the
interval of ET �T � ob� � � � � � ob� and ET �T�� is given by splicing out of ET �T � the sequence
ob� � � � � � oa� �

�� To change the root of T from r to s� Let os denote any occurrence of s� Splice out the
�rst part of the sequence ending with the occurrence before os� remove its �rst occurrence
or � and tack this on to the end of the sequence which now begins with os� Add a new
occurrence os to the end�

�� To join two rooted trees T and T � by edge e� Let e � fa� bg with a � T and b � T ��
Given any occurrences oa and ob� reroot T

� at b� create a new occurrence oan and splice the
sequence ET �T ��oan into ET �T � immediately after oa�

See Figure ��� and Figure ����

We maintain the Euler tour sequence ET �T � of a tree T at level i implicitly by storing the occurrences at the
nodes of a balanced binary tree which is called the et tree for T � et trees are derived from rnbw trees�
randomized balanced binary trees with node weights� For each node v of T one of the occurrences of v in
ET �T � is arbitrarily selected to be the active occurrence of v� The active occurrence of v gets a node weight
equal to the number of non�tree edges adjacent to v at level i� Nodes which are not active get a weight of
zero� At each node of an et tree the weight of its subtree is maintained� In particular we can determine
the weight of a tree by looking at the subtree weight of the root of its corresponding et tree� At each node
v of G we store an array act occ of pointers to its active occurrences at each level�

�
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Figure ���� The E�ect of Changing the Root

This �gure illustrates the e�ect of changing the root of T from � to � on the Euler tour sequence of T�

Each tree edge e on level i is represented by three or four occurrences of its nodes in some et tree et at
level i corresponding to its traversal in the Euler tour sequence represented by et �see Figure ����� There
are only three occurrences in the case that one of the nodes of e is a leaf� At each tree edge e there is an
array tree occ of pointers to four occurrences per level� Consider level i� If e belongs to a higher level� i�e��
e � Gj for j � i then these pointers are all nil� Otherwise those three or four occurrences representing
e at level i are stored there� such that tree occ�i���� and tree occ�i��
� belong to one node of e and
tree occ�i��� and tree occ�i���� belong to the other node� One of these four occurrences may be nil�

The modi�cation of T by inserting an edge connecting it to another tree or by deleting one of its edges
may result in the deletion of an occurrence of ET �T �� This means that we have to check whether a deleted
occurrence o was the active occurrence of its node v� If this is the case� we pass the activity to another
occurrence of v at the same level� The modi�cation of the Euler tour sequence in general has an in uence
on the representation of some tree edges� In order to do the necessary updates we keep at each occurrence o
pointers to the edges represented by o and its left and right neighbor� respectively� These issues are described
in more detail below�

��� Interface

In this section we present the interface of the data structure� It is part of the header �le dyn con�h�

Declaration of et trees��� �
f�� ������������ et�trees ����������������� ��
�include#rnbw�tree�h#

�� some forward definitions
class dyn�con�

class et�node�struct�
typedef et�node�struct� et�node�
typedef et�node et�tree�

Declaration of et node struct��	�g
This macro is invoked in de�nition ��


We begin by de�ning the nodes of the et tree� They are pointers to structures containing the information
stored at the node� An et tree is just an et node with no parent�

There are �ve new �elds in an et node struct ens with respect to a rnbw node struct� There is a pointer
to the instance of class dyn con to which the node represented by ens belongs� It is used to access global
information� There is the corr node �eld which points to the node u such that this et node struct is an
occurrence of u� The level of the tree T represented by the et tree ens belongs to is stored at level� There
is the active �eld which is true if ens is an active occurrence and false otherwise� The �eld edge occ���
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Figure ���� The E�ects of Inserting and Deleting a Tree Edge

This �gure illustrates the e�ect of inserting a new tree edge between � and �� For convenience T� is

already rooted at �� Otherwise there had to be a change root operation �rst� This �gure also illustrates

the e�ect of deleting the edge e in T when viewed from bottom to top�

contains the edge represented in part by the predecessor of ens and ens itself in ET �T �� We call it the left
edge of ens� Similarly� edge occ�
� contains the right edge of ens�

Declaration of et node struct��	� �
f
class et�node�struct � public rnbw�node�struct �

public�

Interface of et trees����

protected�

dyn�con� dc� �� the dynamic connectivity data structure this node
�� belongs to

node corr�node� �� corresponding node in G
int level� �� the level of this node
int active� �� true iff active occurrence
edge edge�occ�!�� �� the at most two tree edges represented

�� also by this node� ordered left and right

Declaration of Protected Operations on et trees����
��

g
This macro is invoked in de�nition ��


Interface of et trees���� �
f�� Constructors
et�node�struct�dyn�con� dcp� node v� int my�level � ��� int activate � false	�
�� Create a new et�node�struct at level my�level for v�
�� Activate it if activate is true�

et�node�struct�et�node en	�
�� Create a new et�node�struct which is an inactive copy of en�

Conversion Functions for et trees����



node get�corr�node�	 � return corr�node� �
�� This et�node is an occurrence of the returned graph node�

int is�active�	 � return active� �
�� true ��� active occ�

friend et�tree et�link�node u� node v� edge e� int i� dyn�con� dc	�
�� Modify the et�trees of dc at level i corresponding to the insertion of
�� the edge �u�v	 into F�i�
�� Prec�� u and v belong to dc� and they are not connected at the
�� valid level i�

friend void et�cut�edge e� int i� dyn�con� dc	�
�� Update the et�trees at level i corresponding to the removal of
�� the tree edge e�
�� Prec�� e actually is a tree edge at level i�

void print�	�

�� Print this node to cout for testing�g
This macro is invoked in de�nition ��


Conversion Functions for et trees���� �
f�� ��� Conversion Functions ���
et�node parent�	 � return �et�node	 rnbw�node�struct��parent�	� �
et�node left�child�	 � return �et�node	 child�rnb�left�� �
et�node right�child�	 � return �et�node	 child�rnb�right�� �
et�tree find�root�	 � return �et�tree	 rnb�node�struct��find�root�	� �
et�node first�	 � return �et�node	 rnb�node�struct��first�	� �
et�node last�	 � return �et�node	 rnb�node�struct��last�	� �
et�node cyclic�succ�	 � return �et�node	 rnb�node�struct��cyclic�succ�	� �
et�node cyclic�pred�	 � return �et�node	 rnb�node�struct��cyclic�pred�	� �
friend inline et�tree et�join�et�tree t�� et�tree t!� et�node dummy	
� return �et�tree	 rnb�join�t��t!�dummy	� �
friend inline et�node et�locate�et�tree et� int w� int" offset	

� return �et�node	 rnbw�locate�et�w�offset	� �g
This macro is invoked in de�nition ��


Declaration of Protected Operations on et trees���� �
fvoid pass�activity�et�node to	�
�� Make this node inactive and pass its activity to to�
�� Prec�� This node is active� to represents the same vertex and is on the
�� same level�

friend void change�root�et�tree" et� et�node en� int i� dyn�con� dc	�
�� Change the root of the tree T represented by the et�tree et to the
�� vertex represented by the et�node en� The new tree is stored at et�

�� Prec�� The et�node en is in the et�tree et�g
This macro is invoked in de�nition ��


��� Implementation

The following macro contains the �le et tree�c which implements the et tree procedures� In the following
subsections we discuss and implement these procedures�

et tree	c��
� �
f�� ������������������������������������������������������������� ��
�� et�tree�c� implementation of et�trees� ��
�� ��
Version���
�� ��
LEGAL NOTE���
�� ������������������������������������������������������������� ��

�� RCS Id ��
static char rcs���#�Id� dyn�con�fw�v ���� �

������� ������� alberts Exp �#�

�include#dyn�con�h#

Operations on et trees����
g



This macro is attached to an output �le


����� Constructors

There are two constructors� One is for creating a new node from scratch� The other one is for cloning an
existing node� In the latter case the copy is always inactive�

Operations on et trees���� � �
f
et�node�struct��et�node�struct
�dyn�con� dcp� node v� int my�level� int activate	
� rnbw�node�struct��	
�
dc � dcp�
corr�node � v�
level � my�level�
active � activate�
if�activate	 dc��Gp��inf�v	��act�occ�level� � this�
edge�occ��� � edge�occ��� � nil�

�

et�node�struct��et�node�struct�et�node en	
� rnbw�node�struct��	
�
dc � en��dc�
corr�node � en��corr�node�
level � en��level�
active � false�
edge�occ��� � edge�occ��� � nil�

�

g
This macro is de�ned in de�nitions �	� ��� ��� �� ��� and ��


This macro is invoked in de�nition ��


����� pass activity

Operations on et trees���� � �
f
void et�node�struct��pass�activity�et�node to	
�� Make this node inactive and pass its activity to to�
�� Prec�� this node is active� to represents the same vertex and is on the
�� same level�
�
active � false�
to��active � true�
to��set�weight�get�weight�		�
set�weight��	�
dc��Gp��inf�corr�node	��act�occ�level� � to�

�

g
This macro is de�ned in de�nitions �	� ��� ��� �� ��� and ��


This macro is invoked in de�nition ��


����� change root

We implement the procedure described in the Introduction of this chapter� The main di�culty lies in
updating the tree occs of up to two edges�

Operations on et trees���� � �
f
void change�root�et�tree" et� et�node en� int i� dyn�con� dc	
�� Change the root of the tree T represented by the et�tree et to the
�� vertex represented by the et�node en� The new tree is stored at et�
�� Prec�� The et�node en is in the et�tree et�
�
et�node first�nd � et��first�	�



�� if en is already the first node do nothing
if�en �� first�nd	 return�

�� create a new occurrence for the new root
et�node new�occ � new et�node�struct�en	�

�� ��� update active occurrences ��� ��
et�node last�nd � et��last�	�
�� if the first node is active� pass activity to last node� since
�� the first node will be deleted
if�first�nd��active	 first�nd��pass�activity�last�nd	�

�� ��� update tree�occs ��� ��
if�en��edge�occ�rnb�left� �� en��edge�occ�rnb�right�	
�
�� replace the nil pointer in tree�occs of en��edge�occ�rnb�left�
�� by the new occurrence
for�int k��� nil �� dc��Gp��inf�en��edge�occ�rnb�left�	��tree�occ�i��k��

k%%	�
dc��Gp��inf�en��edge�occ�rnb�left�	��tree�occ�i��k� � new�occ�

�
else
�
�� replace en by the new occurrence
for�int k��� en �� dc��Gp��inf�en��edge�occ�rnb�left�	��tree�occ�i��k��

k%%	�
dc��Gp��inf�en��edge�occ�rnb�left�	��tree�occ�i��k� � new�occ�

�

edge first�edge � first�nd��edge�occ�rnb�right��
if��first�edge �� last�nd��edge�occ�rnb�left�	 $$

�en �� last�nd		
�
�� replace first�nd by last�nd in the tree�occs of first�edge
for�int k��� first�nd �� dc��Gp��inf�first�edge	��tree�occ�i��k��

k%%	�
dc��Gp��inf�first�edge	��tree�occ�i��k� � last�nd�

�
else
�
�� replace first�nd by nil in the tree�occs of first�edge
for�int k��� first�nd �� dc��Gp��inf�first�edge	��tree�occ�i��k��

k%%	�
dc��Gp��inf�first�edge	��tree�occ�i��k� � nil�

�

�� ��� update edge�occs ��� ��
�� right edge of first�nd becomes right edge of last node
last�nd��edge�occ�rnb�right� � first�edge�

�� left edge of en becomes left edge of new�occ
new�occ��edge�occ�rnb�left� � en��edge�occ�rnb�left��
en��edge�occ�rnb�left� � nil�

�� ��� update the et�tree ��� ��
�� split off first occurrence and delete it
et�tree s�� s!�
split�first�nd�rnb�right�s��s!�dc��et�dummy	�
delete first�nd�

�� split immediately before en
split�en�rnb�left�s��s!�dc��et�dummy	�

�� join the pieces
et � et�join�s!�et�join�s��new�occ�dc��et�dummy	�dc��et�dummy	�

�

g
This macro is de�ned in de�nitions �	� ��� ��� �� ��� and ��


This macro is invoked in de�nition ��


����� et link

Let u and v be two nodes of the graph G� The operation et link�u�v�e�i�dc� links the two et trees T�
and T� on level i containing the active occurrences u act and v act of u and v on level i� e is the edge
consisting of u and v� dc is a pointer to the dynamic connectivity data structure u and v belong to� Of
course� we require u and v to be disconnected at level i�



This is implemented as follows�

�� We look up the active occurrences of u and v on level i� u act and v act� We create a new occurrence
for u� We reroot the tree containing v act at v act�

�� We initialize the tree occ�i� array of e�

�� We update the tree occ�i� array of the edge following e in the Euler tour sense �if it exists��


� We update the edge occs of the involved occurrences�

�� We join the et trees corresponding to the change in the Euler tour sequences as described in the
Introduction of this Chapter�

Operations on et trees���� � �
f
et�tree et�link�node u� node v� edge e� int i� dyn�con� dc	
�� Modify the et�trees at level i corresponding to the insertion of
�� the edge e � �u�v	 into F�i�
�� Prec�� u and v belong to dc� and they are not connected at the
�� valid level i�
�
�� get active occurrences of u and v� create a new occurrence of u
et�node u�act � dc��Gp��inf�u	��act�occ�i��
et�node v�act � dc��Gp��inf�v	��act�occ�i��
et�node new�u�occ � new et�node�struct�u�act	�

�� find the tree etv containing v�act and reroot it at v�act
et�tree etv � v�act��find�root�	�
change�root�etv�v�act�i�dc	�

�� ��� initialize tree�occs of e ���
�� u�act and new�u�occ become the first two tree�occs of e
dc��Gp��inf�e	��tree�occ�i���� � u�act�
dc��Gp��inf�e	��tree�occ�i���� � new�u�occ�

�� the first and the last node of etv are tree�occ�i��! and �� if
�� they are different otherwise tree�occ�i��!� is nil
et�node etv�last � etv��last�	�
dc��Gp��inf�e	��tree�occ�i���� � etv�last�
if�etv�last �� v�act	 dc��Gp��inf�e	��tree�occ�i��!� � v�act�
else dc��Gp��inf�e	��tree�occ�i��!� � nil�

�� ��� update tree�occs of the edge following e if it exists ���
edge after�e � u�act��edge�occ�rnb�right��
if�after�e	
�
if�u�act��edge�occ�rnb�left� �� after�e	
�
�� replace u�act by new�u�occ
for�int k��� u�act �� dc��Gp��inf�after�e	��tree�occ�i��k�� k%%	�
dc��Gp��inf�after�e	��tree�occ�i��k� � new�u�occ�

�
else
�
�� replace nil pointer by new�u�occ
for�int k��� nil �� dc��Gp��inf�after�e	��tree�occ�i��k�� k%%	�
dc��Gp��inf�after�e	��tree�occ�i��k� � new�u�occ�

�
�

�� ��� update edge�occs ���
new�u�occ��edge�occ�rnb�right� � u�act��edge�occ�rnb�right��
new�u�occ��edge�occ�rnb�left� � e�
u�act��edge�occ�rnb�right� � e�
v�act��edge�occ�rnb�left� � e�
etv�last��edge�occ�rnb�right� � e�

�� ��� update et�trees ���
�� concatenate etv and the new occurrence
etv � et�join�etv�new�u�occ�dc��et�dummy	�

�� split the et�tree containing u�act after u�act
et�tree s�� s!�
split�u�act�rnb�right�s��s!�dc��et�dummy	�

�� concatenate the pieces



return et�join�s��et�join�etv�s!�dc��et�dummy	�dc��et�dummy	�
�

g
This macro is de�ned in de�nitions �	� ��� ��� �� ��� and ��


This macro is invoked in de�nition ��


����� et cut

This is the opposite operation of the previous one� An et tree representing a tree T at level i is split
by deleting one of its edges e� This edge e is represented by � or 
 occurrences� One pair of occurrences
originates from the �rst traversal of e in ET �T � and the other pair originates from the second traversal of e�
The second occurrence of the �rst traversal is also the �rst occurrence of the second traversal if the second
node of the edge is a leaf� Exactly in this case the edge is represented only by � occurrences� The operation
is implemented as follows�

�� Let ea
 and ea be the �rst two tree occs of e� and let eb
 and eb be the second two tree occs of
e� We insure that ea
 � eb
 � eb � ea in the search tree order�

�� We set the tree occs of e to nil�

�� One of the resulting two et trees is given by the subtree represented by the subsequence starting at
eb
 and ending with eb� The other et tree is given by deleting the subsequence starting at eb
 and
ending with ea from the sequence for T �


� ea will be deleted� so we pass its activity to ea
 if ea is actually active�

�� We update the tree occs of the edge following e in the Euler tour sense� if it exists�

�� We update the edge occs of ea
� eb
 and eb�

�� We delete ea�

Operations on et trees��� � �
f
void et�cut�edge e� int i� dyn�con� dc	
�� Update the et�trees at level corresponding to the removal of
�� the tree edge e�
�� Prec�� e actually is a tree edge at level i�
�
�� get the et�nodes representing e at level i
et�node ea� � dc��Gp��inf�e	��tree�occ�i�����
et�node ea! � dc��Gp��inf�e	��tree�occ�i�����
et�node eb� � dc��Gp��inf�e	��tree�occ�i��!��
et�node eb! � dc��Gp��inf�e	��tree�occ�i�����

�� set the tree�occ to nil�
dc��Gp��inf�e	��tree�occ�i���� � nil�
dc��Gp��inf�e	��tree�occ�i���� � nil�
dc��Gp��inf�e	��tree�occ�i��!� � nil�
dc��Gp��inf�e	��tree�occ�i���� � nil�

�� sort ea�� ea!� eb�� and eb!� such that
�� ea� � eb� � eb! � ea! in In�order if they are not nil
�� eb� may be nil
et�node aux�
if�ea� "" ea!	
�
if�smaller�ea!�ea�		
�
aux � ea�� ea� � ea!� ea! � aux�

�
�
else �� either ea� or ea! is nil���
�
if�ea�	 �� ���it is ea!
�
ea! � ea�� ea� � nil�

�



�

if�eb� "" eb!	
�
if�smaller�eb!�eb�		
�
aux � eb�� eb� � eb!� eb! � aux�

�
�
else �� either eb� or eb! is nil���
�
if�eb�	 �� ���it is eb!
�
eb! � eb�� eb� � nil�

�
�

�� now ea! and eb! are non�nil
if�smaller�ea!�eb!		
�
aux � eb�� eb� � ea�� ea� � aux�
aux � eb!� eb! � ea!� ea! � aux�

�

�� ��� update et�trees ���
�� compute s�� s! and s�
et�tree s�� s!� s��
split�ea��rnb�right�s��s!�dc��et�dummy	�
split�ea!�rnb�right�s!�s��dc��et�dummy	�

�� compute the first of the two resulting trees
et�join�s��s��dc��et�dummy	�

�� split off ea! from s! giving the second tree
split�eb!�rnb�right�s��s!�dc��et�dummy	�

�� ��� update active occurrences ���
if�ea!��active	 ea!��pass�activity�ea�	�

�� ��� update tree�occs ���
�� update tree�occs of the edge following e if it exists
edge after�e � ea!��edge�occ�rnb�right��
if�after�e	
�
if�ea���edge�occ�rnb�left� �� after�e	
�
�� replace ea! by ea�
for�int k��� ea! �� dc��Gp��inf�after�e	��tree�occ�i��k�� k%%	�
dc��Gp��inf�after�e	��tree�occ�i��k� � ea��

�
else
�
�� replace ea! by nil
for�int k��� ea! �� dc��Gp��inf�after�e	��tree�occ�i��k�� k%%	�
dc��Gp��inf�after�e	��tree�occ�i��k� � nil�

�
�

�� ��� update edge�occs ��� ��
ea���edge�occ�rnb�right� � ea!��edge�occ�rnb�right��
if�eb�	 eb���edge�occ�rnb�left� � nil�
else eb!��edge�occ�rnb�left� � nil�
eb!��edge�occ�rnb�right� � nil�

delete ea!�
�

g
This macro is de�ned in de�nitions �	� ��� ��� �� ��� and ��


This macro is invoked in de�nition ��


����� print

For better readability we do not print the memory locations contained in corr node and edge occ�i�� but
the corresponding node indices�

Operations on et trees�
	� � �
f
void et�node�struct��print�	
�� we redefine print in order to output also the additional fields



�
�� output base fields
rnbw�node�struct��print�	�

�� output new fields
cout �� # dc� # �� dc �� #&n#�
cout �� # corr�node� # �� index�corr�node	 �� #&n#�
cout �� # level� # �� level �� #&n#�
cout �� # active� # �� active �� #&n#�
if�edge�occ���	
�
cout �� # edge�occ���� # �� #�# �� index�source�edge�occ���		�
cout �� #�# �� index�target�edge�occ���		 �� #	&n#�

�
else cout �� # edge�occ���� nil&n#�
if�edge�occ���	
�
cout �� # edge�occ���� # �� #�# �� index�source�edge�occ���		�
cout �� #�# �� index�target�edge�occ���		 �� #	&n#�

�
else cout �� # edge�occ���� nil&n#�

�

g
This macro is de�ned in de�nitions �	� ��� ��� �� ��� and ��


This macro is invoked in de�nition ��




Chapter �

Adjacency Trees

The non�tree edges at level i incident to the node u are stored in a balanced binary tree� called ed tree�
in order to permit e�cient random sampling� The data structure for these trees is again derived from the
rnbw tree structure�

ed trees implement an unordered list of edges with the possibility to insert an element� to delete an element�
and to access the kth element in logarithmic time� This is useful for random sampling in the replacement
procedure for deleted tree edges�

��� Interface

In this section we present the interface of the data structure� It is contained the header �le ed tree�h�

ed tree	h�
�� �
f�� ������������������������������������������������������������� ��
�� ed�tree�h� declaration of ed�trees� An ed�tree stores the ��
�� non�tree edges adjacent to a node at a certain ��
�� level in the dynamic connectivity algorithm by ��
�� M� Rauch Henzinger and V� King ��
�� ��
Version���
�� ��
LEGAL NOTE���
�� ������������������������������������������������������������� ��

�� RCS Id ��
�� �Id� dyn�con�fw�v ���� �

������� ������� alberts Exp � ��

�ifndef ED�TREE
�define ED�TREE

�include�LEDA�graph�h�
�include#rnbw�tree�h#

Declaration of ed trees�
��

�endif

g
This macro is attached to an output �le


We begin by de�ning the nodes of an ed tree� They are pointers to structures containing the information
stored at the node� An ed tree is just an ed node with no parent�

There is just one new �elds in an ed node struct with respect to a rnbw node struct� It is the ed edge

�eld which points to the corresponding non�tree edge�

�




Declaration of ed trees�
�� �
f
class ed�node�struct�
typedef ed�node�struct� ed�node�
typedef ed�node ed�tree�

class ed�node�struct � public rnbw�node�struct �

public�

Interface of ed trees�
��

private�

edge ed�edge� �� corresponding edge in G
��

g
This macro is invoked in de�nition ��


Interface of ed trees�
�� �
fed�node�struct�edge e	 � rnbw�node�struct��	 �� constructor
� �� each node contains exactly one edge
ed�edge � e�

�

Conversion Functions for ed trees�

�

edge get�corr�edge�	 � return ed�edge� �
�� this ed�node corresponds to the returned edge of the graph

friend ed�node ed�insert�ed�tree" edt� edge e� ed�node dummy	�
�� create a new node for e and insert it into the tree edt
�� the new root of the tree is stored in edt
�� the new node is returned

friend void ed�delete�ed�tree" edt� ed�node edn� ed�node dummy	�
�� delete the node edn in the ed�tree edt
�� the new root is stored in edt

void print�	�

�� prints this node to the screen� for testingg
This macro is invoked in de�nition ��


Conversion Functions for ed trees�

� �
f�� ��� Conversion Functions ���
ed�node left�child�	 � return �ed�node	 child�rnb�left�� �
ed�node right�child�	 � return �ed�node	 child�rnb�right�� �
friend inline ed�tree ed�join�ed�tree t�� ed�tree t!� ed�node dummy	
� return �ed�tree	 rnb�join�t��t!�dummy	� �
friend inline ed�node ed�locate�ed�tree edt� int w� int" offset	

� return �ed�node	 rnbw�locate�edt�w�offset	� �g
This macro is invoked in de�nition ��


��� Implementation

The ed tree procedures are contained in the �le ed tree�c� In the following subsections we implement
these procedures�

ed tree	c�
�� �
f�� ������������������������������������������������������������� ��
�� ed�tree�c� implementation of ed�trees� ��
�� ��

Version���
�� ��
LEGAL NOTE���
�� ������������������������������������������������������������� ��

�� RCS Id ��
static char rcs���#�Id� dyn�con�fw�v ���� �

������� ������� alberts Exp �#�



�include#ed�tree�h#

Operations on ed trees�
��
g

This macro is attached to an output �le


����� ed insert

Operations on ed trees�
�� � �
f
ed�node ed�insert�ed�tree" edt� edge e� ed�node dummy	
�� create a new node for e and insert it into the tree edt
�� the new root of the tree is stored at edt
�� the new node is returned
�
ed�tree aux � new ed�node�struct�e	�
edt � ed�join�edt�aux�dummy	�
return aux�

�

g
This macro is de�ned in de�nitions ��� ��� and �


This macro is invoked in de�nition �	


����� ed delete

Operations on ed trees�
�� � �
f
void ed�delete�ed�tree" edt� ed�node edn� ed�node dummy	
�� delete the node edn in the ed�tree edt
�� the new root is stored in edt
�
�� split off edn
ed�tree t��t!�t��
split�edn�rnb�left�t��t!�dummy	�
split�edn�rnb�right�t��t!�dummy	�

�� now t� contains just edn so we can safely delete edn
delete edn�

�� merge the remaining pieces together again
edt � ed�join�t��t!�dummy	�

�

g
This macro is de�ned in de�nitions ��� ��� and �


This macro is invoked in de�nition �	


����� print

Operations on ed trees�
�� � �
f
void ed�node�struct��print�	
�� we redefine print in order to output also the additional fields
�
�� output base fields
rnbw�node�struct��print�	�

�� output new fields
cout �� # ed�edge� # �� ed�edge �� #&n#�

�

g
This macro is de�ned in de�nitions ��� ��� and �


This macro is invoked in de�nition �	




Chapter �

Algorithm

In this Chapter we describe the algorithmwhich will be implemented in the following Chapter� The algorithm
di�ers in some details from the one described in ��	�� We will point out these di�erences�

��� Data Structure

As already described in Chapter � the current graph G is always partitioned in edge disjoint subgraphs
G�� � � � � Gl� l is called max level in the implementation� In each Gi we maintain a forest Fi such that
�i�kFi is a spanning forest of �i�kGi and F �� �iFi is a spanning forest of G� A spanning tree at level i is
a tree in �j�iFj�

� There is an array of edge lists� called tree edges� for the tree edges at each level� There is also an
array of edge lists� called non tree edges� for the non�tree edges at each level�

� Each spanning tree at each level is maintained as an et tree�

� The graph G is represented by a parameterized LEDA graph which allows storing some additional
information at the nodes and edges�

� At each node v we keep an array act occ for the active occurrences of v at each level�

� We also keep an array of ed trees� called adj edges� at v containing the non�tree edges adjacent to
v at each level�

� At each edge we keep its level�

� If an edge e is a non�tree edge we keep a pointer at e pointing to its occurrence in the list of non�tree
edges at its level� We also keep two pointers to the two occurrences of e in the ed trees of its endpoints
for its level�

� If e is a tree edge we store at e a pointer to its occurrence in the list of tree edges at its level� We also
store at e an array of pointers to those et nodes which represent the traversal of e� These are � or 

occurrences per level starting at the level of e and above�

� The two arrays added edges and rebuild bound are used by the rebuild procedure� They are explained
later on�

� There are some quasi�constants depending only on the number of nodes of the graph which is an
invariant� These are max level� the maximum level� edges to sample� the number of edges to sample
in order to �nd a replacement edge in the tree edge replacement procedure� small set� a bound used

��



in the replacement algorithm in order to decide if some cut is sparse� and small weight� a bound also
used in replace in order to decide whether it is better to sample or to look at all edges� if there are
only few of them�

� There are two dummy nodes needed for the join and split operations on et trees and ed trees�

There are some di�erences to ��	�� We do not implement the variant of the algorithm which uses �logn��ary
trees for the et trees on the highest level and the ed trees on each level in order to shave o� a O�log logn�
factor� since we think on the one hand that there is no practical relevance to it in terms of performance� and
on the other hand it would lead to a noticeably more complicated implementation� rebuilds are handled
somewhat di�erent� see the next section� We store non�tree edges at level i adjacent to a node v at v instead
of storing them at the active occurrence of v at level i� At a non�tree edge e we store pointers to the two
ed nodes containing e instead of �pointers to the two leaves of the ET � tree in which it is stored� ��	��

��� Internal Functions

We use the following internal functions in order to realize the interface operations ins� del and connected�

� bool connected�node x� node y� int i� Return true i� the nodes x and y are connected at level
i�

� bool tree edge�edge e� Return true i� e is a tree edge�

� int level�edge e� Return the level of e�

� void insert tree�edge e� int i� bool create tree occs� Insert the already existing edge e as
a tree edge at level i� create tree occs is false by default� if it is true then the tree occ array for
e is created�

� void delete tree�edge e� Delete the tree edge e in the data structure� but not in the graph�

� void replace�node u� node v� int i� Try to replace the deleted level i tree edge which connected
the nodes u and v�

� edge sample and test�et tree T� int i� Randomly select a non�tree edge e adjacent to the tree T
at level i� where an edge with both endpoints in T is picked with probability ��w�T� and an edge with
exactly one endpoint in T is picked with probability ��w�T�� If exactly one endpoint of e is in T return
e� else return nil�

� get cut edges�et tree T� int i� list�edge�� cut edges� Return the list of all all non�tree edges
at level i with exactly one endpoint in the tree T at level i� Normally� this list would be empty� but
the function is called by replace after a tree edge deletion� It uses an auxiliary function called
traverse edges�

� void insert non tree�edge e� int i� Insert the edge e as a non�tree edge at level i�

� void delete non tree�edge e� Delete the non�tree edge e in the data structure� but not in the graph�

� void rebuild�int i� Rebuild level i if necessary� This is explained below�

� void move edges�int i� Move all edges in levels j � i to level i� ��

Unlike ��	� insert tree and delete tree work on all necessary levels� i�e�� a tree edge e is deleted at
all levels with a call to delete tree�e�� There is no function tree in our implementation� We use the
connected function and the find root function of et trees depending on the situation� instead� The
function get cut edges replaces nontree edges in ��	� which returned all adjacent non�tree edges�



The procedure rebuild is necessary in order to bound the number of levels� since edges may be moved up
during tree edge deletions� If there are no insertions� this is no problem� but when insertions are also allowed�
then from time to time some edges have to be moved down again� This is done by move edges� rebuild

merely checks whether it is necessary to call move edges at a certain level� In order to describe the condition
for the necessity to move edges down� we introduce the notion of edge additions� An edge is added to level

k if it is either newly inserted by ins at level k or moved up from level k	
 by a replace� rebuild�i�

checks whether the sum of added edges in all levels j�i reaches rebuild bound�i�� If this is the case then
move edges�i� is called� The value rebuild bound�max level� is some constant which may be given by the
user� For all i�max level we have rebuild bound�i� � � rebuild bound�i�
�� A rebuild is usually
an expensive operation� By supplying a high rebuild bound�max level� the number of rebuilds drops�
but each update which does not cause a rebuild might take longer� and the fewer rebuilds are also more
expensive� because there are more edges involved� By supplying a low rebuild bound�max level� there are
more rebuilds� but each of them deals with fewer edges� and an update which does not cause a rebuild

might be faster�

Since replace is a very important function� we present it in pseudocode�

replace�u� v� i

�� Let Tu and Tv be the spanning trees at level i containing u and v� respectively� Let T be the tree
with smaller weight among Tu and Tv� Ties are broken arbitrarily�

�� If w�t� � log� n then

�a� Repeat sample and test�T � for at most �� log� n times� Stop if a replacement edge e is found�

�b� If a replacement edge e is found then do delete non tree�e�� insert tree�e� i�� and return�

�� �a� Let S be the set of edges with exactly one endpoint in T �

�b� If jSj � w�T ����� logn� then
Select one e � S� delete non tree�e�� and insert tree�e� i��

�c� Elsif 	 � jSj � w�T ����� logn� then
Delete one edge e from S� delete non tree�e�� and insert tree�e� i � ���
Forall e� � S do delete non tree�e�� and insert non tree�e� � i� ���
Update added edges�i � �� and rebuild level i� � if necessary�

�d� Else if i � l then replace�u� v� i � ���

The �constants� depending only on n � log� n� �� log� n� �� logn � can be changed in the implementation� See
the next Chapter� In the implementation log� n is called small weight� �� logn is called edges to sample�
and �� logn is called small set�

sample and test�T�i� is realized as follows� We determine the weight w of T� i�e�� the number of adjacent
non�tree edges� and select a random index between � and w� We et locate the active occurrence o in T

which represents this index in search tree order� This yields also an o�set� o corresponds to a node v of
the graph� We ed locate the edge e � �u� v� corresponding to the o�set in the ed tree at level i of v� We
return e if connected�u�v�i� is false�

��� Interface Functions and Initialization

Using the above described internal functions the interface functions are realized as follows�

� connected�u�v� is simply done by a call to connected�u�v�max level��



� When ins�u�v� is called we �rst generate the new edge e��u�v� in the graph and check whether
it becomes a tree edge or not using connected� If e becomes a tree edge then it is inserted on the
highest level by insert tree�e�max level�� If e becomes a non�tree edge � i�e�� u and v are already
connected at level k and above � we compute k by means of a binary search� and insert e there by
insert non tree�e�k�� If e was inserted into level r then we increment the count of added edges for
level r� and check whether a rebuild of level r is necessary�

� The deletion of an edge e��u�v� by del�e� is done as follows� We �rst check whether e is a tree edge
or a non�tree edge� If it is a non�tree edge� we simply delete it by delete non tree�e�� If it is a
tree edge at level i� we delete it by delete tree�e�� we call replace�u�v�i�� and we do a rebuild if
necessary� i�e�� if edges were moved during replace and pushed the number of added edges beyond the
bound at some level j�i�

The data structure is initialized by inserting all edges into level 	� There are some possibilities to adapt the
data structure to a special input situation� This can be done by assigning values to the optional parameters
of the constructor� We describe the two most important ones here� The �rst one allows us to prescribe the
bound for rebuilds on the highest level� i�e�� the value of rebuild bound�max level�� Its default is �			�
The second one determines the number of levels if set� If it is not set� then the number of the number of
levels depends on the value of rebuild bound�max level�� In ��	� there are � logn levels� and there is an
implicit rebuild bound�max level� of 
� We skip approximately as many levels as necessary in order to get
to rebuild bound�max level�� e�g�� with rebuild bound�max level� � 
� we would use two levels less�
Note that prescribing a certain number of levels can invalidate the analysis of the running time in ��	��



Chapter 	

Implementation

	�� Overview

rnb_node_struct

rnbw_node_struct

et_node_struct ed_node_struct

dyn_con

uses

is derived from

Figure ���� The Classes used in the Implementation

The class rnb node struct implements a node in a randomized balanced binary tree� The derived class

rnbw node struct implements a node in a randomized balanced binary tree with a weight� Weights of

subtrees are maintained� The class et node struct implements one node in an et tree� et trees are

used to represent the various trees in the algorithm� The class ed node struct implements one node in

an ed tree� ed trees store the non	tree edges adjacent to a node of the graph at a certain level�

We implement the algorithm as a C�� class dyn con� All data which is global to the update algorithm
like the lists of tree and non�tree edges is encapsulated in this class� The constructor of this class is the
initialization function for the data structure� It takes an initial graph as its argument� The public methods
are the query connected and the update operations ins and del� In addition there are the destructor and
print statistics which prints a summary of the operations performed so far to a speci�ed output stream�
The interface is given in the �le dyn con�h�

dyn con	h�
� �
f�� ������������������������������������������������������������� ��


�



�� dyn�con�h� This header file contains the interface to a C%% ��
�� implementation of the polylogarithmic dynamic ��
�� connectivity alg� by Monika Rauch Henzinger and ��
�� Valerie King �STOC 
�	� ��
�� ��
�� See also the documentation in dyn�con�ps� ��
�� ��
Version���
�� ��
LEGAL NOTE���
�� ������������������������������������������������������������� ��

�� RCS ID ��
�� �Id� dyn�con�fw�v ���� �

������� ������� alberts Exp � ��

�ifndef DYN�CON
�define DYN�CON

�include#ed�tree�h#
�include�LEDA�graph�h�
�include�LEDA�list�h�

Declaration of et trees���

Declaration of dc graph����

Declaration of class dyn con��	�

�endif

g
This macro is attached to an output �le


Like in ��	� we do not implement the public methods directly� but by means of some internal functions�
These are the private methods of the class dyn con� Since there is a strong interaction between et trees

and their dyn con structure� et node struct is a friend class of dyn con and the friends of et node struct

are also friends of dyn con�

Declaration of class dyn con��	� �
fclass dyn�con�

public�

dyn�con�dc�graph" G� int ml�reb�bound � ��� int n�levels � ���
int edges�to�samp � ��� int small�w � ��� int small�s � ��	�

�� constructor� initializes the dynamic connectivity data structure
�� if ml�reb�bound �� � it specifies rebuild�bound�max�level� �default ����	
�� if n�levels � � then it specifies the number of levels �default O�log n		
�� if edges�to�samp �� � then it specifies edges�to�sample
�� �default �! log'! n	
�� if small�w �� � then it specifies small�weight �default log'! n	
�� if small�s �� � then it specifies small�set �default �� log n	

�dyn�con�	�
�� destructor

edge ins�node u� node v	�
�� create an edge connecting u and v and return it

void del�edge e	�
�� delete the edge e

bool connected�node u� node v	�
�� return true if u and v are connected in the current graph
�� and false otherwise

void print�statistics�ostream" out	�
�� prints some statistics to the output stream out

private�

dyn con Data����

Private dyn con Methods��
�

friend class et�node�struct�
friend void change�root�et�tree" et� et�node en� int i� dyn�con� dc	�
friend et�tree et�link�node u� node v� edge e� int i� dyn�con� dc	�
friend void et�cut�edge e� int i� dyn�con� dc	�

��g
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	�� Usage

We present a simple program which illustrates how to use the implementation of the dynamic connectivity
data structure�

foo	c���� �
f�� ����������������������������������������������������� ��
�� foo�c� Source code of a stupid example program using ��
�� the dynamic connectivity data structure� ��
�� ����������������������������������������������������� ��

�include#dyn�con�h#
�include�LEDA�graph�h�

main�	
�
�� the graph has to be a dc�graph
dc�graph G�

�� build initial graph �a circle	
node nodes������
for�int i��� i����� i%%	 nodes�i� � G�new�node�nil	�
for�i��� i�

� i%%	 G�new�edge�nodes�i��nodes�i%���nil	�
G�new�edge�nodes�

��nodes����nil	�

�� initialize the data structure
dyn�con dc�G	�
�� insert an edge
edge e � dc�ins�nodes����nodes����	�
�� ask a query
if� dc�connected� nodes��(� � nodes�!� 	 	
�
cout �� #This is the right answer�&n#�

�
else
�
cout �� #This should not happen�&n#�
cout �� #Did you change the source code &n#�

�
�� delete an edge
dc�del�e	�
�� print statistics
dc�print�statistics�cout	�

�

g
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Comments�

�� Include the header �le dyn con�h in your application�

�� The graph for which the dynamic connectivity data structure is maintained has to be of type dc graph

�de�ned in dyn con�h�� You cannot use a graph of another type� e�g�� a graph parameterized with your
own data structures for the nodes and edges� This is due to the design of LEDA� see next item�

�� You must not change the information which is maintained at the nodes and edges of the graph by the
dynamic data structure� Unfortunately in LEDA there is currently no possibility to store information
associated with a dynamically changing edge set in a safe and e�cient way� We chose to use a param�
eterized graph� This is e�cient� but unsafe� i�e�� if you change the information at a node or an edge�
something unpredictable might happen� Moreover� it might be inconvenient for the application to use
a dc graph instead of a parameterized graph of a di�erent kind�


� Link the program with libdc�a and the LEDA libraries libG�a and libL�a� e�g�� g�� foo�c 	o foo

	I� 	L� 	ldc 	lG 	lL assuming that the libraries and the header �les are in some standard directory
or the current directory�



�� The library libdc�a can be made by using the supplied Makefile� e�g�� type make lib�

�� Statistics are only maintained if libdc�a is compiled with 	DSTATISTICS� If this is not the case then
print statistics only prints a short message that there are no statistics available�

�� If the library was compiled with 	DDEBUG then it prints a lot of messages telling you which internal
functions are executed�

�� The implementation also works with multigraphs� i�e�� there can be more than one edge connecting
one pair of nodes� and edges connecting a node to itself are also allowed�

� A study on the performance comparing this imlementation with static algorithms and other dynamic
algorithms will be given in a future paper�

	�� Data

Some of the data needed in the algorithm is stored at the nodes and edges of the graph G� We use a
parameterized LEDA GRAPH �and de�ne this type to be a dc graph� and store pointers to auxiliary
structures at each node and edge� We declare the type of these structures below�

Declaration of dc graph���� �
f�� ���������� dc�graph �������������� ��
class dc�node�struct�
public�
et�node �act�occ� �� array of active occurrences
ed�tree �adj�edges� �� array of ed�trees storing adjacent non�tree edges

dc�node�struct�	
� act�occ � nil� adj�edges � nil� �

��

class dc�edge�struct�
public�
int level� �� this edge belongs to G�level
list�item non�tree�item� �� non�tree edge� list�item in

�� non�tree�edges�level�
�� tree edge� nil

list�item tree�item� �� tree edge� list�item in tree�edges�level�
�� non�tree edge� nil

ed�node non�tree�occ�!�� �� non�tree edge� pointer to the two
�� corresponding ed�nodes
�� tree edge� both are nil

et�node ��tree�occ� �� tree edge� array for each level the
��  pointers to occurrences repr� this edge
�� non�tree edge� nil

dc�edge�struct�	
� non�tree�item � nil� tree�item � nil�
non�tree�occ��� � non�tree�occ��� � nil� tree�occ � nil� �

��

typedef dc�node�struct� dc�node�inf�
typedef dc�edge�struct� dc�edge�inf�

�� the type of the input graph

typedef GRAPH�dc�node�inf�dc�edge�inf� dc�graph�g
This macro is invoked in de�nition ��


There is also some global information which is neither associated with a particular node nor with a particular
edge� This is stored as private data of the class dyn con�

dyn con Data���� �
fdc�graph �Gp� �� pointer to the graph
int max�level� �� the maximum level
list�edge� �tree�edges� �� a list of tree edges for each level
list�edge� �non�tree�edges� �� a list of non�tree edges for each level

int �added�edges� �� array of �edges added to each level



�� since last rebuild at lower level
int �rebuild�bound� �� array� s�t� sum for j��i of added�edges�j�

�� � rebuild�bound�i� ��� rebuild at level i
�� necessary

int small�weight� �� bound used in replace
int edges�to�sample� �� sample at most this many edges while

�� searching for a replacement edge for a
�� deleted tree edge

int small�set� �� used in the replacement algorithm� too

et�node et�dummy� �� dummy nodes for splitting and joining trees
ed�node ed�dummy�

�� some statistics � these counters are only maintained with
�� the �DSTATISTICS compile option
int n�ins� �� number of ins operations
int n�del� �� number of del operations
int n�query� �� number of user supplied connected queries
int n�connected� �� number of conecteds
int n�ins�tree� �� number of insert�trees
int n�del�tree� �� number of delete�trees
int n�replace� �� number of replaces
int rep�small�weight� �� w�T��	 small in replace
int rep�succ� �� successful sampling
int rep�big�cut� �� big cut
int rep�sparse�cut� �� sparse cut
int rep�empty�cut� �� empty cut
int n�sample�and�test� �� number of sample�and�test
int n�get�cut�edges� �� number of invocations of get�cut�edges in

