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Abstract

For positive integers d and n let fd�n� denote the maximum cardinality of a subset of
the nd�grid f�� �� � � � � ngd with distinct mutual euclidean distances� Improving earlier
results of Erd	os and Guy
 it will be shown that f��n� � c � n��� and
 for d � �
 that
fd�n� � cd �n

��� ��lnn����
 where c� cd � � are constants� Also improvements of lower
bounds of Erd	os and Alon on the size of Sidon�sets in f��� ��� � � � � n�g are given�
Furthermore
 it will be proven that any set of n points in the plane contains a subset
with distinct mutual distances of size c� �n

���
 and for point sets in general position

i�e� no three points on a line
 of size c� � n

��� with constants c�� c� � �� To do so
 it
will be shown that for n points in R� with distinct distances d�� d�� � � � � dt
 where di
has multiplicity mi
 one has

Pt

i��m
�
i � c � n���� for a positive constant c� If the n

points are in general position
 then we prove
Pt

i��m
�
i � c �n� for a positive constant

c and this bound is tight� This conrms a conjecture of Erd	os and Fishburn�
Moreover
 we give an e�cient sequential algorithm for nding a subset of a given set
with the desired properties
 for example with distinct distances
 of size as guaranteed
by the probabilistic method under a more general setting�
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� Introduction

In �EG	 Erd
os and Guy considered the following problem� Determine the maximum size
of a subset X of the n � n�grid that is the set f�� �� � � � � ng � f�� �� � � � � ng such that all
mutual euclidean distances between di�erent points of X are distinct compare also �Gu	�
Denoting the cardinality of such a set X by f��n� they proved the following�

Theorem � �EG� For every integer n � ��

n
�
��

c�
ln ln n � f��n� � c� � n

�lnn����
� ���

where c�� c� � � are constants�

To obtain the lower bound for f��n� Erd
os and Guy used Greedy�type arguments�
The upper bound for f��n� follows from a result of Landau �La	 namely that the number
of integers less than x which are representable as a sum of two squares is asymptotically
c � x

lnx����
 where c is a positive constant�

Recently in �Th	 by using more re�ned counting techniques the lower bound from ���
has been improved�

Theorem � �Th� For all integers n � ��

f��n� � c � n��	

�lnn���	
�

where c � � is a constant�

In this paper we will further improve the lower bound on f��n� by using uncrowded
hypergraphs cf� �AKPSS	 and �ALR	 as well as some results from number theory namely
we will show�

Theorem � For integers n � ��

f��n� � c � n��	 �
where c � � is a constant�

In order to prove this we will show a so�called anti�Ramsey theorem which will be
given in Section �� This anti�Ramsey result together with some number theoretic results
which we deduce in Section � also yields lower bounds for the analog of the problem of
Erd
os and Guy in higher dimensions� Let fd�n� denote the maximum size of a subset X
of the d�dimensional grid f�� �� � � � � ngd such that all mutual euclidean distances within X

are distinct�
We remark that for d � � one has f��n� � ��

p
n� by using perfect di�erence sets

cf� �EG	� For d � � Erd
os and Guy showed the following�

Theorem � �EG� Let d � � be a positive integer and � � � a �xed real� Then� for
positive integers n su�ciently large�

n��	�� � fd�n� � c �
p
d � n � ���

where c � � is a constant�
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Indeed in �EG	 it has been conjectured that

fd�n� � c � d��	 � n��	 � �lnn���	

for d � ��
In Section � we improve the lower bound ��� on fd�n��

Theorem � Let d � � be a positive integer� Then for every integer n � ��

fd�n� � cd � n��	 � �ln n���	 �

where cd � � is a constant only dependent on d�

In Section � we will consider the corresponding selection problems for points in the
plane in arbitrary position� We will show that every n�point set in the euclidean plane
R� contains a subset X with mutual distinct distances such that jX j � c � n��� for some
constant c � �� This improves a former result from �Th	 where the lower bound c � n��

has been shown� Moreover we will show that under the assumption that the n points are
in general position �no three on a line� the lower bound on jX j can be improved to c �n��	�
To do so we will prove a conjecture of Erd
os and Fishburn �Fi	 �EF	� Namely we will
show the following� if n points in general position in R� are given with distinct distances
d�� d�� � � � � dt where di occurs with multiplicity mi i � �� �� � � � � t then

