SERIE B — INFORMATIK

Map Labeling Heuristics: Provably Good and
Practically Useful®

Frank Wagner*
Alexander Wolff**

B 95-04
April 1995

Abstract

The lettering of maps is a classical problem of cartography that consists of placing
names, symbols, or other data near to specified sites on a map. Certain design rules
have to be obeyed. A practically interesting special case, the Map Labeling Problem,
consists of placing axis parallel rectangular labels of common size so that one of its
corners is the site, no two labels overlap, and the labels are of maximum size in order
to have legible inscriptions.

The problem is N'P-hard; it is even N'P-hard to approximate the solution with
quality guaranty better than 50 percent. There is an approximation algorithm A
with a quality guaranty of 50 percent and running time O(nlogn). So A is the best
possible algorithm from a theoretical point of view. This is even true for the running
time, since there is a lower bound on the running time of any such approximation
algorithm of Q(nlogn).

Unfortunately A is useless in practice as it typically produces results that are intol-
erably far off the maximum size.

The main contribution of this paper is the presentation of a heuristical approach
that has A’s advantages while avoiding its disadvantages:

1. It uses A’s result in order to guaranty the same optimal running time efficiencys;
a method which is new as far as we know.

2. Its practical results are close to the optimum.

The practical quality is analysed by comparing our results to the exact optimum,
where this is known; and to lower and upper bounds on the optimum otherwise.
The sample data consists of three different classes of random problems and a selection
of problems arising in the production of groundwater quality maps by the authorities
of the City of Miinchen.

©This work was done at the Institut fiir Informatik, Fachbereich Mathematik und Informatik, Freie Univer-
sitdt Berlin, Takustrae 9, 14195 Berlin-Dahlem, Germany. It was supported by the ESPRIT BRA Project
ALCOM II.

*wagner@math.fu-berlin.de

**awolff@Qinf.fu-berlin.de

Map Labeling Heuristics: Provably Good and Practically Useful 2

1 Introduction

Map lettering is one of the classical key prob-
lems that has to be solved in the process of map
production. Usually the map producer does
not only want to show the exact geographic
positions of the features depicted but also ex-
plain properties of these features. She has to
arrange this information on the map so that:
— for every piece of information it is intuitively
clear which feature is described;

— the information is of legible size;

— different texts do not overlap.

These and in addition a lot of esthetic crite-
ria are described by Imhof [5] in an attempt to
characterize good quality map lettering having
mostly manual map making in mind. Nowa-
days there is an increasing need for large, es-
pecially technical maps, for which legibility is
much more important than beauty.

The application which brought the problem
to our attention is the design of groundwater
quality maps by the municipal authorities of
the City of Miinchen. They have a net of drill-
holes spread over the city. The map has to
contain the location of these holes and for ev-
ery hole a block of measuring results such as
the concentration of certain chemicals.

The growing importance of such technical
maps induces a need for the computerization
of map making, the need for fully automated
algorithms. Typically, labels in technical maps
are axis-parallel rectangles of identical sizes.
By rescaling one of the axes we can assume
that the rectangles are squares. An adequate
formalization is as follows:

Problem MAP LABELING

Given n distinct points in the plane. Find the
supremum o,y of all reals o such that there
is a set of n closed squares with side length o,
satisfying the following two properties.

1. Every point is a corner of exactly one
square.

2. All squares are pairwise disjoint.

We call o,,: the optimal size. A set of non-
intersecting squares fulfilling (1) and (2) is
called a wvalid labeling, see Figure 1 and 2.
Previously [4], we showed by reduction from
3-SAT that the corresponding decision prob-
lem is AN'P-complete. The main result of that

paper is an approximation algorithm A that
finds a valid labeling of at least half the op-
timal size. In addition, it is shown that, pro-
vided that P # NP, no polynomial time ap-
proximation algorithm with a quality guaranty
better than 50 percent exists. Related results
were reported in [1] and [8]. The running time
of Aisin O(nlogn). In [10] we showed that
there is a matching lower bound on the running
time of Q(nlogn).

