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� Introduction

Trapezoid graphs were introduced by Dagan	 Golumbic	 and Pinter 
DGP�� Con
sider a channel	 i�e�	 a pair of two horizontal lines� A trapezoid between these lines
is de�ned by two points on the top and two points on the bottom line� A graph is
a trapezoid graph if there exists a set of trapezoids corresponding to the vertices of
the graph such that two vertices are joined by an edge i� the corresponding trape
zoids intersect �see Figure ��� Dagan	 Golumbic	 and Pinter propose an algorithm
computing the minimum number of colors in a proper coloring of such a graph in
time O�n�� and less e�cient backtracking algorithm �nding a maximum clique in
such graph �throughout the paper we assume that n is the number of vertices of the
graph or order in question��

The problem of �nding maximal cliques or minimal colorings for trapezoid graphs
arises in connection with channel routing problems in VLSI design� Given some
labeled terminals on the upper and lower side of a two sided channel	 terminals with
the same label will be connected in a common net� Such a net may be modeled by
a trapezoid connecting the rightmost resp� leftmost terminals with the same label�
Nets then may be routed without intersection i� the corresponding trapezoids do
not intersect	 i�e�	 i� they are independent� The number of colors needed to color the
trapezoid graph is the number of layers needed to rout the nets without intersection�
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For our algorithms we will make use of another equivalent characterization of
trapezoid graphs� To give this alternative characterization it is convenient to �x some
terminology� If x � �x	� � � � � xk� and y � �y	� � � � � yk� are points in IRk	 then x is said
to be dominated by y	 denoted x � y	 if xi is less than yi for all i � �� � � � � k� The order
thus given between points in IRk is also called dominance order� This order can be
extended to boxes	 i�e�	 sets of the form f�x	� � � � � xk� � IRk � li � xi � ui� � � i � kg
where �l	� � � � � lk� is the lower corner and �u	� � � � � uk� is the upper corner of the box�
A box b dominates a box b� if the lower corner of b dominates the upper corner
of b�� Note that points may be understood as boxes where the lower and upper
corner coincides� If one of the two boxes dominates the other we say that they are
comparable� Otherwise they are incomparable� Now the vertices of trapezoid graph
may be represented by boxes with two boxes incomparable i� the corresponding
vertices are joined by an edge�

The connection between the box representation and the trapezoid representation
of a trapezoid graph is the following� Interpret the points on the lower of the two
lines of the channel as lying on the xaxis and that of the upper line as lying on the
yaxis of the euclidean plane� Each trapezoid then corresponds to an axisparallel
box in the plane whose projection on the x and yaxis coincides with the lower and
upper side of the trapezoid �see Figure ��� It is easily seen that two trapezoids are
disjoint exactly if the corresponding boxes are comparable�

What makes the box representation useful is the additional dominance order on
boxes that may be exploited by sweep line algorithms� All computation is done in a
single sweep leading to O�n log n� algorithms for clique	 independent set and cover
problems on trapezoid graphs� Hence	 these graphs are another class of graphs where
very e�cient algorithms for such problems can be given� There exists a lower bound
for the number of comparisons needed to computemaximumincreasing subsequences
in permutations	 Fredman 
Fre�� Permutations correspond to permutation graphs
in such a way that increasing sequences correspond to either cliques or independent
sets� As permutation graphs are trapezoid graphs Fredman�s bound shows that our
algorithms are optimal in the same sense�

Algorithms for trapezoid graphs should be compared with algorithms for gen
eral cocomparability graphs� For these graphs the maximum independent set and
the minimum clique cover problem can be solved in O�n� log n�	 see 
MCSp�� The
bottleneck of the computation is the complexity of transitive orientation� The max
imum clique and chromatic number problems on cocomparability graphs seem to
be harder� To the best of our knowledge the complexity is dominated by �nding a
maximum matching in a bipartite graph� The time needed to solve this problem is
almost O�n���� �see 
ABMP��	 and O�n�� in the weighted case �see 
PaSt���

In Section � we give some de�nitions and replace graph terminology by order ter
minology that proves to be more convenient in designing our algorithms� We assume
the vertices of the trapezoid graph to have some weights� To compute maximum
weighted cliques or independent sets turns out to impose no additional di�culty� In
Section � we present an algorithm computing maximum weighted independent set
and a minimum clique cover at the same time �or in order terminology	 a maximum
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weighted chain and a minimum antichain partition�� We also show how to extend
this algorithm from boxes in the plane to boxes in IRk� Section � shows how to
compute a minimum coloring �or a minimum chain partition�� Unfortunately	 this
algorithm cannot be turned into an e�cient one �nding a maximumweighted clique
�maximumweighted antichain�� Hence	 a di�erent approach is proposed in Section �
giving an e�cient algorithm for the last problem�

In Section � we discuss a new class of graphs	 called circle trapezoid graphs� A
circle trapezoid is the region between two noncrossing chords of a circle� Alterna
tively	 it is the convex hull of two disjoint arcs on the circle� Circle trapezoid graphs	
CT�graphs for short	 are the intersection graphs of families of circle trapezoids on a
�xed circle� It is easily seen	 that CTgraphs are a common generalization of trape
zoid graphs	 circle graphs and circulararc graphs� We show	 that in this large class
of graphs the maximum clique and maximum independent set problems can still be
solved in polynomial time�

� Trapezoid graphs and trapezoid orders

The k�dimensional box representation �V� l� u� of a graph G � �V�E� consists of
mappings l�V � IRk and u�V � IRk such that l�v� is the lower and u�v� the upper
corner of a box box�v� where two vertices of the graph are joined by an edge i� their
corresponding boxes are incomparable� If a graph has a such a representation it is a
k�trapezoid graph� If we additionally have a weight w�V � IR on the vertices of G
then the ktrapezoid graph is weighted� The weight of a clique	 i�e�	 a set of mutually
joined vertices in the graph	 is the sum of the weights of its elements� Similarly	 the
weight of an independent set	 i�e�	 a set of vertices with no two of them joined by
an edge	 is the sum of the weights of its elements� We are mainly interested in the
case k � � where we simply deal with trapezoid graphs�

As already mentioned in Section �	 we switch to the richer structure given by
the dominance order on the boxes of a box representation� Let the boxes of a
box representation of a trapezoid graph together with the dominance order be the
corresponding trapezoid order� A set of mutually comparable elements of an order
is a chain as a set of mutually incomparable elements is an antichain� Recall that
two boxes are incomparable i� the corresponding vertices of the trapezoid graph
are joined� Let G be a trapezoid graph and P be a corresponding trapezoid order�
Then it is easily veri�ed that

� A minimum clique cover of G is a minimum antichain partition of P�
� A maximum weighted independent set in G is a maximum weighted chain in
P�

� A minimum coloring of G is a minimum chain partition of P�
� A maximum weighted clique in G is a maximum weighted antichain in P�

A maximal element of a dominance order is one with no element dominating it�
Each chain has exactly one maximal element� In contrast to the weight w�v� of a



Trapezoid Graphs and Generalizations �

box v in a trapezoid order we will often attribute a chain weight W �v� to v which
is the maximum weight of a chain with v as its maximal element�

Note that in the limiting case the box representation �V� l� u� of a trapezoid
graph �V�E� may consist of points	 i�e�	 l�v� � u�v�	 for all v � V � Such graphs are
known as permutation graphs and the points with the dominance order in the plane
as ��dimensional order �see	 e�g�	 
Gol��� We denote such an order by �V� p� with
p�v� � l�v� � u�v�� Before giving the actual algorithms for the trapezoid orders
we will sometimes recall algorithms for �dimensional orders since they are easier to
grasp while showing important features extendible to the general case�

We will often have to maintain a �nite set of real numbers such that values may
be inserted or deleted from it and the predecessor or successor of a given query
value can be found� Using balanced trees �e�g�	 redblack trees described in Cormen	
Leiserson	 Rivest 
CLR�� all these operations can be done in O�log n� time and linear
space� If we further assume the bene�ts of a random access machine and assume
that the values are taken from a �nite range U then the above operations take only
O�log log n� time and linear space when implemented on a data structure of van
Emde Boas 
vEB�� Hence	 under these assumptions	 the log n factor in the running
time of the algorithms for �dimensional trapezoid orders may be replaced by a
log log n factor�

Throughout the paper we assume that the points l�v� and u�v� of a box repre
sentation have mutually di�erent x and ycoordinates� Otherwise	 we may obtain
a box representation of the same order ful�lling this requirement by perturbing the
corner points with two line sweeps in the following way� Points with the same x
coordinates are perturbed slightly such that points which are lower corners have
smaller xcoordinates than such which are upper corners� A similar perturbation
is done for the ycoordinate� The x and ycoordinate of a point p � IR� will be
denoted by px and py 	 resp� We will always use a vertical sweep line L going from
right to left	 i�e�	 from lower to higher xcoordinates�

� Minimum antichain partition and maximum chain for

k�trapezoidal orders

We �rst give a brief description of an algorithm solving the maximum chain problem
for a �dimensional order �V� p� in the weighted case� Let the weights be given by
w�V � IR�� First	 the points are sorted	 so that we can access them by increasing
xcoordinate	 i�e�	 from left to right� Secondly	 we compute a function W �V � IR	
where W �v� is the chain weight of v	 i�e�	 the weight of a maximum weighted chain
having v as its maximal element�

W �v� is computed with the aid of a sweep line L moving from left to right
and halting at every point p�v�� We maintain a set M of weighted markers on L
so that the weight W �m� for m � M is just the weight of a maximum weighted
chain on the set of points dominated by m	 i�e�	 on fv � V � p�v� � mg� For
each m � M origin�m� is the maximal element of the maximum weighted chain
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dominated by m� When reaching a point p�v� we �nd the �rst marker m below
p�v� on L	 set W �v� � W �m� � w�v� and establish a link from v to origin�m�� To
update L we position a new marker m� with W �m�� � W �v� and origin�m�� � v at
the ycoordinate of p�v�� Then we remove those markers above m� that have smaller
weight� Note that also the number of markers removed in one step may be large	
the overall number of insertions and removals of markers on L cannot exceed �n�
Finally	 starting from a point v with maximum chain weight W �v� we backtrack
along the links to construct a heaviest chain�

Now we mimic this algorithm for the case where the box representation �V� l� u�
of a trapezoid order P is given� Essentially	 the idea is to separate the action taken
by the algorithms for �dimensional orders whenever the sweep line reaches a new
element into two parts� The �rst part of the action	 located at l�v�	 is to compute
the chain weight W of the new element v� This is done by �nding the element
v� of maximum chain weight among the elements with u�v�� � l�v� and link v to
v�� Note that the maximum weight of v� implies that v� was the maximum element
of its chain� The second part of the action	 located at u�v�	 is to make the chain
weight of v available for further elements� The main di�erence to the permutation
graph algorithm is that before inserting the information corresponding to v into the
structureM we have to check whether the information is still relevant when released�
The reason is that there might be an element v� with W �v�� � W �v� whose box is
completely dominated by the upper corner of v�s box� Again	 the weight of marker
m � M will be equal to the weight of a maximum weighted chain on the boxes
dominated by m	 i�e�	 on the elements v � V with u�v� � m	 in particular the
weights on M are increasing with increasing ycoordinate�

The algorithm for computing a maximumweighted chain in a box representation
is given next� For convenience	 we initialize the sweep line with a dummy point d
with W �d� � � and origin�d� � nil	 such that d is below all points that will ever be
inserted into L�
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MAXCHAIN�V� l� u�w�

for each p from left to right do
m� �rst marker below p on L
if p � l�v� for some v � V then