Pt
i��m

�
i � c � n	

for some positive constant c� The regular n�gon shows that this bound is tight up to a
constant factor� Moreover we will show that for the corresponding problem for n arbitrary
points in R� one has

Pt
i��m

�
i � c � n	��� where c is a positive constant�

In Section � we will give the new lower bound c � n��	 �c a positive constant� on the
size of a B��subset of the set f��� ��� � � � � n�g� This improves earlier results of Alon and
Erd
os �AE	�

Finally in Section � we consider some algorithmic aspects of these selection problems
under a more general setting� In particular using derandomization we will give an e�cient
sequential algorithm that �nds in every edge coloring of the complete graph Kn a totally
multicolored complete subgraph of size at least as large as guaranteed by the probabilistic
method� This algorithm has running time O

�
n� lnn �

P
im

�
i

�
 where mi is the number

of edges in color i�

� An Anti�Ramsey Result

In this section we will prove a so�called anti�Ramsey theorem which we will use for the
proofs of Theorems � and �� Before stating it we will introduce some notation� For further
references to anti�Ramsey results we refer to �ALR	�

A graph G with vertex set V and edge set E is denoted by G � �V�E�� By Kn we
denote the complete graph on n vertices� A mapping f �E�Kn� �� T is called an edge
coloring of Kn with colors t � T � For t � T  f���t� is the set of all edges colored by color

t� By dt � ��jf��t�j
n we denote the average degree of color t � T � Let dt be the maximum

degree of color t i�e� the maximum number of edges in color t incident at some vertex
and let � � max fdt j t � Tg� Finally a complete subgraph Kk of Kn is called totally
multicolored if the restriction f jE�Kk� to the edge set of Kk is a one�to�one coloring�



�

Theorem 	 For every � � � there exists a constant C � C��� � �� such that for all
integers n � � the following holds�

Let f �E�Kn� �� T be a coloring and suppose � satis�es the following conditions

�i� � � P
t�T

d
�
t � and

�ii� � � n����� ��	���

Then there exists a totally multicolored subgraph Kk of Kn with

k � C �
�
n�

�

���	

� �lnn���	 � ���

For the proof of Theorem � we will use the concept of uncrowded hypergraphs� Let
G � �V� E� be a hypergraph with vertex set V and edge set E � For a vertex v � V let
degG�v� denote the degree of v in G i�e� the number of edges E � E containing v� By
Deg�G� � max fdegG�v� j v � V g we denote the maximum degree of G� A hypergraph
is k�uniform if each edge E � E has cardinality k� A ��cycle in G is given by a set of
two distinct edges from E  which intersect in at least two elements� A hypergraph is
called uncrowded if it contains no ��cycle� Finally the independence number 	�G� is the
maximum cardinality of a subset of V which contains no edges from E �

We will use the following result from �DLR	 which is an extension of a theorem from
�AKPSS	�

Theorem 
 �DLR� Let G � �V� E� be a k�uniform hypergraph� k � �� with jV j � n and
maximum degree Deg�G� � tk��� If

�i� G contains no ��cycles� and

�ii� t is su�ciently large� i�e� t � t��k�

then

	�G� � ck � n
t
� �ln t� �

k�� �

where ck � � is a constant depending only on k�

We will now prove Theorem ��
Proof� It is su�cient to prove the theorem for su�ciently large n say n � n�� To see
this assume the theorem holds for n � n� for some n� and some constant C � �� For
values of n less than n� the lower bound of the theorem is less than C n

���
� �lnn����	� By

adapting the constant C the inequality ��� holds for all n� Thus we can assume that n is
su�ciently large throughout the proof�

Let V � f�� �� � � � � ng be the vertex set of a complete graph Kn and let f �E�Kn� �� T
be an edge coloring� Let � satisfy requirements �i� and �ii� in Theorem �� We can also
assume that � satis�es

� 
 n� ln n � ���

since otherwise the assertion ��� is trivial and we are done�
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We will construct i�uniform hypergraphs Gi � �V� Ei� i � �� � with the same vertex
set as follows� fv�� v�� v	g � E	 � f�fv�� v�g� � f�fv�� v	g�

fv�� v�� v	� v�g � E� � f�fv�� v�g� � f�fv	� v�g��
Observe that a subset X 	 V yields a totally multicolored complete subgraph if and only
if X is an independent set in both G	 and G�� Our aim will be to give a lower bound for
the maximum size of such an independent set� We cannot apply Theorem � directly as
the Gi i � �� � are in general not uncrowded� To come to such an uncrowded situation we
will pick a random subset of the vertex set V  and show that an induced subhypergraph
can be made uncrowded�

First we will give upper bounds for the cardinalities of E	 and E�� For jE	j note that
every pair fv� wg of vertices can be extended in at most ��� � ways to an edge E � E	�
Thus

jE	j 

�
n

�

�
� � �� 
 n� �� � ���

Concerning the size of E� we obviously have

jE�j �
X
t�T

�jf���t�j
�

�
�

As � � jf���t�j � dt � n it follows with �i� that

jE�j �
X
t�T

�dt�n
�

�

�



n�

�
�
X
t�T

d
�
t �

�

�
� n� � � � ���

Next we will count the number of ��cycles in G�� Let c��G� denote the number of ��
cycles in a hypergraph G � �V� E�� We will count the ��cycles more carefully� for j � �� �
let c��j�G� be the number of ��� j��cycles i�e� the number of pairs fE�E�g � �E 	� with
jE 
 E�j � j� Clearly c��G� � c����G� � c��	�G��

Concerning c����G�� choose an edge E � E� and then pick a pair fv� wg � E of vertices�
The number of edges E� � E� with E 
E� � fv� wg is less than the number of pairs fx� yg
with f�fv� wg� � f�fx� yg� or f�fv� xg� � f�fw� yg�� There are at most �n� such pairs
hence with ��� we have

c����G�� � jE�j �
�

�

�

�
� � � n �� � �

�
� n	 � � �� � ���

To count the number of ��� ���cycles we �x an edge E � E� and a three�element subset
S � E� Then S can be extended in at most

�	
�

� �� ways to an edge E� � E� hence

c��	�G�� � jE�j �
�

�

�

�
�
�

�

�

�
�� � �

�
� n� � � �� � ���

Now we choose a random subset of V by picking each vertex with probability

p � n���	�� � ����	 �



�

where � 
 � 
 ���� independently of the other vertices� For the random subset V � 	 V

consider the induced random subhypergraphs G�i � �V �� E �i� for i � �� � where E �i �
Ei 
 �V �	i� Moreover let c��i�V �� i � �� � be random variables counting the number of
��� i��cycles in G ���

Assumption ��� makes sure that pn�� as n�� so we have

Prob �jV �j  p � n� � �� o��� ���

by Cherno��s inequality�
For a random variable X let E�X� denote its expectation� From ��� and �ii� we obtain

for � 
 �
	 that

E�jE �	j� � p	 � jE	j 
 p	 � n� �� � pn � n
��	��� ��
���	

� pn � �

n��	�����
� o�pn� � ����

By ��� and ��� we infer for � 
 �
��

E�c��G �

��� � p� � c����G�� � p� � c��	�G�� � �

�
� p� � n	 � � �� �

�

�
� p� � n� � � ��

�
�pn

�
�
�
n��	��� ��

���	
�

�

n��	��� � ���	
�

� �pn

�
�
�
n�����	�� �

����

n������	���

�
� o�pn� � ����

Moreover we have
E�jE ��j� � p� � jE�j � ����

Using Markov�s inequality we infer with ��� ���� ���� and ���� that there exists a subset
V � 	 V with jV �j  p �n such that the induced hypergraphs G�i � �V �� E �i� i � �� � satisfy
the following� jE �	j � o�pn� and c��G��� � o�pn� and also jE ��j � � � p� � jE�j� Now delete one
vertex from each triple E � E �	 and from each ��cycle in G��� Moreover delete all vertices
of degree bigger than

�� � p� � jE�j
pn

�
�� � p	 � jE�j

n
�

For n su�ciently large we obtain a subset V � 	 V � of at least pn
� vertices containing

no edge from E	 and such that the induced subhypergraph G�� � �V �� �V �	� 
 E�� has no
��cycle and has maximum degree

Deg�G��� � �� � p	 � jE�j
n

� �p	n� � �n	� � t	 �

by ��� with t de�ned by the equation� We apply Theorem � to the hypergraph G�� and
infer