A conceptually works as follows: We start
with infinitesimal equally sized squares at-
tached to each point in all four possible po-
sitions. Then all squares are expanded uni-
formly. In order to resolve conflicts between
them, we eliminate all those which would con-
tain another point if they were twice as big.
It is easy to show that after this process, a
point p can not have more than two squares left
which overlap other squares. If we consider p a
boolean variable and associate its squares with
the values p and p, we can generate a boolean
formula consisting of clauses which encode all
conflicts. Suppose the square p was overlap-
ping the square ¢ of a point g, this would give
us the clause (p A §) = (pV ¢) meaning that we
do not want p and ¢ to be simultanously in the
solution. If we join all such clauses with the A—
operator, the satisfiability of the formula tells
us exactly whether there is a solution of the
current size. Since all clauses consist of two
laterals, the formula is of 2-SAT type, and can
be evaluated in time proportional to its length
[2].

This works only because we make sure that
no point has more than two squares left after
the elimination phase. On the other hand, we
often eliminate both of two conflict partners,
where it would have sufficed to delete one to
resolve the conflict. This seems to be the rea-
son for the practically very bad behaviour of A.
In fact, A usually produces solutions not much
better than 50 percent of the optimum, which
makes it nearly useless for practical problems.
So we developed a heuristical approach that
uses strongly the ideas of A, maintains its qual-
ity and running time guaranty, and yields very
convincing results. Instead of eliminating the
squares as early as possible, it eliminates a
square just when it is clear that it cannot be in
any solution of the current size. The bad side
effect of this is, that some points might have
three or four squares left after the elimination

Map Labeling Heuristics: Provably Good and Practically Useful 3

Figure 1: A valid labeling

phase. In order to handle this, we suggest three
different heuristics to bring their number down
to two.

The simplest of these heuristics is used by
the City of Miinchen for the application men-
tioned above, by the PTT Research Labs of the
Netherlands to produce on-line maps for mo-
bile radio networks, and in a computer system
for the automated search for matching constel-
lations in a star catalogue [11] as a tool to label
the output on the screen. With a very similar
algorithmic approach we were able to solve the
so-called METAFONT labeling problem posed
by Knuth and Raghunathan [6].

2 Description of the
Heuristics

2.1 A Theoretical Foundation

Definition 1 For a point p in the plane, a real
o >0, and i € {1,2,3,4}, denote by op; an
axis-parallel square with side length o and p in
its southwest, southeast, northeast respectively
northwest corner. The enumeration is chosen
like that of quadrants.

We will call p; a candidate of the site p.
Where the edge length o is omitted, we refer
to a candidate of the current label size.

A solution of size o is a valid labeling with
candidates of side length o.

For technical reasons, we will from now on
consider a candidate an open square, plus the
open edges incident to the site. Note that this
excludes all corner points, especially the site
itself. The idea is that we shrink the squares
by a tiny bit, so that an optimal labeling is a
valid labeling, too.

Figure 2: An optimal labeling for the example of Figure 1

Definition 2 of some special label sizes:

Odead = largest label size at which all sites
still have a candidate which does
not contain a site.

Oopt = size of the mazximum valid solu-
tion. This is equivalent to the
previous definition of oop;.

Olower = size of the solution of the Ap-
prozimation Algorithm A
Oupper = 20i0wer

OOHOw—WHV\ 3 Olower M Oopt M Oupper M Odead

Proof. o,pt < oypper is of course due to A’s
approximation guarantee, see [4].

Oupper < Odead: A stops at the latest at size
Odead/2, because then there is a site all of
whose candidates are eliminated. Therefore
Olower M Q.&m@&\w. D

We say that two candidates overlap or have
a conflict if they intersect and neither contains
a site. Analogously, two sites are in conflict if
any of their candidates are. One of the key
words in the description of the heuristics is
that of a conflict size. For a pair of candi-
dates we define its conflict size as the largest
edge length at which they do not intersect. We
call a conflict size interesting, if it is not larger
than oypper.

Lemma 4 The number of interesting conflict
sizes is linear.

Proof. Let s be the vector (Gupper; Tupper),
and < the lexicographical order on IR?. Given
a candidate
pi, say p1, we define two squares as in Fig-
ure 3, Q :={z € R’ |p—s <2z =<p+2s}and

Map Labeling Heuristics: Provably Good and Practically Useful 4

A
A A

AMQS\Q U

.QCEEQ" IQCDDQ" IQCDB >

Figure 3:

Q :={z|p—35s=22=<p+32s}, such that
OupperP1 C @ C Q'. Then clearly all sites g
with candidates g;, which might have a conflict
with p; of size not greater than oypper, must
lie within @, because its border runs around
p1 at a distance of oypper. We know that there
must be a partial solution of size ojpyer for the
sites in). All candidates of such a solution
must lie in @', so) cannot contain more than
64 sites. Therefore the number of conflicts of
interesting size per candidate is constant. L4

2.2 Structure

All three heuristics use a common framework.
We first need to run the Approximation Algo-
rithm A to get oupper and a solution of size
Olower- This takes O(nlogn) time. What they
do then, can be split up into the following
parts:

1. Find all interesting conflict sizes.

2. Do a binary search on the interesting con-
flict sizes between ojower and oypper, and
check for each size you look at, whether
there is a solution or not, by going through
the following three phases:

Phase I: Preprocessing.