W �v�� W �m� � w�v�
link�v� � origin�m�

if p � u�v� for some v � V then

if W �v� � W �m� then
insert a new mv at py in L
W �mv�� W �v�
origin�mv�� v

remove all m� that are higher and lighter than mv from L

v � origin�uppermost�L��
C � fvg

while link�v� �� nil do
v � link�v�
C � C � fvg

return C

Lemma � At the end of the main loop in MAXCHAIN the following invariant holds

true� If y is an arbitrary point on L and m the next marker below y� then a maximum

weighted chain dominated by point y has weight W �m��

Proof� If L has stopped at some point p � l�v� no new box has become available
to increase any maximum weighted chain and no weight of any marker has been
changed� But note that the weight of a maximum chain with maximal element v
has weightW �m��w�v�	 form the marker below l�v�	 by the invariance assumption�

On the other hand	 suppose L has stopped at p � u�v�� If y � uy�v� or if
no new marker is inserted in the sweep line	 there can neither be a new maximum
weighted chain nor a new marker below y� Hence we assume y � uy�v� and that
a new marker mv has been inserted at height uy�v�	 i�e�	 there is a new chain with
weight W �v� � W �mv� available for points above uy�v�� Let m� and m be the
marker immediately below y before and after the insertion of mv� If m� � m then
W �m�� � W �mv� �otherwise	 m� would have been removed� and W �m� � W �m��
remains optimal among all chain weights� If m� �� m then m can only be mv and
W �mv� � W �m�� either by the condition for removing markers or by the condition
for the insertion of mv� Since W �m�� was optimal among all chain weights save the
new one ending in v	 W �mv� surely is an optimal weight for y now�

Of course	 Lemma � implies that Algorithm MAXCHAIN computes a maximum
weighted chain	 since all boxes are dominated by the uppermost point on L after
the sweep has completed�

As already noted the sweep line can be implemented so that �nd	 insert and
delete operations require O�log n� time� It is easily seen	 that �n is an upper bound
for the number of these operations� This proves a O�n log n� time bound�
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The unweighted case can be simulated by unit weights� As the weights of all
markers are di�erent the number of markers on L in the unweighted case cannot
exceed the length of a maximum chain in P� If � is the size of a longest chain in
P then all steps can be carried out in O�n log ��� If each element of P has unit
weight	 then no two elements with the same chain weight are comparable� Hence	
collecting the elements of chain weight i in a set Ai yields a partition A	� � � � � A� of
P into antichains� It is easily seen that the maximum weighted chain must contain
one element of Ai	 i � �� � � � � �� This proves this antichain partition to be minimal
since a partition into fewer antichains would force at least two elements of the chain
into one antichain	 which is impossible� Hence	 a minimal antichain partition is a
byproduct of algorithm MAXCHAIN� We summarize these remarks in

Theorem � A maximum weighted chain and a minimum antichain partition of

a trapezoid order on n points� given its box representation� can be computed in

O�n log n� time and linear space�

Now assume	 that a box representation of P in some higher dimension k � � is
given� We use dynamic range trees �see	 e�g�	 Smid 
Smi�� for the construction of
a maximum chain for a point set in k dimensions� We need a data structure for a
point set P in k � � dimensional space that	 for a given query point q	 allows to
�nd some p � P with maximum chain weight W �p� among all points of P that are
dominated by q� We also want to insert new points with some given chain weight�
Given such a data structure	 it is easy to compute a maximum weighted chain for
a point set P in k dimensions� A sweep line visits all points ordered by increasing
last coordinate� For each point q on the sweep line a point p is found in the range
tree that has maximum chain weight W �p� among all points dominated by q in the
�rst k � � coordinates� But since all points with smaller values than q in their last
coordinate have been swept and have already been inserted in the range tree	 p also
has maximum weight among points dominated by q in all k dimensions� Hence	 we
may insert q in the range tree with chain weight W �q� � W �p� � w�q�� Along with
W �q� we may also store a link to point p� After insertion of all points a maximum
weighted chain is easily found� At �rst	 a point pm with the highest weight ever
computed during the sweep is searched� Then	 beginning with pm	 the chain is
extracted by following the corresponding chain of links� Again	 if all points have
unit weight	 W �p� is the height of p and hence a minimum antichain partition is
found as byproduct�

With the following changes the above approach is easily adapted to compute a
maximum weighted chain for a trapezoid order with a box representation� If point
q on the sweep line corresponds to a lower point l�v� of some box v we calculate
W �v� � W �p� � w�v� as above but do not yet insert q in the tree� If q � u�v� for
some box v we insert q in the range tree with chain weight W �q� � W �v� that has
already been calculated before�

For convenience	 let us brie�y recall how such a d � k�� dimensional range tree
T works� Let the d coordinates be denoted by x	� � � � � xd� Points P are represented
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by the leaves of a binary tree T ordered according to their xdcoordinate� If d � �
each node t of T points to the leaf of some point p with chain weight W �p� maximal
among all weights in the leaves below t	 i�e�	 leaves of the subtree rooted at t� If
d � � node t points to a d� � dimensional range tree with respect to the �rst d� �
coordinates for the points in the subtree of t� For a query point q the point of P
with smallest xdcoordinate greater than that of q is searched� Let the search path
be Sq� Let Lq be the set of left children of nodes in Sq that are not itself in Sq� It is
easily seen that each point with xdcoordinate smaller than or equal to that of q has
a leaf below some node in Lq� Hence	 to �nd a point p with W �p� maximal among
all points dominated by q we proceed as follows� If d � � we check all leaves pointed
to by the nodes in Lq and return the leaf with maximum weight� If d � � the range
trees in nodes t � Lq allow to �nd points pt with maximum weight among leaves
below t and dominated by q in the �rst d � � coordinates� In this case the point
searched for is that with maximumweight among points pt	 for t � Lq� On the other
hand	 if we want to insert point q into tree T this may be done by �rst inserting it
in the main tree and then inserting it in all secondary range trees at nodes along
the insertion path	 if d � �� If d � �	 pointers along the insertion path are set to the
leaf belonging to q if its weight is the new maximum in the corresponding subtree�

It is easily seen that a query takes time O�logd n� if all trees are balanced� If
some trees become unbalanced during an insertion they must be rebalanced and it
can be shown that this takes amortized time O�logd n�� For d � � we need linear
space� And since a point is contained in at most log n secondary trees if d � �	 the
total amount of space is O�n logd�	 n�	 by induction� We leave it to the reader to
supplement the omitted details that give a complete proof of the following statement�

Theorem � If an order P � �V� P � is given by a box representation in IRk� then

a minimum antichain partition and a maximum chain of P can both be obtained in

O�n logk�	 n� time and O�n logk�� n� space�

� Chain partitions of trapezoid orders

In this section we show how to partition a trapezoid order P into chains such that
the number of chains used is minimal� Of course	 this only makes sense if we assume
unit weights on the elements of P� Again	 we begin with a short description of a
similar algorithm for �dimensional orders which we then adapt for the case of a
given box representation of P�

An optimal chain partition for a point set can be obtained by a sweep of a line
L from left to right in the following way� Assume the set of points to the left of
the current position of L to be already optimally partitioned into chains� On L
the maximal elements of the chains of this partition are maintained ordered by y
coordinates� When reaching a new point p we search for the point q on L which has
maximal ycoordinate among all points on L that are below p� If q exists then p is
appended as new maximal element to the chain of q	 otherwise	 p does not dominate
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any chain of the actual partition and we initialize a new chain consisting of p only�
Finally	 L is updated by inserting p and removing q�

Now suppose	 that P is given by a box representation �V� l� u�� We have to
separate the action that has to be taken when the sweep line reaches a new element
into two parts� The �rst part of the action	 located at l�v�	 is to �nd the chain of
the already existing partition that will be extended by v� The second part	 located
at u�v�	 is to make the chain with maximum v available for further elements� A
chain C with maximum element v will be called closed as long as u�v� has not been
visited by L	 otherwise C is open�

The algorithm for computing a minimum chain partition in a box representation
is given as follows� We initialize the sweep line with a dummy point d such that d
is below all points that will ever be inserted into L�

MINCHAINPARTITION�V� l� u�

for each p from left to right do
q	 �rst element below p on L
if p � l�v� for some v � V then

if q � u�w� for some w � V then
chain�v�	 chain�w� 
 fvg
remove q from L

else �q � d�
chain�v�	 fvg

if p � u�v� for some v � V then
insert p at py in L

return f chain�v� � u�v� � Lg

The time consuming operations in this algorithm are the search	 insert and re
move operations for points on the sweep line L� With the use of a balanced search
tree the running time of the algorithm is in O�n log n�� If we assume the points to
be presorted	 the running time is in O�n log �� where � is the number of chains in
the partition�

To prove that the chain partition found by this algorithm is minimum we show
how to extract an antichain from P that contains an element from each chain in
the partition� Let C � fC	� � � � � C�g be the chain partition found� Let v be the last
element that opened a new chain	 say C�� Note that lx�v� is larger then lx�v�� if
v� is the minimal element of a chain Ci with i �� �� Let C	 be the set of chains
containing an element v� with l�v�� � l�v� and lx�v� � ux�v��� All the chains in C	
were closed while l�v� was processed� Let U be the set consisting of such an element
v� from every chain in C	� From the de�nition of U it is clear that U 
 fvg is an
antichain� De�ne C� as the remaining set of chains	 i�e�	 C� � C n �C	 
 fC�g�� Let
X�v� be the set of elements v� � V 	 such that either l�v�� or u�v�� is contained in the
quarterplane f�x� y� � x � lx�v� and y � ly�v�g� It is easily seen that every chain
C � C� contains elements of X�v�� Let C� be the subchain of C induced by the
elements in X�v� and C�� be the set of these subchains� The next lemma states the
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crucial property of C���

Lemma � The chain partition C�� of the order induced by X�v� is exactly the chain

partition generated by MINCHAINPARTITION� when the input consists of the boxes

of elements in X�v� only�

Proof� Let L be the sweep line for input �V� l� u� and L� be the sweep line for the
restricted input	 i�e	 X�v� replaces V � The lemma is an easy consequence of the
following invariant� Considered at the same x�coordinate� x � lx�v�� the restriction

of L to the half line above ly�v� and L� are identical� This is certainly true at the
beginning when both lines are empty� Now suppose they are equal and L meets
point p� We distinguish four cases�

First consider the situation p � l�v�� and v� �� X�v�� Since v� �� X�v� we have
ly�v�� � ly�v�� There may be a removal below ly�v�� in L	 but it cannot a�ect the
half line above ly�v�� Now let p � l�v�� and v� � X�v�� Suppose	 that there is an
element q �� d below p in L� and let w be the element with u�w� � q� In this case v�

joins the chain of the w and q is removed from L�� Obviously	 the same action takes
place on L� If there is only the dummy element below p on L�	 then v� opens a new
chain for the restricted input� On L there may be an element below p� Nevertheless	
the ycoordinate of this element has to be smaller than ly�v� and the changes on L
will not a�ect the half line above ly�v��

If p � u�v�� and v� �� X�v�	 then ux�v�� � lx�v� and v� �� X�v� imply that
uy�v�� � ly�v�� Therefore p is inserted in the half line of L below ly�v�� Finally	 let
p � u�v�� and v� � X�v�� We then have uy�v�� � ly�v� and p is inserted in both	 L�

and L�

By induction on the number of boxes in the input we may now assume that
the chain partition C�� is optimal for X�v�� Choose an antichain B of the order
induced on X�v�	 such that B contains an element from each chain C� � C��� Since
every element in the antichain U 
 fvg is incomparable to every element in X�v�	
we conclude	 that A � B 
 U 
 fvg is an antichain� The antichain A consists of
a member of every chain of the chain partition C	 i�e�	 jAj � jCj� Since jAj � jCj
for every antichain A and every chain partition C	 equality can only hold if A is
maximum and Cminimum� This proves