	�G��� � c� � pn��

���	 � pn��	���	 �
�

ln
�

���	 � n�
		��	 � C �

�
n�

�

���	

� �lnn���	 �
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Corollary � Let f �E�Kn� �� T be a coloring of the edges of the complete graph on n

vertices� where � � O�n���� for a �xed � � ��
Then� for n � � there exists a totally multicolored subgraph Kk with

k � c �
� n

�

	��	 � �lnn���	 �

where c � c�� � � � is a constant�

Proof� By Theorem � with � � n �� and taking � 
 �
� �

� Two Results from Number Theory

In this section we are concerned with two results from analytic number theory that we
will need for the proofs of Theorem � and �� For convenience we will use Vinogradov�s
notation f�n� �� g�n� for f�n� � O�g�n���

Denition � Let rd�m� be the number of representations of m in the form

m � x�� � x�� � � � �� x�d �

where x�� x�� � � � � xd are integers�

The following result for the ��dimensional case is due to Ramanujan �see also �Wi	��

Theorem �� �Rm�
nX

m��

�r��m��� � ��n lnn��

In fact Ramanujan determines also the leading constant�
Here we will give an alternative proof for the upper bound� Our approach uses simple

geometric considerations and might be of interest by itself� For doing so and for later
purposes we will use the following de�nition and lemma�

Denition �� Let P be a �nite set of points in the plane� Consider the bipartite graph
B � ��P 	� � P� I� with

�fp� qg� z� � I �� z lies on the perpendicular bisector of p and q�

Then de�ne ��P � �� jI j�

Roughly speaking ��P � is the number of incidences between perpendicular bisectors
determined by P and points of P �each bisector can be generated by several pairs of
points��� Note that ��P � is nearly the same as the number of isosceles triangles determined
by P apart from the fact that equilateral triangles are counted � times�



�

Lemma �� Let P be a set of n points in the plane R�� Let the points of P determine
distinct distances d�� d�� � � � � dt� where di occurs with multiplicity mi for i � �� �� � � � � t�
Then�

tX
i��

m�
i �

n

�
�
�

��P � �

�
n

�

��
�

The idea of the proof is similar to an argument of Szemer�edi �see �E	��
Proof� Let P be the set of n given points in the plane� Notice that a point z lies on the
bisector of p and q if and only if p and q have the same distance from z� For z � P and
i � �� �� � � � � t let mi�z� denote the number of points in P  which have distance di from z�
Using Jensen�s inequality we infer that

��P � �
X
z�P

tX
i��

�
mi�z�

�

�
�

tX
i��

X
z�P

�
mi�z�

�

�
�

tX
i��

n �
��mi

n

�

�
�

�

n
�

tX
i��

m�
i �

tX
i��

mi

�
�

n
�

tX
i��

m�
i �

�
n

�

�
�

Thus
tX

i��

m�
i �

n

�
�
�

��P � �

�
n

�

��
�

Lemma �� Let Gn be the set of points of the n�n�grid f�� �� � � � � n��g�f�� �� � � � � n��g�
Then�

��Gn� � c � n� � ln n �

for some positive constant c�

Note that ��Gn� is equal to the number of isosceles triangles since Gn contains no equi�
lateral triangle�
Proof� For distinct points p�� p� in the n�n grid Gn where p� � �x�� y�� and p� � �x�� y��
let l be the line through p� and p� and de�ne

s�l� � max



�

g
� jx� � x�j� �

g
� jy� � y�j

�
�

where g � gcd�x� � x�� y� � y��� Note that s�l� only depends on l and is independent
of the choice of p� and p�� We observe that jl 
 Gnj � n

sl� � Let l� be the perpendicular

bisector of p� and p� then we also have jl� 
 Gnj � n
sl� �

To bound ��Gn� we �x an arbitrary point p� � P and an integer � � s � n� Choose
a line l through p� with s�l� � s� The number of such lines is at most �s� Then we select
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a point p� � l 
 Gn and a point z � l� 
 Gn where l� is the perpendicular bisector of p�
and p�� For both p� and z there are at most n

s possibilities� Thus

��Gn� � n� �
nX

s��

�s � n
s
� n
s

� �n� �
nX

s��

�

s
� �n� �

�
� �

Z n

�

�

x
dx

�
� c � n� � lnn�

Corollary �� Let Gn be the set of points of the n�n grid� For i � �� �� � � � � ��n� ��� let
mi denote the occurrence of distance

p
i between di�erent points of Gn� Then�

�n����X
i��

m�
i � c� � n� � lnn

for some positive constant c��

Proof� By Lemmas �� and �� we obtain

�n����X
i��

m�
i �

n�

�
�
�
c � n� � lnn �

�
n�

�

��
� c� � n� � ln n �

Corollary �� There exists a positive constant c	 such that for every positive integer n

nX
i��

�r��i��
� � c	 � n � lnn �

Proof� Consider a circle of radius at most n��
� around an arbitrary point of the n�n�grid�

Then at least a quarter of this circle lies inside the n� n�grid� Thus

n��
� ��X
i��

�
n� � r��i�

�

��

�
�n����X

i��

m�
i �

where mi denotes the occurrence of distance
p
i between di�erent points in the n�n grid�

By Corollary �� we deduce
Pn

i���r��i��
� � c	 � n � ln n for some positive constant c	�

Remark� By using the same ideas it is also possible to prove the lower bound in Theorem
���

For higher dimensions we will show



��

Theorem �	

nX
m��

�rd�m��� � O�nd���� for d � ��

Remark� It can be shown that the bound given in Theorem �� is asymptotically sharp
by using for example Cauchy�s inequality together with the fact that

Pn
m�� rd�m� 

�d��

�d����� n
d���

We are going to prove Theorem �� by using the Hardy�Littlewood circle�method �see
�Dp	 �Vg	�� Throughout the remaining part of this section let N �� bpnc and suppose
d � �� De�ne Rd�m�N� as the number of representations of m in the form

m � x�� � x�� � � � �� x�d � � � xi � N�

Lemma �
 Let � � � and N � bpnc� then
nX

m��

�rd�m��� � cd

nX
m��

�Rd�m�N��� � O�nd�	�����

with a constant cd depending only on d�

Proof� It is easy to see that we can estimate

Rd�m�N� � rd�m� � �d �Rd�m�N� � d � rd���m�

for m � n� As r��m� � O�m��� for every �� � � we have

rs�m� � �
p
m�s�� �O�m��� � O�ms�������� ����

for s � �� We can then estimate

�rd�m��� � ��d � �Rd�m�N��� � O�md�������

and the assertion follows�

De�ne e�y� �� e��iy and f�	� ��
PN

x�� e�	x
�� for real numbers 	�

Lemma ��

dnX
m��

�Rd�m�N��� �

�Z
�

jf�	�j�d d	�

Proof� First we observe that

�f�	��d �
NX

x���

� � �
NX

xd��

e
�
	 � �x�� � � � �� x�d�

�
�

dnX
m��

Rd�m�N� � e�	m��
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hence ����f�	��d
���� �

dnX
m���

Rd�m�� N� � e�	m��
dnX

m���

Rd�m�� N� � e��	m���

If we integrate this we obtain

�Z
�

jf�	�j�d d	 �
X

��m��m��dn

Rd�m�� N� �Rd�m�� N� �
�Z

�

e�	 � �m� �m��� d	�

The integral on the right hand side is � for m� �� m� and � for m� � m� thus

�Z
�

jf�	�j�d d	 �
dnX

m��

�Rd�m�N��� �

In order to estimate
R �
� jf�	�j�d d	 we break the integration interval into two parts

called major�arcs and minor�arcs� The major�arcs will determine the order of magnitude
while the contribution of the minor�arcs will be negligible�

In the following calculations let � 
  
 ��� be a �xed real number� For integers a� q
with � � a � q � N � and �a� q� � � de�ne the major�arcs as

Ma�q �� f	 � R � j	� a�qj 
 N����g�
We observe that these major�arcs are disjoint since their lengths are much smaller than
the distances between their centers� Let M denote the union of the Ma�q� It is convenient
to shift the integration interval ��� �	 to the right to U �� �N����� � �N����	� As f�	� �
f�	 � �� we have