Phase II: Make all decisions which do not
destroy a possible solution.

Phase III: For those points which still
have two or more ”active” candidates left,
choose exactly two, and check whether
this remaining problem is solvable by 2-
SAT, as described in the introduction.

The heuristics differ in the way in which they
choose those two candidates in Phase III.

2.3 Finding interesting conflict
sizes

Since A supplies us with oypper which is an
upper bound for o,,:, we know that during
the search for an optimal solution, only con-
flicts between sites at a distance of at most
20upper in the Lo,—metric, have to be con-
sidered. Therefore, we can use a sweep line
— or rather, sweep window, approach to de-
termine these conflicts of interest. As usual,
we need two data structures: firstly, an event
point queue as horizontal structure. This is a
queue which holds pointers to the lexicograph-
ically ordered sites in the window, that is to
all sites of distance at most 20ypper left of the
sweep line which moves to the right. Further,
we need a vertical structure, the sweep window
status, which allows us to look up efficiently
neighbours of new sites entering the window
according to the y-coordinate.

The result of the sweep is a list of all conflict
sizes between ojower and oypper. We do not
have to consider any other label size, since the
conflict graph does not change inbetween two
consecutive interesting conflict sizes. We use
this list afterwards to do a binary search for the
best possible solution. In addition to this long
list, for every candidate p; we create a short
list consisting of pointers to other candidates
gj, which are overlapping p; before p; touches
the first site which we call §(p;), or reaches
the size oypper. So for every p; we need to
know 0(p;) and d(p;) := |lp — 6(pi)|lec oOr oo if
there is no site in the i** quadrant relative to
p. This information can be obtained by eight
plane sweeps — one for the closest site in every
45° octant — in O(nlogn) time according to

What happens when the right border of the
window moves to the lexicographically next
site? We want to keep the invariant that we
have computed all interesting conflict sizes be-
tween the candidates of all sites left of the right
border of the window.

OUT: Since there cannot be any such con-
flict between the new site p entering the win-
dow on its right, and sites ¢ leaving it on the
left side, we first of all remove them from both
the event point queue and the sweep window

Map Labeling Heuristics: Provably Good and Practically Useful b)

status. This can be done in constant time per
site.

IN: Then we look at all successors (and pre-
decessors) r of p in the vertical structure and
compute all conflicts between r’s and p’s four
candidates. With similar arguments as in the
proof of Lemma 4 we show that there can only
be a constant number of other sites r with
Ilp — lloc < 20upper in the window, and only
the conflicts between those sites r and p are
interesting.

We use (2, 4)-trees to implement the sweep
window status, so inserting p costs O(logn)
time (see [7]), but accessing a successor or pre-
decessor of p, or deleting p can then be done
in constant time, computing the conflicts be-
tween its and p’s candidates of course, too.

This sums up to a running time of O(nlogn)
for sorting the sites and for the sweep. As a
consequence of Lemma 4, it requires only linear
space — for the list of all conflict sizes and the
short lists stored with every candidate, which
have constant length.

2.4 Check whether there is a so-
lution for a fixed label size o

2.4.1 Phase I: Preprocessing

We run through all candidates p;. If d(p;) < o
we eliminate p;, i. e. we will not consider it any
more during the search for a solution of size o,
because then op; contains 0(p;). Otherwise we
create a new list of overlap information which
is an excerpt from p;’s conflict list. We use the
fact that two overlapping candidates remain
in conflict until either contains a site if they
are blown up simultanously. The elements of
the new list consist of pointers to the overlap
information of those candidates which actually
overlap p; for the given label size o, the area of
the intersection (needed for Heuristic J), and
a pointer back to the candidate it belongs to.
This can be done in linear time since the sum of
the lengths of all conflict lists is linear, confer
Section 2.3.