�� replace �get�cut�edges is recursive	
int n�ins�non�tree� �� number of insert�non�tree
int n�del�non�tree� �� number of delete�non�tree
int n�move�edges� �� number of move�edges
int edges�moved�up� �� number of edges moved up �during replace	
int edges�moved�down� �� number of edges moved down

g
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	�� Private Methods

We represent the internal functions of the dynamic connectivity algorithm as private methods of the class
dyn con�

Private dyn con Methods��
� �
f�� ��� Internal Functions of the dynamic connectivity data structure ��� ��
�� Let G�i be the subgraph of G on level i� let F�i be the
�� forest in G�i� and let F be the spanning forest of G�
�� Let T be a spanning tree on level i�

bool connected�node x� node y� int i	�
�� Return true if x and y are connected on level i� Otherwise
�� return false�

bool tree�edge�edge e	�
�� Return true if e is an edge in F� false otherwise�

int level�edge e	�
�� Return i such that e is in G�i�

void insert�tree�edge e� int i� bool create�tree�occs � false	�
�� Insert e into F�i� If create�tree�occs is true the storage for the
�� tree�occ array for e is allocated�

void delete�tree�edge e	�
�� Remove the tree edge e from F�

void replace�node u� node v� int i	�
�� Replace the deleted tree edge �u�v	 at level i�

edge sample�and�test�et�tree T� int i	�
�� Randomly select a non�tree edge of G�i that has at least one
�� endpoint in T� where an edge with both endpoints in T is picked
�� with !�w�T	 and an edge with exactly one endpoint in T is picked
�� with probability ��w�T	�



�� Test if exactly one endpoint is in T� and if so� return the edge�
�� Otherwise return nil�

void get�cut�edges�et�node et� int i� list�edge�" cut�edges	�
�� Return all non�tree edges with exactly one endpoint in the tree
�� T at level i in cut�edges�

void traverse�edges�ed�node ed� list�edge�" cut�edges	�
�� Append edges with exactly one endpoint in the subtree rooted at ed
�� to edge�list� This is an auxiliary function called by get�cut�edges�

void insert�non�tree�edge e� int i	�
�� Insert the non�tree edge e into G�i�

void delete�non�tree�edge e	�
�� Delete the non�tree edge e�

void rebuild�int i	�
�� Rebuild level i if necessary�

void move�edges�int i	�
�� For j��i� insert all edges of F�j into F��i���� and all

�� non�tree edges of G�j into G��i����g
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In the next Section we implement the public methods except for the constructor and the destructor� In
Section ��� we will implement the constructor� the destructor� and the internal functions� The implementation
takes place in the �le dyn con�c�

dyn con	c���� �
f�� ������������������������������������������������������������� ��
�� dyn�con�c� implementation of internal functions and user ��
�� interface functions for the implementation of ��
�� the dynamic connectivity algorithm by ��
�� M� Rauch Henzinger and V� King� ��
�� ��
�� See also the documentation in dyn�con�ps� ��
�� ��
Version���
�� ��
LEGAL NOTE���
�� ������������������������������������������������������������� ��

�� RCS Id ��
static char rcs���#�Id� dyn�con�fw�v ���� �

������� ������� alberts Exp �#�

�include#dyn�con�h#
�include�LEDA�queue�h�
�include�sys�time�h�

Interface Functions����

Internal Functions��	�g
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	�� Interface

In this section we describe the implementation of the interface operations ins� del� and connected using
the internal operations�

	���� ins

There are two cases possible� either the new edge e � �u� v� connects two components of the former graph
and thus becomes a tree edge� or u and v were already connected� We check which case applies by using
connected� In the former case we insert e as a tree edge on the highest level� In the latter case we search
the lowest level l such that u and v are connected by a binary search using connected and insert e as a
non�tree edge on level l�



Interface Functions���� � �
fedge dyn�con��ins�node u� node v	
�� create an edge connecting u and v and return it
�
�ifdef STATISTICS
n�ins%%�

�endif
�� create the new edge
edge e � Gp��new�edge�u�v	�
��Gp	�e� � new dc�edge�struct�	�

�� test whether u and v are already connected
if��connected�u�v�max�level		
�� they are not� so e becomes a forest edge at level max�level
�
insert�tree�e�max�level�true	�
added�edges�max�level�%%�
rebuild�max�level	�

�
else
�� u and v are already connected� find lowest such level
�
�� current level
int curr�level � max�level�!�
�� lower bound and upper bound
int lower � ��
int upper � max�level�
while�curr�level �� lower	
�
if�connected�u�v�curr�level		
�� search below current level
�
upper � curr�level�
curr�level � �lower % curr�level	�!�

�
else
�� search above current level
�
lower � curr�level�
curr�level � �upper % curr�level	�!�

�
�
�� Now depending on parity either
�� a	 connected�u�v�lower��	 �� false "" connected�u�v�lower	 �� true or
�� b	 connected�u�v�lower	 �� false "" connected�u�v�lower%�	 �� true holds�

�� handle case a	�
if��connected�u�v�lower		 lower%%�

�� insert e at appropriate level�
insert�non�tree�e�lower	�
added�edges�lower�%%�
rebuild�lower	�

�
return e�

�

g
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	���� del

The edge e to be deleted is either a tree edge or not� We delete it using the appropriate method �either
delete non tree or delete tree�� Moreover� we have to deallocate the additional information stored with
the edge�

Interface Functions���� � �
f
void dyn�con��del�edge e	
�� delete the edge e
�
�ifdef STATISTICS
n�del%%�

�endif

�� if e is not an edge in F
if��tree�edge�e		 delete�non�tree�e	�
else



�� e is a tree edge
�
�� remember e
int e�level � level�e	�
node u � source�e	�
node v � target�e	�

�� remove e
delete�tree�e	�

�� delete specific information for tree edges stored at e
for�int j��� j��max�level� j%%	 delete�� ��Gp	�e���tree�occ�j��
delete�� ��Gp	�e���tree�occ�

�� look for a replacement edge
replace�u�v�e�level	�

�

�� delete information stored at e
delete ��Gp	�e��
��Gp	�e� � nil�
Gp��del�edge�e	�

�

g
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	���� connected

Interface Functions���� � �
f
bool dyn�con��connected�node u� node v	
�� return true if u and v are connected in the current graph
�� and false otherwise
�
�ifdef STATISTICS
n�query%%�

�endif

return connected�u�v�max�level	�
�

g
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	���� print statistics

Interface Functions��� � �
f
void dyn�con��print�statistics�ostream" out	
�
�ifdef STATISTICS
out �� #&nStatistics&n����������&n#�
out �� #number of nodes� # �� Gp��number�of�nodes�	�
out �� # final number of edges� # �� Gp��number�of�edges�	 �� #&n&n#�
out �� #user supplied operations&n#�
out �� #number of ins operations� # �� n�ins �� #&n#�
out �� #number of del operations� # �� n�del �� #&n#�
out �� #number of connected operations� # �� n�query �� #&n&n#�
out �� #internal variables&n#�
out �� #number of levels� # �� max�level%� �� #&n#�
out �� #bound for rebuilds on highest level� # �� rebuild�bound�max�level��
out �� #&nsmall�weight� # �� small�weight �� #&n#�
out �� #maximum number of edges to sample� # �� edges�to�sample �� #&n#�
out �� #small�set� # �� small�set �� #&n&n#�
out �� #internal functions&n#�
out �� #number of connected operations� # �� n�connected �� #&n#�
out �� #number of insert�tree operations� # �� n�ins�tree �� #&n#�
out �� #number of delete�tree operations� # �� n�del�tree �� #&n#�
out �� #number of replace operations� # �� n�replace �� #&n#�
out �� # weight of T�� too small� # �� rep�small�weight �� #&n#�
out �� # case !��b	� # �� rep�succ �� #&n#�
out �� # case ���b	� # �� rep�big�cut �� #&n#�



out �� # case ���c	� # �� rep�sparse�cut �� #&n#�
out �� # case ���d	� # �� rep�empty�cut �� #&n#�
out �� #number of sample�and�test operations� # �� n�sample�and�test �� #&n#�
out �� #number of get�cut�edges operations without recursive calls� #�
out �� n�get�cut�edges �� #&n#�
out �� #number of insert�non�tree operations� # �� n�ins�non�tree �� #&n#�
out �� #number of delete�non�tree operations� # �� n�del�non�tree �� #&n#�
out �� #number of move�edges� # �� n�move�edges �� #&n#�
out �� #number of edges moved up� # �� edges�moved�up �� #&n#�
out �� #number of edges moved down� # �� edges�moved�down �� #&n#�

�else
out �� #&ndyn�con��print�statistics� sorry� no statistics available&n#�
out �� # compile libdc�a with �DSTATISTICS to get statistics&n&n#�

�endif
�

g
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	�� Internal Functions

	���� connected� tree edge and level

Internal Functions��	� � �
f
bool dyn�con��connected�node x� node y� int i	
�� Return true if x and y are connected on level i� Otherwise
�� return false�
�
�ifdef STATISTICS
n�connected%%�

�endif

�� get the active occurrences of x and y at level i
et�node x�act�occ � ��Gp	�x���act�occ�i��
et�node y�act�occ � ��Gp	�y���act�occ�i��

�� return whether they belong to the same tree at level i
return �x�act�occ��find�root�	 �� y�act�occ��find�root�		�

�

g
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We maintain the invariant that ��Gp��e�	�tree occ is nil if and only if e is a non�tree edge� This leads
to a trivial test� whether a given edge is a tree edge or not�

Internal Functions���� � �
f
inline bool dyn�con��tree�edge�edge e	
�� Return true if e is an edge in F� false otherwise�
�
return ���Gp	�e���tree�occ �� nil	�

�

g
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Internal Functions���� � �
f
inline int dyn�con��level�edge e	
�� Return i such that e is in G�i�
�
return ��Gp	�e���level�

�

g
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	���� insert tree

Internal Functions���� � �
f
void dyn�con��insert�tree�edge e� int i� bool create�tree�occs	
�� Insert e into F�i� If create�tree�occs is true the storage for the
�� tree�occ array for e is allocated�
�
�ifdef STATISTICS
n�ins�tree%%�

�endif

�� find the endpoints of e
node u � source�e	�
node v � target�e	�

�ifdef DEBUG
cout �� #�# �� index�u	 �� #�# �� index�v	 �� #	 tree ins at level #�
cout �� i �� #&n#�

�endif

�� enter level of e
��Gp	�e���level � i�

�� create tree�occ array for e if requested
if�create�tree�occs	
�
��Gp	�e���tree�occ � new et�node��max�level%���
for�int lev��� lev��max�level� lev%%	
�
��Gp	�e���tree�occ�lev� � new et�node���
for�int j��� j�� j%%	 ��Gp	�e���tree�occ�lev��j� � nil�

�
�

�� link the et�trees containing the active occurrences of u and v
for�int j�i� j��max�level� j%%	 et�link�u�v�e�j�this	�

�� append e to the list of tree edges at level i
��Gp	�e���tree�item � tree�edges�i��append�e	�

�

g
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	���� delete tree

Internal Functions��
� � �
f
void dyn�con��delete�tree�edge e	
�� Remove the tree edge e from F�
�
�ifdef STATISTICS
n�del�tree%%�

�endif

�� get the level of e
int i � level�e	�

�ifdef DEBUG
cout �� #�# �� index�source�e		 �� #�# �� index�target�e		 �� #	 tree del #�
cout �� #at level # �� i �� #&n#�

�endif

�� cut the spanning trees
for�int j�i� j��max�level� j%%	 et�cut�e�j�this	�

�� remove e from the list of tree edges at level i
tree�edges�i��del�item���Gp	�e���tree�item	�

�� set tree�item of e to nil
��Gp	�e���tree�item � nil�

�

g
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	���� replace

Internal Functions���� � �
f
void dyn�con��replace�node u� node v� int i	
�� try to reconnect the trees on level i containing u and v�
�� if not possible try to recurse on higher level
�
�ifdef STATISTICS
n�replace%%�

�endif

�� determine the level i trees containing u and v
et�tree t� � ��Gp	�u���act�occ�i���find�root�	�
et�tree t! � ��Gp	�v���act�occ�i���find�root�	�

�� let t� be the smaller tree
if�t���get�subtree�weight�	 � t!��get�subtree�weight�		 t� � t!�

int handle�cut � false�
if�t���get�subtree�weight�	 � small�weight	
�
�� sample randomly at most edges�to�sample edges
int not�done � true�
edge e�
for�int j��� not�done "" �j�edges�to�sample	� j%%	
�
e � sample�and�test�t��i	�
if�e	 not�done � false�

�

if�e	
�
�� sampling was successful� insert e as a tree edge at level i
delete�non�tree�e	�
insert�tree�e�i�true	�

�ifdef STATISTICS
rep�succ%%�

�endif
�
else �� sampling not successful
�
handle�cut � true�

�

�
else �� weight of T�� too small �too few adjacent edges	
�
handle�cut � true�

�ifdef STATISTICS
rep�small�weight%%�

�endif
�

if�handle�cut	
�� sampling was unsuccessful or too few edges
�
�� determine all edges crossing the cut
list�edge� cut�edges�
if�t���get�subtree�weight�	 � �	
�
get�cut�edges�t��i�cut�edges	�

�ifdef STATISTICS
n�get�cut�edges%%�

�endif
�

if�cut�edges�size�	 �� �	
�� no replacement edge on this level� recurse on higher level if possible
�

�ifdef STATISTICS
rep�empty�cut%%�

�endif
if�i�max�level	 replace�u�v�i%�	�

�
else �� cut�edges�size�	 � �
�
if�cut�edges�size�	 �� t���get�subtree�weight�	�small�set	
�� if cut�edges is big enough we reconnect t� and t! on level i
�

�ifdef STATISTICS
rep�big�cut%%�

�endif
edge reconnect � cut�edges�pop�	�
delete�non�tree�reconnect	�



insert�tree�reconnect�i�true	�
�
else
�
�� � � cut�edges�size�	 � t���get�subtree�weight�	�small�set
�� there are too few edges crossing the cut

�ifdef STATISTICS
rep�sparse�cut%%�

�endif
edge reconnect � cut�edges�pop�	�
delete�non�tree�reconnect	�

if�i�max�level	
�
�� move cut edges one level up
insert�tree�reconnect�i%��true	�
added�edges�i%��%%�
edge e�
forall�e�cut�edges	
�
delete�non�tree�e	�
insert�non�tree�e�i%�	�
added�edges�i%��%%�

�
�ifdef STATISTICS

edges�moved�up %� cut�edges�size�	 % ��
�endif

rebuild�i%�	�
�
else �� on top level� no moving of edges
�
insert�tree�reconnect�i�true	�

�
�

�
�

�
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	���� sample and test

Internal Functions���� � �
f
edge dyn�con��sample�and�test�et�tree T� int i	
�� Randomly select a non�tree edge of G�i that has at least one
�� endpoint in T� where an edge with both endpoints in T is picked
�� with !�w�T	 and an edge with exactly one endpoint in T is picked
�� with probability ��w�T	�
�� Test if exactly one endpoint is in T� and if so� return the edge�
�� Otherwise return nil�
�
�ifdef STATISTICS
n�sample�and�test%%�

�endif

�� get the number of adjacencies
int no�of�adj � T��get�subtree�weight�	�

�� pick a random one
int rnd�adj � � % �random�	 ) no�of�adj	�

�� locate the et�node representing this adjacency and get the corr� node
int offset�
et�node et�repr � et�locate�T�rnd�adj�offset	�
node u � et�repr��get�corr�node�	�

�� locate the edge corresp� to offset adjacent to u at level i
ed�node en � ed�locate���Gp	�u���adj�edges�i��offset�offset	�
edge e � en��get�corr�edge�	�

�� get the second node of e
node v � �source�e	 �� u	  target�e	 � source�e	�

�� if v is in a different tree at level i then return e else nil
if�connected�u�v�i		 return nil�
else return e�

�

g
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	���� get cut edges

Internal Functions���� � �
f
void dyn�con��traverse�edges�ed�node ed� list�edge�" edge�list	
�� append edges with exactly one endpoint in subtree rooted at ed to edge�list
�� auxiliary function called by get�cut�edges
�
if�ed	
�
edge e � ed��get�corr�edge�	�
if��connected�source�e	�target�e	�level�e			
�
�� only one endpoint of e in current spanning tree �� append edge
edge�list�append�e	�

�

traverse�edges�ed��left�child�	�edge�list	�
traverse�edges�ed��right�child�	�edge�list	�

�
�

void dyn�con��get�cut�edges�et�node u� int level� list�edge�" result	
�� Return the edges with exactly one endpoint in the et�tree rooted at u
�� in result�
�
if�u "" u��get�subtree�weight�		
�
node v � u��get�corr�node�	�
if�u��is�active�		 traverse�edges���Gp	�v���adj�edges�level��result	�
get�cut�edges�u��left�child�	�level�result	�
get�cut�edges�u��right�child�	�level�result	�

�
�

g
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	���� insert non tree

Internal Functions���� � �
f
void dyn�con��insert�non�tree�edge e� int i	
�� Insert the non�tree edge e into G�i�
�
�ifdef STATISTICS
n�ins�non�tree%%�

�endif

�ifdef DEBUG
cout �� #�# �� index�source�e		 �� #�# �� index�target�e		�
cout �� #	 non�tree ins at level # �� i �� #&n#�

�endif

��Gp	�e���level � i�
node u � source�e	�
node v � target�e	�

�� insert e in the adjacency trees of its endpoints at level i
��Gp	�e���non�tree�occ��� �

ed�insert���Gp	�u���adj�edges�i��e�ed�dummy	�
��Gp	�e���non�tree�occ��� �

ed�insert���Gp	�v���adj�edges�i��e�ed�dummy	�

�� update non�tree�edges�i�
��Gp	�e���non�tree�item � non�tree�edges�i��append�e	�

�� increase the weight of the active occurrences of u and v at level i
��Gp	�u���act�occ�i���add�weight��	�
��Gp	�v���act�occ�i���add�weight��	�

�



g
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	���	 delete non tree

Internal Functions��� � �
f
void dyn�con��delete�non�tree�edge e	
�� Delete the non�tree edge e�
�
�ifdef STATISTICS
n�del�non�tree%%�

�endif

�� find the endpoints and the level of e
node u � source�e	�
node v � target�e	�
int i � level�e	�

�ifdef DEBUG
cout �� #�# �� index�source�e		 �� #�# �� index�target�e		�
cout �� #	 non�tree del at level # �� i �� #&n#�

�endif

�� remove e from the ed�trees of u and v at level i
ed�delete���Gp	�u���adj�edges�i����Gp	�e���non�tree�occ����ed�dummy	�
��Gp	�e���non�tree�occ��� � nil�
ed�delete���Gp	�v���adj�edges�i����Gp	�e���non�tree�occ����ed�dummy	�
��Gp	�e���non�tree�occ��� � nil�

�� remove e from the list of non�tree edges at level i
non�tree�edges�i��del�item���Gp	�e���non�tree�item	�
��Gp	�e���non�tree�item � nil�

�� decrease the weights of the active occurrences of u and v if they exist
��Gp	�u���act�occ�i���add�weight���	�
��Gp	�v���act�occ�i���add�weight���	�

�

g
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	���
 rebuild

Internal Functions��	� � �
f
void dyn�con��rebuild�int i	
�� does a rebuild at level i if necessary
�
�� rebuilds take place only at level � and higher
if�i��	 return�

�� count added edges at level j��i
int sum�added�edges � ��
for�int j�i� j��max�level� j%%	 sum�added�edges %� added�edges�j��

if�sum�added�edges � rebuild�bound�i�	
�

�ifdef DEBUG
cout �� #rebuild�# �� i �� #	&n#�

�endif
�� move edges down
move�edges�i	�
for�j�i� j��max�level� j%%	 added�edges�j� � ��

�
�

g
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	����� move edges

The purpose of move edges�i� is to move all edges at each level j with j�i to level i	
� We can easily
access the edges at level j by means of the lists non tree edges�j� and tree edges�j�� We move a non�tree
edge e by a pair of delete non tree�e� and insert non tree�e�i	
� calls�

In principle we could also move the tree edges in the same manner by using delete tree and insert tree�
However� if i is close to j and both are relatively small compared to max level� this would be a waste of
time� since it means also splitting all corresponding et trees at levels j to max level and then joining them
again� We just �x the lists of tree edges and et join the a�ected trees on levels i	
 to j	
� instead�

Internal Functions���� � �
f
void dyn�con��move�edges�int i	
�� For j��i� insert all edges of F�j into F��i���� and all
�� non�tree edges of G�j into G��i����
�
�ifdef STATISTICS
n�move�edges%%�

�endif

�� for each level starting at max�level and ending at i���
for�int j�max�level� j��i� j��	
�

�ifdef STATISTICS
edges�moved�down %� non�tree�edges�j��size�	 % tree�edges�j��size�	�

�endif
�� move non�tree edges
while�non�tree�edges�j��size�		
�
edge e � non�tree�edges�j��head�	�
�� delete non�tree edge at level j ���
delete�non�tree�e	�
�� ��� and insert it into level i��
insert�non�tree�e�i��	�

�

�� move tree edges
while�tree�edges�j��size�		
�
edge e � tree�edges�j��head�	�

�� update tree�edges�j�� tree�edges�i���� tree�item and level
tree�edges�j��del�item�Gp��inf�e	��tree�item	�
Gp��inf�e	��tree�item � tree�edges�i����append�e	�
Gp��inf�e	��level � i���

�� link the corresponding et�trees from level i�� to j��
for�int k�i��� k�j� k%%	
�
et�link�source�e	�target�e	�e�k�this	�

�
�

�
�
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	����� Constructor

There are �ve optional parameters which can be given to the constructor in order to adapt the data structure
to a special input situation� These are ml rebuild bound which speci�es the bound for newly inserted edges
on the highest level before that level is rebuilt� and n levels which speci�es the number of levels� Moreover
the user can prescribe the di�erent bounds which are used in the replacement algorithm for a deleted forest
edge� Note that the asymptotic analysis may no longer be valid if you choose your own number of levels or
bounds�

Internal Functions���� � �



f
dyn�con��dyn�con�dc�graph" G� int ml�reb�bound� int n�levels�

int edges�to�samp� int small�w� int small�s	
�� constructor� initializes the dynamic connectivity data structure
�� if ml�reb�bound �� � it specifies rebuild�bound�max�level� �default is ����	
�� if n�levels � � then it specifies the number of levels �default O�log n		
�� if edges�to�samp �� � then it specifies edges�to�sample �default �! log'! n	
�� if small�w �� � then it specifies small�weight �default log'! n	
�� if small�s �� � then it specifies small�set �default �� log n	
�
�� ��� initialize random numbers ���
struct timeval dummy��
struct timezone dummy!�
gettimeofday�"dummy��"dummy!	�
srandom�dummy��tv�sec%dummy��tv�usec	�

�� ��� initialize the constants ���
Gp � "G�
int log�n � ��
for�int i � G�number�of�nodes�	� i� i �� !	 log�n%%�

if�small�w���	 small�weight � small�w�
else small�weight � log�n � log�n�

if�edges�to�samp���	 edges�to�sample � edges�to�samp�
else edges�to�sample � �! � log�n � log�n�

if�small�s���	 small�set � small�s�
else small�set � �� � log�n�

if�n�levels � �	 max�level � n�levels � ��
else
�
max�level � � � log�n�
for�int k�� �k�ml�reb�bound	 "" �max�level��!	� k �� !� max�level��	�

�

�ifdef DEBUG
cout �� #$V�G	$ � # �� G�number�of�nodes�	 �� #&n#�
cout �� #max�level � # �� max�level �� #&n#�
cout �� #edges�to�sample � # �� edges�to�sample �� #&n#�
cout �� #small�set � # �� small�set �� #&n&n#�

�endif

�� ��� initialize dummy nodes ���
et�dummy � new et�node�struct�this�nil	�
ed�dummy � new ed�node�struct�nil	�

�� ��� initialize the edge lists ���
non�tree�edges � new list�edge� �max�level%���
tree�edges � new list�edge� �max�level%���

�� ��� initialize added�edges ���
added�edges � new int�max�level%���
for�i��� i��max�level� i%%	 added�edges�i� � ��

�� ��� initialize rebuild�bound ���
rebuild�bound � new int�max�level%���
int bound�
if�ml�reb�bound���	 bound � ml�reb�bound�
else bound � �����
for�int k�max�level� k���� k��	
�
rebuild�bound�k� � bound�
if�bound � MAXINT�!	 bound �� !� �� double the bound if possible

�

�� ��� initialize the nodes ���
node u�
forall�nodes�u�G	
�
G�u� � new dc�node�struct�	�
G�u���act�occ � new et�node�max�level%���
G�u���adj�edges � new ed�tree�max�level%���
for�i��� i��max�level� i%%	
�
G�u���act�occ�i� � new et�node�struct�this�u�i�true	�
G�u���adj�edges�i� � nil�

�
�

�� ��� initialize the edges ���
edge e�
forall�edges�e�G	
�
G�e� � new dc�edge�struct�	�



if��connected�source�e	�target�e	��		 insert�tree�e���true	�
else insert�non�tree�e��	�

�

�ifdef STATISTICS
�� ��� initialize statistics ���
n�ins � ��
n�del � ��
n�query � ��
n�connected � ��
n�ins�tree � ��
n�del�tree � ��
n�replace � ��
rep�succ � ��
rep�big�cut � ��
rep�sparse�cut � ��
rep�empty�cut � ��
rep�small�weight � ��
n�sample�and�test � ��
n�get�cut�edges � ��
n�ins�non�tree � ��
n�del�non�tree � ��
n�move�edges � ��
edges�moved�up � ��
edges�moved�down � ��

�endif
�

g
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	����� Destructor

The destructor deallocates all additional memory used for the dynamic connectivity data structure� but it
does not delete the nodes and edges of the graph�

Internal Functions���� � �
f
dyn�con���dyn�con�	
�
�� first delete all edges in the data structure �not in G	
edge e�
forall�edges�e��Gp	
�
if�tree�edge�e		
�
delete�tree�e	�
for�int j��� j��max�level� j%%	 delete�� ��Gp	�e���tree�occ�j��
delete�� ��Gp	�e���tree�occ�

�
else delete�non�tree�e	�

delete ��Gp	�e��
��Gp	�e� � nil�

�

�� delete fields �edge lists are empty� no need to clear�	 them	
delete�� non�tree�edges�
delete�� tree�edges�
delete�� added�edges�
delete�� rebuild�bound�

�� delete the et�nodes and the information at the nodes of G
node v�
forall�nodes�v��Gp	
�
�� per node of G only its active occurrence at each level is left
for�int i��� i��max�level� i%%	 delete ��Gp	�v���act�occ�i��

delete�� ��Gp	�v���act�occ�
delete�� ��Gp	�v���adj�edges�

delete ��Gp	�v��
��Gp	�v� � nil�

�
�

g
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