Theorem � A minimum chain partition of a trapezoid order on n points� given its

box representation can be computed in time O�n log n� and linear space�

� Maximum antichain for trapezoid orders

We �rst describe the geometry of antichains in a box representation� Our algorithm
for maximumweighted antichains of trapezoid orders will be based on this geometric
structure rather than on duality as the algorithms presented so far� First	 we need
some de�nitions�
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De�ne the shadow of a point p as the set of points in the plain dominating p	 i�e�	
shadow�p� � fq � q � pg� The shadow of a set of points is the union of the shadows
of the elements� A downwards staircase is a sequence of horizontal and vertical line
segments that may be obtained as the topological boundary of the shadow of a set
of points� Note that any two di�erent points on a staircase are incomparable� If S
is a staircase and l� u�V � IR� a set of boxes we denote the set of elements whose
box intersect S by A�S�	 i�e�	 A�S� � fv � V � box�v� � S �� �g�

Lemma 	 Let P be an order given by a box representation� If S is a staircase

then A�S� is an antichain� Moreover� if A is an antichain of P then there exists a

staircase S such that A  A�S��

Proof� Assume that A�S� is not an antichain� Then there are v� v� � A�S� with
v � v�� Consequently	 for two di�erent points p � box�v� � S and p� � box�v�� � S
on the staircase we have p � p�� But this is impossible	 as noted above�

If A is an antichain of P	 let u�A� � fu�v� � v � Ag� Let staircase S be the
boundary of the shadow of u�A�� Now suppose that there is an element v � A	 such
that box�v� � S � �� Since u�v� must lie in the shadow of u�A�	 it follows that l�v�
is contained in the shadow of u�a�	 for some a � A� By de�nition	 u�a� � l�v� and
hence a � v in P	 a contradiction�

Given a weighted order P with a box representation we de�ne the weight of a

staircase S as the sum of weights of all boxes intersecting S� If S is a staircase and
p � S	 then we refer to the part of S that is above and to the left of p as staircase
ending in p and again its weight is the sum of weights of intersecting boxes�

The following algorithm computes an antichain of maximum weight� It uses two
di�erent data structures� The sweep line L halts at every point l�v� and u�v�	 for
v � V � Roughly	 it contains a list of weighted markers	 so that the weight of marker
m is the weight of a heaviest staircase ending in m� Moreover	 a heaviest staircase
ending in an arbitrary point y on L can be composed by joining the vertical line
segment from y to the next marker m above y with a heaviest staircase ending in
m� Structure L is initialized with a dummy point d of weight �	 such that d is above
all points that will ever be inserted into L� The second structure � contains a list
of all open boxes	 i�e�	 boxes which have their left sides already swept but not their
right ones� The total weight of all open boxes the upper sides of which lie between
points y	 and y� on L with y	 � y� is denoted by ��y	� y���
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MAXANTICHAIN�P� l� u� w�

for each p from left to right do
m	 �rst marker above p on L
if p � l�v� for some v � V then

add w�v� to all markers in interval 
ly�v�� uy�v��
insert a new item in � at height uy�v� with weight w�v�
m� 	 next marker below p on L
while W �m� � ��m�m�� � W �m�� do

remove m� from L
m� 	 next marker below p on L

if p � u�v� for some v � V then
insert a new marker mv at py in L
W �mv�	 W �m� � ��m�mv�
list�mv�	 list�m� 
 fpg
remove item at uy�v� from �

T 	 staircase of points in list�lowest�L��
for each v � V do

if v intersects T then A	 A 
 fvg
return A

Lemma 
 At the end of the main loop in Algorithm MAXANTICHAIN we have the

following invariant� If y is an arbitrary point on L and m the next marker above y�
then a maximum weighted staircase that ends in y on L has weight W �m����m� y��

Proof� LetW � denote the sweep line structure and �� denote the open box structure
before a halt of the sweep line L and letW and � be the pair of structures after the
halt� Let m be the �rst marker above y on L� The shadow of list�m� 
 fyg de�nes
a staircase S and Sy may denote that part of S that ends in point y� We show that
Sy has maximal weight W �m� � ��m� y��

At �rst	 suppose the sweep line L halts at some point l�v� for v � V � If y � uy�v�
nothing has changed� If m � uy�v� and y � uy�v� then Sy intersects the new box
v and has weight W �m� � ��m� y� � W ��m� � ����m� y� � w�v��� This weight
is maximal among all staircases ending in y by the invariance assumption� If m
lies between ly�v� and uy�v� then Sy has weight W �m� � ��m� y� � �W ��m� �
w�v�� � ���m� y� which again is maximal� If m � ly�v� then the weight of Sy is
W �m� � ��m� y� � W ��m� � ���m� y� which is the maximum weight of a staircase
that avoids v� On the other hand	 if a staircase S�

y ending in y intersects v then
there is a y� � ly�v�	 such that S�

y is composed of a staircase to y� and a vertical
segment from y to y�� Let m� be the �rst marker above y�� Since the case y� � ly�v�
was already considered and by the de�nition of �	 the weight of S�

y is at most

W �m�� � ��m�� y�� � ��y��m� � ��m� y� � W �m�� � ��m��m� � ��m� y��

Hence	 by the condition on the removal of markers in the algorithm	 the weight of
S�

y is at most W �m� � ��m� y�	 the weight of Sy�
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Now suppose L halts at some point u�v�� Since v is no longer open we have to
remove uy�v� from ��� On the other hand	 we have to maintain the invariant� Thus	
a new marker mv is inserted in L with weight W �mv� � W ��m� ����m�mv�	 where
m is the next marker above uy�v�� Let y be so that mv is the next marker above y	
then the weight of Sy is

W �mv� � ��mv� y� � W ��m� � ���m�mv� � ���mv� y� �W ��m� � ��m� y��

This weight is maximal by the invariance assumption	 since no new box has to be
considered�

Theorem � Let P � �V� P � be a trapezoid graph given by a box representation and

w�V � IR be a weighting of P� MAXANTICHAIN computes a maximally weighted

antichain of P�

Proof� After all boxes have been swept	 structure � is empty �i�e�	 there is no box
left open�� Hence	 the theorem follows from the invariant of Lemma ��

L may be implemented by a balanced binary tree� One has to be careful only
about adding some weight w to a whole interval 
l� u�� Let each node of the tree
have some extra �eld holding the increment in the weight for all nodes in its subtree�
During a rebalancing rotation this �elds must be corrected accordingly� But it is
easily seen that only a constant number of such �elds is a�ected� Consequently	 the
addition of some weight to an interval as well as insertion	 deletion	 predecessor and
successor queries	 and the computation of the weight of some element can all still
be done in time O�log n��

� may be implemented by any one dimensional range tree where insertion	 dele
tion	 and query again takes O�log n� time� The main loop is executed n times and
each step therein takes logarithmic time save the while loop� But in total the while
loop is executed at most n times since each removed point must have been inserted
before� Of course	 the test for intersection of a box v with staircase T can be done
in time O�log n�� In summary	 we obtain

Theorem � A maximum weighted antichain of a trapezoid order on n points� given

its box representation� can be computed in time O�n log n� and linear space�

Note that one can do without the � structure if one uses subtraction in the W
structure� But the above algorithm is easier to understand and it can be adapted
to the case where no subtraction is allowed �e�g�	 in semigroups��

We conclude this section with an open problem� We have given optimal algo
rithms for the classical chain and antichain problems for trapezoid orders� Also	 for
ktrapezoidal orders k � � we have obtained a fast algorithm for maximumweighted
chain� Is there an algorithm for maximum antichain for ktrapezoidal orders k � �
whose running time improves over the complexity of bipartite matching and hence
the complexity of the algorithm for general orders�
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� Algorithms for circle trapezoid graphs

A circle trapezoid is the region in a circle that lies between two noncrossing chords
and CTgraphs are the intersection graphs of families of circle trapezoids on a com
mon circle� Figure � gives an example� In this section we develop polynomial
algorithms for the maximumweighted clique and a maximumweighted independent
set problems on CTgraphs�

	�� Crossing graphs and independent sets of CTgraphs

LetG � �V�E� be a CTgraph	 of course	 we will assume that a representation ofG
is given� Let p be an arbitrary point on the circle and let Cp be the set of vertices of
G whose circle trapezoid contains p� Note that Cp induces a clique of G	 therefore	
an independent set of G can contain at most one element from Cp� Using p as the
�origin� of the circle and �xing an orientation �clockwise� of the circle we can de�ne
a unique representation for circle trapezoids� The representation consists of �tuple
�t	� t�� t�� t�� ��� The �rst four components are the corners of the circle trapezoid in
clockwise order starting from p� The �fth component � is a sign	 � or �	 where �
indicates that p is contained in one of the arcs of the circle trapezoid�

�

�

�

�

�

�

�
��

�

�

�

�

�
� �

Figure �� A circle trapezoid graph G with a representation

De�ne a double interval as a pair �I	� I�� of intervals on the real line	 where I� is
a subinterval of I		 i�e�	 I� � I	� Let I � �I	� I�� and J � �J	� J�� be double intervals�
We say I contains J if J	 � I� and call them disjoint if I	 � J	 � �� Two double
intervals are called crossing if they are not disjoint and non of them is contained in
the other� Call a graph G � �V�E� a crossing graph if its vertices can be put in one
to one correspondence to a collection of double intervals such that two vertices of G
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are adjacent if and only if their corresponding double intervals cross� It is not hard
to see that the class of crossing graphs contains both	 trapezoid graphs and overlap
graphs �recall that a graph is an overlap graph if and only if it is a circle graph��

Our next lemma relates CTgraphs and crossing graphs�

Lemma �� Let G � �V�E� be a CT�graph given by a representation and Cp be

the set of all vertices of G whose circular trapezoid share a speci�ed point p on the

circle�

For a subset W of V n Cp the subgraph of G induced by W is a crossing graph�

Proof� Given the circular trapezoid representation we associate to a vertex v � W
with circular trapezoid �t	� t�� t�� t���� two arcs along the circle� A	 is the arc from
t	 to t� and A� is the arc from t� to t�	 in both cases we choose the arc which does
not contain p� Obviously	 A� � A	� Cutting the circle at p we obtain a line with a
collection of double intervals representing the subgraph of G induced by W �

For v � V let N 
v� denote the set of neighbors of v together with v itself and
let G�v� be the subgraph of G induced by V n N 
v�� Also	 let Gp denote the
subgraph induced by V n Cp� We have remarked earlier that the vertices of Cp

form a clique in G� Therefore a maximum independent set I of G is either a
maximum independent set in Gp or there is a v � Cp	 such that I � I � 
 fvg where
I � is a maximum independent set of G�v�� Since Cp  N 
v� for all v � Cp the
lemma shows that each of the above graphs G�v�	 as well as Gp are crossing graphs�
This reduces the detection of a maximum independent set of a CTgraph to at
most n maximum independent set problems on crossing graphs� We therefore turn
the attention to the maximum independent set problem for crossing graphs� Our
algorithm for this problem is very much alike the algorithm given by Gavril 
Gav�
�see also Golumbic 
Gol�� for the case of overlap graphs�

For a pair of double intervals we have de�ned the relations containment	 dis
jointness and crossing and by de�nition every pair of double intervals is in exactly
one of these relations� The containment is a antisymmetric and transitive relation	
i�e�	 an order relation� For the disjointness we only need the �rst interval of each
double interval	 therefore	 we can transitively orient disjoint pairs by the relation
�lies entirely to the left�	 this gives an interval order�

To compute the maximum independent set of a crossing graph G � �V�E� given
by a family I of double intervals we proceed as follows� First	 the containment order
P � �V� P � and the interval order Q � �V�Q� corresponding to I are extracted and
a linear extension L � v	� � � � � vn of P is computed� We arti�cially extend P and
L by an element vn�	 of weight �	 such that vn�	 � vi for all i � �� � � � � n� This
preprocessing can be accomplished in time O�n��� Next	 the following algorithm is
called�
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MAXINDEPENDENTSET�P�Q� L�

for i � � to n� � do
Ui 	 fvj � vj � vi in Pg
C 	 maximumW weighted Qchain of elements of Ui