2.4.2 Phase II: Making Decisions

We run once through all sites p. There are
three cases:

e If all candidates of p have been eliminated,
we stop and return ”"no solution” to the
program which does the binary search on
the conflict list.

e If p has candidates free of intersections
with other candidates, we choose an ar-
bitrary one of them (say p;), and elimi-
nate all other candidates p; of p. Before
their deletion, we have to do some updates
for each of them: we delete its list of over-
lap information and the symmetric entries
stored with those candidates which over-
lap it.

e If p has only one candidate p; left, we do
the same updates with all candidates g;
which overlap p;, and then delete them.

While we do this we maintain a stack. On
this stack we put all those candidates which
now fulfill the same properties as p; did be-
fore, i. e. do not intersect any other squares, or
are the last candidates of their sites. Before we
look at the next site p, we do all the decisions
waiting for us on the stack. Since there is just
a linear number of conflicts, and we can de-
tect and delete each of them in constant time,
Phase II takes us linear time.

Corollary 5 If there is a solution of the cur-
rent label size o, then there is still one after
Phase II.

Proof. Suppose to the contrary that p; is
the first candidate after whose elimination the
remaining problem becomes unsolvable. Then
the following statement is true:

(%)

Every solution 7 of the problem just before
this elimination must contain p;.

Consider the circumstances under which p;
could have been eliminated:

1. p; contains a site g. This contradicts (x).

2. p; does not overlap other candidates, but
the same holds for some p;, and the algo-
rithm decides to eliminate p;.

In this case we could replace p; in 7 by p;,
contradicting ().

3. p; overlaps g; which is the last candidate
of ¢.

Map Labeling Heuristics: Provably Good and Practically Useful 6

Then also g; must be part of m, which
again contradicts (*).

D)

At the end of Phase II we are done if all sites
have exactly one candidate left. Otherwise we
know that candidates of sites with several can-
didates — call them active — never intersect
with those that are ”the last of their breed”,
i. e. belong to sites with exactly one square
left, because then the former ones would have
been eliminated. So it is enough to focus on
active candidates from now on. The others are
already chosen as part of the solution, and do
not interfere with the active ones any more.

As a consequence of Corollary 5 we also
know that we have not yet returned "no so-
lution” if there is one of size ¢. So we could
still find a solution with the help of 2-SAT as
described before if no site had more than two
candidates left. If some do, our heuristics try
to get rid of the additional candidates in differ-
ent ways until they all hand over the remaining
problem to 2-SAT. Eliminating candidates, is
of course, where we might lose a possible solu-
tion of the current size.

2.4.3 Phase III: The Heuristics Come
into Play

Heuristic H We randomly choose two of the
possible four candidates left per site, before
we hand them over to 2-SAT. To increase the
probability of a choice which enables a solu-
tion, this process can be repeated in case of a
negative answer. Three repetitions yield good
results without prolonging the running time
too much.

Since we look at a (hopefully small) part of
the linear number of conflicts, we will only get
a linear number of clauses, resulting in a run-
ning time of O(n) for 2-SAT, and for this part
of Heuristic H as well.

Heuristic I Here we run through all sites
with active candidates twice. In the first run,
we only look at those with four candidates
left, eliminate the one with most conflicts, and
make all decisions of the type we did in Phase
IT. During the second run, we do the same for
sites which still have three active candidates.
Then the remaining problem (consisting only

of sites with exactly two active candidates) is
handed over to 2-SAT.
This takes linear time.

Heuristic J For the third variant, we put all
active candidates left into a priority queue ac-
cording to the sum of all intersection areas of a
candidate p;. We then delete the minimum p;
from the queue, and eliminate all candidates
gj which overlap it, and the other active can-
didates py belonging to p. If any of these deci-
sions induces new ones according to the pat-
tern used in Phase II, then these are made
as well, before the next minimum is deleted
from the queue. Naturally the sizes of the in-
tersection areas, and the data structure, have
to be updated accordingly. This process is re-
peated until either a site runs out of candidates
("no solution”), or no site has more than two
of them left, so the remaining problem can be
handed over to 2-SAT.

Using Fibonacci heaps to realize a priority
queue that allows inserting and minimum dele-
tions in O(logn), and decreasing a key in con-
stant time, this part of Heuristic J can be
implemented to run in time O(nlogn), since
there is just a constant number of conflicts to
be resolved per candidate we look at.