�Z
�

jf�	�j�d d	 �

Z
U

jf�	�j�d d	�

Now M� U by de�nition� The set m �� U nM forms the minor�arcs�
To see that the minor�arcs can be neglected in order to prove Theorem �� we use the

following

Lemma �� Suppose s � �� thenZ
m

jf�	�js d	 � O�ns������
�

� �

where � is a constant depending on �

This lemma can be found for example in �Dp	 and �Vg	� Using this we immediately get
for d � � that Z

m

jf�	�j�d d	 � O�nd����
�

� � ����



��

where � is a constant depending on �
Thus it remains to prove thatZ

M

jf�	�j�d d	 � O�nd��� �

De�ne

Sa�q ��

qX
z��

e�az��q� and I��� ��

NZ
�

e����� d��

For the treatment of the major�arcs we use the following lemmas�

Lemma �� �Dp� If 	 � Ma�q� then

f�	� � V �	� � O�N���

with V �	� �� q�� � Sa�q � I�	� a�q��

The notation V �	� is a bit sloppy because V also depends on a and q� Nevertheless
there should be no confusion since 	 determines the major�arc Ma�q in which it lies�

Lemma �� �Dp� Let a� q be relative prime integers with q � �� Then for every � � ��

jSa�qj � O�q�������

Now let 	 � Ma�q� Lemma �� and the obvious fact that

jV �	�j � jq�� � Sa�q � I�	� a�q�j � N

yields
�f�	���d � �V �	���d � O�N�d�������

Since the measure of M is bounded by O�N���	�� and since  
 ��� we can again
neglect the O�term and consider only

R
M jV �	�j�d d	�

By Lemma �� we see that

jV �	�j�d � jq��Sa�qj�d � jI�	� a�q�j�d �� q�d��� � jI�	� a�q�j�d

for 	 � Ma�q� Substituting 	 � a�q � � impliesZ
Ma�q

jV �	�j�d d	 �� q�d��� �
Z

j�j	N����

jI���j�d d��

Summing up over all major�arcs gives

N�X
q��

qX
a��

�a�q	��

Z
Ma�q

jV �	�j�d d	 ��
N�X
q��

qX
a��

�a�q	��

q�d��
� �

Z
j�j	N����

jI���j�d d�
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�

� �X

q��

q��d��
�

�
A �

Z
j�j	N����

jI���j�d d� � const �
Z

j�j	N����

jI���j�d d��

The in�nite sum converges since d � �� By substituting � � N � t and � � N�� � � in
I��� �

R N
� e����� d� we obtain

Z
j�j	N����

jI���j�d d� � N�d�� �
Z

j�j	N�

������
�Z

�

e��t�� dt

������
�d

d�

� nd�� �
Z

j�j	N�

������
�Z

�

e��t�� dt

������
�d

d� � ����

since N � bpnc�
We want to show that the outer integral is bounded from above independent of n� By

substituting t � ����z and by the fact that
R�
� cos�x�� dx and

R�
� sin�x�� dx are bounded

one can show that ������
�Z

�

e��t�� dt

������ �

��������
���� �

����Z
�

e�z�� dz

������� �� �
���� � ����

for � � �� On the other hand obviously������
�Z

�

e��t�� dt

������ � � � ����

This enables us to extend the integration in ���� to in�nity�

��Z
��

������
�Z

�

e��t�� dt

������
�d

d� �

��Z
��

������
�Z

�

e��t�� dt

������
�d

d� � � �
��Z
�

������
�Z

�

e��t�� dt

������
�d

d�

�� � � � � � �
��Z
�

��d d� � O���

since d � �� There we made use of ���� and ����� Thus we have proved

Lemma �� Z
M

jf�	�j�d d	 � O�nd����

Because of the fact that
R �
� �

R
M �

R
m and by ���� we have

Corollary ��

�Z
�

jf�	�j�d d	 � O�nd����

Now Lemma �� and �� and Corollary �� imply Theorem ���



��

� Grid Points

In this section we will give the proofs for Theorems � and �� First we will show Theorem
��
Proof� Given the n�n�grid Gn we form a complete graph Kn� with vertex set f�� �� � � � � ng�
f�� �� � � � � ng� We color the edges fx� yg by the square of the euclidean distance of their
endpoints x and y� For �xed positive integer t and every grid point v notice that the
number of grid points w with euclidean distance

p
t from v is bounded from above by the

number of representations of t as a sum of two squares� Hence the average degrees dt of
color t satisfy dt � r��t� and for the maximum degree � we have that

� � nc�� ln lnn � ����

where c� is a positive constant by a result of Wigert cf� �HW	� By Theorem �� we have