W �vi�	 w�vi� �
P

v�C
W �v�

I�vi�	 fvig 

S

v�C I�v�
return I�vn�	�

It is important to note	 that Ui only contains elements vj with j � i	 hence	
the weights W �vj� of all elements in Ui have already been computed before the ith
round� The following invariance of the algorithm is easily proved� At the end of the

ith round for all j � i the weight W �vj� is the weight of a maximum independent

set I�vj� containing only elements v � Uj 
 fvjg� i�e�� elements with v � vj in P�
From this invariant I�vn�	� is a maximum independent set for G�

Clearly	 every but the second instruction in the loop can be executed in O�n�
time� The second instruction itselve is a maximum chain computation in an interval
order� This problem can be solved in linear time when the endpoints of the intervals
are available in increasing order� For completeness we sketch an algorithm for this
problem� Visit the endpoints from left to right and maintain the weight 	 of the
longest chain among intervals whose right endpoint has already been seen� When
reaching the left endpoint of an interval	 say the interval of v	 we know that the
maximumweighted chain having v as maximal element has weightW �v� � 	�w�v��
At the right endpoint of v�s interval we update 	 by the rule 	 � maxf	�W �v�g�
Note that this algorithm can be seen as an one dimensional version of algorithm
MAXCHAIN in Section �	 i�e�	 instead of a sweep line we use a sweep point and can
thus save the search for the relevant marker�

Lemma �� Algorithm MAXINDEPENDENTSET solves the maximum weighted

independent set problem for crossing graphs in O�n���

Recall that the solution for the maximumindependent set problem for CTgraphs
is a either a maximum independent set in Gp or one of the sets I � I � 
 fvg where
v � Cp and I � is a maximum independent set in G�v�� We show next that having
applied algorithm MAXINDEPENDENTSET to Gp the problem for a each of the
graphs G�v�	 v � Cp	 can be solved by a single maximum chain computation in an
interval order	 i�e�	 in O�n� time�

Let v � Cp and let the circular trapezoid of v be given by �s	� s�� s�� s����� The
double intervals corresponding to vertices ofG�v� are exactly those with I	 � �s	� s��
or I	 � �s�� s��� Let vi be an element of G�v� and recall that the set Ui is the set of
elements whose double interval is contained in the double interval of vi� It follows
that Ui is contained in G�v� and hence that sets I�vi� and weights w�vi� computed
by MAXINDEPENDENTSET with input Gp and with input G�v� are equal� To
solve the problem for G�v� it thus su�ces to select the intervals contained in �s	� s��
or �s�� s�� and compute a maximum weighted chain of this set of intervals�
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Theorem �� The maximum weighted independent set problem for CT�graphs can

be solved in O�n���

	�� Cliques of CTgraphs

Let G � �V�E� be a CTgraph	 given by a circular trapezoid representation� A
clique C of G is called a Helly�clique with respect to the representation	 if there is
a point p in the interior of the circle	 such that the circle trapezoid of every vertex
v � C contains p� Our algorithm for the maximum clique problem on CTgraphs
proceeds in two stages� In the �rst stage it determines a maximumHellyclique ofG	
in the second stage a maximum nonHellyclique	 NHclique for short	 is computed�
The larger of the two cliques is a maximum clique for G�

The determination of a maximum Hellyclique is a purely geometrical problem�
Consider the set of �n chords of the circular trapezoids� These chords cut the
interior of the circle into regions� We de�ne the weight of a region as the number
of circular trapezoids that contain it� Impose an orientation on each chord	 such
that the interior of the trapezoid it bounds is to the left of the chord when looking
in positive direction� Assuming that the chords are in general position we �nd four
regions in the neighborhood of every crossing of chords� Given the weight of one of
these regions and the orientation of the chords	 we can easily determine the weights
of the other three regions� Simultaneously we can compute the actual set of vertices
whose circular trapezoids contain a region� It follows	 that a sweep line that halts
at every intersection of chords can maintain the weights �and the corresponding sets
of vertices� of the regions it intersects� The update at every crossing can be done
in constant time and there are less than �n� crossings� Hence	 the complexity of
the algorithm is dominated by the sorting of the crossings� We summarize� the
maximum Hellyclique can be found in O�n� log n��

We now turn to the case of NHcliques� A NHtriangle T in G is a three element
clique	 such that the circular trapezoids of the three vertices have no point in the
circle in common� Let T � fx� y� zg be a NHtriangle of G and for v � V let B�v�
be the circular trapezoid of v� Let c be one of the chords bounding B�x�	 we call
c the inner chord of x if B�x� is on one side of c and B�y� � B�z� is on the other
side of c� The side of c not containing B�x� is the outer side of x� The intersection
of the outer sides of the elements of a NHtriangle T is the enclosed area of T 	 of
course	 the enclosed area is a triangle in the interior of the circle� The de�nitions
are illustrated in Figure �	 the set f�� �� �g is a NHtriangle	 the outer sides of their
circular trapezoids are bold�

A family F of subsets of a set X has Helly number k if for every subfamily S of
F the property that any k members of S have nonempty intersection implies that
the intersection over all members of S is nonempty� It is well known	 that the Helly
number of convex objects in the plane is �	 see 
Gol�� As a consequence we obtain�

Lemma �� Every NH�clique in a CT�graph contains a NH�triangle�
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Based on this lemma an algorithm to compute a maximum NHclique in a CT
graph G can proceed as follows� Enumerate all NHtriangles in G and for each
NHtriangle T compute a maximum clique among the cliques containing T � Our
approach is only slightly more sophisticated� A NHtriangle T is called a maximal

triangle for a clique C	 if the enclosed area of T is maximal among the enclosed areas
of NHsubtriangles of C	 i�e�	 there is no NHsubtriangle T � of C	 whose enclosed area
contains the enclosed area of T �

In what follows we show how a maximum clique among the cliques containing a
given NHtriangle T as maximal triangle can be computed�

Lemma �� If C is a clique in G containing a NH�triangle T as a maximal triangle�

then every v � C has the property that the intersection of B�v� with each of the inner
chords cx for x � T is non�empty�

Proof� Suppose B�v� � cx � �	 then B�v� is completely on one side of cx� Since
B�v��B�x� �� � we conclude that B�v� cannot be on the outer side of cx� It follows
that T � � T 
 fvg n fxg is a NHtriangle contained in C and the enclosed area of
T � contains the enclosed area of T � This contradicts the assumption that T is a
maximal triangle for C�

For a NHtriangle T let V �T � be the set of vertices v � V such that the inter
section of B�v� with each of the inner chords cx for x � T is nonempty� As the
previous lemma shows	 a clique of G containing T as a maximal triangle is a subset
of V �T ��

The six endpoints of the inner chords of the elements of T partition the circle
into six disjoint arcs A	� � � � � A�� The numbering of these arcs is assumed to be
consecutive� We call the arcs Ai and Ai�� for i � �� �� � a pair of opposite arcs� An
easy case analysis proves the next lemma�

Lemma �� If v � V �T �� then there is at least one i � f�� �� �g� such that the

intersection of B�v� with both of Ai and Ai�� is non�empty�

Let f � V �T � � f�� �� �g be a function such that B�v� � Af�v �� � and B�v� �
Af�v�� �� � for every v � V �T �� Also let Vi�T � � fv � V �T � � f�v� � ig for
i � �� �� ��

Lemma �	 If i� j � f�� �� �g with i �� j then for all vi � Vi�T � and vj � Vj�T � the
circular trapezoids B�vi� and B�vj� intersect� i�e�� vi and vj are adjacent in G�

As a consequence we obtain that	 if Ci is a clique in the subgraph Gi�T � of G
induced by Vi�T � for i � �� �� �	 then T 
 C	 
 C� 
 C� is a clique in G� Moreover	
and more important�

Lemma �
 C is a maximum clique containing T as a maximal triangle� exactly if

Ci � C � Vi�T � is a maximum clique in Gi�T � for each i � �� �� ��
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We next show that the problem of �nding a maximum clique in Gi�T � for i �
�� �� � is a maximum clique problem in a trapezoid graph� By symmetry we may
restrict our attention to G	�T �� When speaking of an arc a� b on the circle we
henceforth mean that a and b are points on the circle and the arc emanates from a
turning clockwise to b�

Let A	 be the arc a	� a� and A� be the arc a�� a�� We �rst consider two easy
cases�
Case �� If v � V	�T � is such that B�v� contains either A	 or A�	 then v is adjacent
to every element in V	�T � n fvg and hence contained in every maximal clique of
G	�T �� �
Case �� If v � V	�T � is such that B�v� contains a	 and a� or a� and a�	 then v
is adjacent to every element in V	�T � n fvg and hence contained in every maximal
clique of G	�T �� �

If v � V	�T � is such that either Case � or Case � applies	 then de�ne B��v� as
the circular trapezoid spanned by the arcs A	 and A��

We now suppose that v � V	�T � is an element	 such that neither Case � nor
Case � applies to v�

Lemma �� One of the two chords at the border of B�v� joins a point in A	 with a

point in A��

Let B�v� be the convex hull of the arcs t	� t� and t�� t�� We may assume that at
least one of t	 and t� is in A	�

First suppose	 that t� � A	 and t� � A�	 i�e�	 the chord t�� t� joins a point in
A	 with a point in A�� Let t�� be the �rst of a� and t�	 when looking from t� in
clockwise direction	 also let t�	 be the �rst of a	 and t		 when looking from t� in
counterclockwise direction� De�ne B��v� as the circular trapezoid spanned by the
arcs t�	� t� and t�� t

�

��
If t	 � A	 and t� � A�	 then we de�ne t�� as the �rst of a� and t� in clockwise

direction from t	 and t�� as the �rst of a� and t� in counterclockwise direction from
t�� De�ne B��v� as the circular trapezoid spanned by the arcs t	� t�� and t��� t��

Lemma �� G	�T � is the intersection graph of the family of circular trapezoids

B��v� for v � V	�T ��

The circular trapezoid B��v� is spanned by one arc contained in A	 and one arc
in A� for every v � V	�T �� This obviously implies that the graph G	�T � a trapezoid
graph� We remark that a box representation of G	�T � can be produced in O�n��
Hence the maximum clique problem for G	�T � can be solved by the algorithm of
Section � �as remarked earlier the of equal coordinates in the set fl�v�� u�v� � v � V g
can be made di�erent easily��

Let us review the main steps of the a polynomial algorithm for the maximum
clique problem of CTgraphs� First	 the algorithm searches for a maximum Helly
clique in G� Then	 for every NHtriangle T in G a maximum clique C with the
property that T is a maximal triangle in C is found by solving three maximum clique
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instances for trapezoid graphs� A largest among the cliques found in the second
step and the clique of step one is the solution for the maximum clique problem
on G� In the analysis of the time complexity of the algorithm we have to count
O�n log n� for the computation of a maximum clique containing a NHtriangle T as
a maximal triangle� Unfortunately there can be as much as O�n�� NHtriangles in
a representation of G� We summarize the results of this subsection�

Theorem �� The maximum weighted clique problem for CT�graphs can be solved

in O�n� log n��

� Conclusion

We have shown how the box representation	 the sweep line paradigm and the anal
ogy with �dimensional orders may help design algorithms for trapezoid orders� In
particular we have obtained optimal O�n log n� algorithms for the four problems
considered� It remains to investigate other problems	 e�g	 domination problems	 on
the class of trapezoid graphs�

The new class of circular trapezoid graphs has been introduced� The maximum
clique and maximum independent set problems on this large class have been shown
to be polinomially solvable� Trapezoid graph algorithms are important subroutines
for these algorithms� Similarly	 they may serve as subroutines for algorithms to
compute parameters of tolerance graphs�
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