Since we have to look at O(logn) conflict
sizes during the binary search for the best so-
lution, these running times sum up to a total
of O(nlogn) for Heuristic H and I, while J
takes O(nlog® n) time.

3 Experiments

3.1 The Exact Solver

The exact solver we used was implemented
by Erik Schwarzenecker from Saarbriicken in
C++. It uses some ideas of our Heuristic H
but solves the problem in Phase III exactly.
Thanks to its fine tuning it handles examples
of up to 300 points even slightly faster than
the heuristics, but we were forced to introduce
a time limit of 5 minutes for larger hard and
dense problem sets (see Section 3.2) to be able
to perform any test row in reasonable time.
This exact algorithm X shows exponential be-
haviour. For small examples it is very fast,
for larger ones it is unreliable. Only few of

Map Labeling Heuristics: Provably Good and Practically Useful 7

the largest hard and dense examples took less
than five minutes, and we have observed that
the solution of examples beyond that bound
then easily takes half an hour or much more.
The CPU times of X are not comparable to
those of the heuristics, since the latter are im-
plemented in a very different way.

Still X is much better in practice than the
Exact Solver S with a subexponential time
bound suggested in [9]. It normally runs out
of memory for more than 60-80 points, which
we could improve to 120-150, when we made
it solve only the problem remaining in Phase
ITI. Even splitting this up into its connected
regions, and dealing with those seperately, did
not help a great deal.

3.2 Example Generators

Random. We just choose a given number of
points uniformly distributed in a rectangle of
given size.

Dense. Here we try to place as many squares
as possible of a given size ¢ on a rectangle.
We do this by randomly choosing points p and
then checking whether op; intersects with any
of the o¢q; chosen before. We stop when we
have unsuccessfully tried to place a new square
200 times. In a last step we assign a random
corner point to each of the squares we were
able to place without intersection, and return
its coordinates. This method gives us a lower
bound for the label size of the optimal solution.

Hard. In principle we use the same method
as for Dense, that is, trying to place as many
squares as possible into a given rectangle. In
order to do so, we put a grid of cell size o on
it. In a random order, we try to place a square
of edge length ¢ into each of the cells. This is
done by randomly choosing a point within the
cell and putting a fixed corner of the square
on it. If it overlaps any of those chosen before,
we try to place it into the same cell a constant
number of times.

Real World. The municipal authorities of
Munich provided us with the coordinates of
roughly 1200 ground water drill holes within
a 10 by 10 kilometer square centred approxi-
mately on the city centre. From this list we

extract a given number of points being clos-
est to some centre point according to the L,—
norm, thus getting all those lying in a square
around this extraction centre, where the size
of the square depends on the number of points
asked for. For our tests we chose five different
centres; that of the map and those of its four
quadrants in order to get results from different
areas of the city with strongly varying point
density. This is due to the fact that many of
the holes were drilled during the construction
of subway lines which are concentrated in the
city centre, see Figure 5.

The choice of these four example generators
might be justified by the following considera-
tions. The need for real world data for testing
is obvious. Random and Dense are intuitively
the first things one would come up with, and
differ enough in their behaviour to make them
worth looking at. Hard examples might serve
as a reminder that we are looking at an NP-
complete problem, and that no heuristic can
be proved to do better than 50 percent of the
optimal solution [4].

3.3 Experimental Set-up

Since the problem generators Dense and Hard
ask for a label size o, while Random and Real
World directly use the number of points as in-
put, the problem sizes differ. We run the exact
solver, the Approximation Algorithm A, and
the heuristics on each of the examples. For ev-
ery size we averaged the approximation quality
and running time over 50 tests.

Actually we do not use oypper (that is twice
the result of A) as an upper bound for the con-
flicts we have to look at in the heuristics, be-
cause then we would have to add the computa-
tion time of A to that of the heuristics. Though
losing the theoretical bounds, it turned out to
be much faster and to yield results of the same
quality if we compute 04eqq¢ and work with
a longer list of conflict sizes (between 0 and
Odead instead of between oypyer and oypper) o0
which we do the binary search. Even the longer
conflict lists of each candidate did not play a
great roll, because oypper and ogeqq normally
do not differ a lot in any case, especially not
for large hard or dense examples where we have
the highest number of conflicts per candidate.