�n����X
t��

d
�
t �

�n����X
t��

�r��t��
� � c� � n� � lnn �

where c� is a positive constant� Setting � � C �n� � ln n for a positive constant C which is
large enough we see with ���� that �i� and �ii� in Theorem � are satis�ed �notice that the
number of vertices is n��� Hence there exists a totally multicolored complete subgraph
on k vertices with

k � c� �
�

n�

n� � ln n
���	

� �lnn����	 � c � n��	 �

The vertices of this subgraph determine k points in the n � n�grid with mutual distinct
distances� We remark that we could have also used Corollary �� to obtain the same con�
clusion�

Next we will prove Theorem ��
Proof� Fix a positive integer d � �� We proceed as in the proof given above by coloring
the edges of the complete graph on nd vertices by the square of the euclidean distances of
the corresponding endpoints� Clearly dt � rd�t� and

� � nd������
�

for any �xed �� � � by �����
Now

dn����X
t��

d
�
t �

dn����X
t��

�rd�t��
� � O

�
dd�� � n�d��

	
����

by Theorem ��� With � � C �n�d�� where C � � is a large enough constant requirements
�i� and �ii� of Theorem � are satis�ed� Hence there exists a totally multicolored complete
subgraph on k vertices with

k � c�d� �
�

n�d

n�d��

���	

�
�

ln nd
	��	 � cd � n��	 � �lnn���	 �
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which yields the desired result�

� Points in Arbitrary Position

In this section we will study the maximum cardinality of a subset of n arbitrary points
in the euclidean plane R� such that the mutual distances among the points of X are
distinct� Moreover we will consider the same question for n points in general position �no
three on a line� in R��

Theorem �� Let n arbitrary points in the plane R� be given� Let the n points deter�
mine distinct distances d�� d�� � � � � dt� where distance di occurs with multiplicity mi for
i � �� �� � � � � t�
Then

tX
i��

m�
i � c � n�	�� �

where c � � is a constant�

Remarks� ��� Spencer Szemer�edi and Trotter proved in �SST	 that under the assumptions
of Theorem �� one has mi � c� � n��	 for i � �� �� � � � � t where c� is a positive constant�
Their result applied in the straightforward way yields

Pt
i��m

�
i � max fm�� m�� � � � � mtg �Pt

i��mi � c
� � n��	 � �n�� � cn���	 for a positive constant c� Another way to get this upper

bound is by using the result of Pach and Sharir �PS	 that the number of isosceles triangles
is bounded by O�n��	�� Then by Lemma �� one obtains that

Pt
i��m

�
i � c�n

���	 where
c� is a positive constant�

��� For the points of the
p
n � p

n�grid we have
P

m�
i � ��n	 ln n�� One might

conjecture that this upper bound holds for any set of n points in the euclidean plane�

For the proof of Theorem �� we will use

Lemma �� Let � � S� � S� � � � � � St and m� � m� � � � � � mt � � be sequences of
real numbers such that

jX
i��

mi � Sj for j � �� �� � � � � t� ����

Then

tX
i��

m�
i �

tX
i��

�Si � Si���
� � ����

Proof� We will apply induction on t� For t � � the assertion is trivial hence assume
t � � and that the conclusion of the lemma holds for all values �� �� � � � � t � �� For given
S�� S�� � � � � St it su�ces to show ���� for any sequence m� � m� � � � � � mt satisfying
���� and maximizing the expression

Pt
i��m

�
i � Let m�� m�� � � � � mt be such a sequence� If



��

mt � � then ���� is clearly satis�ed by the induction hypothesis hence we can assume
that mt �� ��

Suppose �rst that
Pj

i��mi 
 Sj for all j � �� �� � � � � t� �� Then de�ne a new sequence
m�

�� m
�
�� � � � � m

�
t as follows

m�
� � m� � �

m�
i � mi for i � �� �� � � � � t� �

m�
t � mt � �

where � � min fmt� S� �m�� S� � �m� � m��� � � � � St�� �
Pt��

i��mig� By assumption � �

� and hence
Pt

i��m
��
i �

Pt
i��m

�
i  which contradicts the maximality of the sequence

m�� m�� � � � � mt�
Thus there is a k � � k � t� � with

kX
i��

mi � Sk � ����

By the induction assumption it follows that

kX
i��

m�
i �

kX
i��

�Si � Si���
� � ����

By ���� and ���� we have
Pj

i�k��mi � Sj � Sk for j � k � �� k � �� � � � � t� Using again
the induction assumption we infer that

tX
i�k��

m�
i �

tX
i�k��

��Si � Sk�� �