Map Labeling Heuristics: Provably Good and Practically Useful 8

cpu time [sec]
8 -
_...grandom

6 - ©*rea world
4
2
0 T T T T T T T T T 1

0 100 200 300 400 500 600 700 800 900 1000 # of points

Figure 4: Running time of Heuristic J on different example classes

3.4 Results ent example sets is plotted. On random and

We show the two classical kinds of plots;
time and quality. Quality here means the quo-
tient of the solutions of a heuristic and the ex-
act solver. Time is measured in CPU time,
which is sufficient since it is closely related to
the number of square—-square conflicts. This on
the other hand determines the number of cru-
cial steps, namely finding all interesting con-
flicts once, and then extracting those valid for
a certain o in every step of the binary search.

The results both for time and quality are
averaged only over those tests the exact solver
managed within the time bound.

The standard deviation is represented by the
length of the vertical bars in each point of the
result plots.

3.4.1 Running Time

In Figure 4 we plot the running times of the
slowest of the three heuristics, namely J, on
the different example sets. H and I are slightly
faster. Above 300 points the plot shows a
rather stable O(n)-behaviour with very small
standard deviation. So far we are neither able
to analyse the running time for small dense and
hard examples nor to support the empirically
linear running time by a theoretical analysis.

3.4.2 Approximation Quality

In Figures 8, 9, 10, and 11, the approximation
quality of the three heuristics on the differ-

real world problems all three heuristics yield
extremely good results. For an example, see
Figure 6 and 7. On dense examples the dif-
ferences between the heuristics become more
clearly visible. Heuristic I is the best, yield-
ing results of very high average quality with
a slightly larger standard deviation. The be-
haviour on hard examples is still quite good
but clearly becoming worse with an increasing
number of points.

The quality of Algorithm A is extremely bad
on Hard and Dense, and still useless from a
practical point of view on random and real
world examples.

A remark on the examples for which X did
not give a result within the time bound: As
mentioned above we did not include those in
the calculation of the quality plots. But using
the bound oypper resulting from the approxi-
mation algorithm A, and taking into considera-
tion the typical quality of A, we found out that
the behaviour of the heuristics on those exam-
ples does not differ significantly from that on
the other examples.

4 Implementation

The implementation of the heuristics follows
the structure listed in 2.2. The code was
written in C++, and we strongly took advan-
tage of data structures and algorithms pro-
vided by LEDA [7]. The commands LEDA

Map Labeling Heuristics: Provably Good and Practically Useful 9

offers, helped a great deal to shorten and
simplify the code. It was not optimized
with respect to running time but rather kept
"legible”. All heuristics and problem gen-
erators can be tested on the WWW under
http://www.inf.fu-berlin.de/ awolff
/html/labeling.html.

5 Conclusion and

Acknowledgements

Our experiences with the Map Labeling Prob-
lem and its solution can be summed up as
follows: We started with the purely mathe-
matical formulation of the problem which was
communicated to us by Kurt Mehlhorn from
Saarbriicken, who received the problem from
Rudi Kriamer of the Amt fiir Informations-
und Datenverarbeitung in Miinchen. Quickly
we showed the NP-hardness, were surprised
to hear of the practical relevance, and started
developing an approximation algorithm. We
found one, analysed it, and showed its the-
oretical optimality. The problem was solved
perfectly—in theory!

Applied to real world data, the algorithm
proved useless. We used the insight into the
problem structure gained during the design of
A and our insight into the reasons for its prac-
tical failure, to develop Heuristic H which pro-
duced satisfiably good results. Meanwhile Bet-
tina Preis et. al. developed an exact algorithm
which could solve small problems up to about
80 points, which enabled us to estimate the
quality of our heuristic. We improved H to I,
and to the even more sophisticated Heuristic
J which turned out to be a little worse than
our champion I. Erik Schwarzenecker used our
heuristical concept to enable X to solve larger
problems in reasonable time. He also suggested
the class of hard examples. Thus we were able
to do a thorough experimental analysis of the
quality of our heuristics. We also owe thanks
to Stefan Lohrum who helped us to make our
heuristics accessible on the WWW.

Our intense contacts with the practitioners
were successful in two respects: We could solve
their problems, and they gave us the opportu-
nity to get to know interesting related prob-
lems that come up in this context. We are
now adapting our heuristics to these variants
of the original problem and hope to be able to

solve them with similar success.

References

[1] H. AoNuma, H. IMAI, Y. KAMBAYASHI,
A visual system of placing characters ap-
propiatly in multimedia map databases,
Proceedings of the IFIP TC 2/WG 2.6
Working Conference on Visual Database
Systems, North Holland (1989) 525-546.

[2] S. EVEN, A. ITal, A. SHAMIR, On the
complezity of Timetable and Multicom-
modity Flow Problems, SIAM J. Comput.
5 (1976) 691-703

[3] M. FORMANN, Algorithms for Geometric
Packing and Scaling Problems, Disserta-
tion, Fachbereich Mathematik, Freie Uni-
versitédt Berlin (1992)

[4] M. FORMANN, F. WAGNER, A Pack-
ing Problem with Applications to Letter-
ing of Maps, Proceedings of the 7th ACM
Symposium on Computational Geometry
(1991) 281288

[5] E. IMHOF, Positioning Names on Maps,
The American Cartographer 2 (1975) 128-
144

[6] D. E. KNUTH AND A. RAGHUNATHAN,
The Problem of Compatible Representa-
tives, STAM Journal on Discrete Mathe-
matics 5 (1992) 422-427

[7] K. MEHLHORN, S. NAHER, LEDA, a Li-
brary of Efficient Data Types and Algo-
rithms, TR A 04/89, FB10, Universitit
des Saarlandes, Saarbriicken, 1989

[8] H. Imar, T. AsaNo, Efficient Algorithms
for Geometric Graph Search Problems,
SIAM J. Comput. 15 (1986) 478-494

[9] L. KuCERrA, K. MEHLHORN, B. PREIS,
E. SCHWARZENECKER, Ezact Algorithms
for a Geometric Packing Problem (Ex-
tended Abstract), Proceedings of the 10th
Annual Symposium on Theoretical As-
pects of Computer Science (STACS 93),
Lecture Notes in Computer Science 665
(1993) 317-322

Map Labeling Heuristics: Provably Good and Practically Useful

[10] F. WAGNER Approzimate Map Labeling is
in Q(nlogn), Information Processing Let-
ters 52 (1994) 161-165

[11] G. WEBER, L. KNIPPING, H. ALT, An
Application of Point Pattern Matching in
Astronautics, Journal of Symbolic Com-
putation 17 (1994) 321-340

10

11

Map Labeling Heuristics: Provably Good and Practically Useful

Figure 5: Map showing our sample data from Munich, and the section tested below. There
are no conflicts between this section and the rest. The subway lines can be detected easily.

INO
] S
— &] &
— 2] ¥ 1
— ez 1 & -
[R I
[28] %2 15] E
IHO
30 | 8]
[3L 39 — 1 [

Figure 6: Solution of the program used by the authorities of the City of Miinchen before (label
height 5000, 3 sites not labelled). It tries to maximize the number of sites labelled for a given size.

0]
ﬁﬁﬁm
= _ g &
A] :
= 5] II

Figure 7: Solution produced by all of our heuristics (label height 5400, optimal).
The dashed rectangle shows the candidate with label height o4c.0q = 6650.

% of exact solution

Heuristic |
1007 e SeaeETEE EEEETTEE PR 3 Heuristic J
Heuristic H
90 -
80
70
ST - /’ ________
// % { -------- { Approx. Algo
4
50 T T T T T T T T T 1
0 100 200 300 400 500 600 700 800 900 1000 # of points

Figure 8: Quality of the heuristics on real world examples

% of exact solution

Heuristic |
1007 Heuristic H
Heuristic J
90
80 -
70
601 "t | 4 1l 4l
““““““““ %——""' e “>~~<] Approx. Algo
50 T T T T T T T T T 1
0 100 200 300 400 500 600 700 800 900 1000 # of points

Figure 9: Quality of the heuristics on random examples

% of exact solution

1007
Fﬁi
‘%4 %~,\\£ { Heuristic |
90 ST . L YT Y e o
------- { Heuristic J
80 { Heuristic H
70
60 {{
\} _{_ """ '} ————— 3 + 3 Approx. Algo
50 T T T T T T T 1
0 100 200 300 400 500 600 700 800 #of points

Figure 10: Quality of the heuristics on dense examples

% of exact solution

1001

90
} Heuristic |

80
{ Heurigtic J

70

60 {

t
-3
1 3 -— Approx. Algo
50 T T T T T T T 1
0 100 200 300 400 500 600 700 800 #of points

Figure 11: Quality of the heuristics on hard examples

[mjosn A[resnoeiJ pue poox) A[qeAolJ :so1sLmof SurpoqeT depy

4!

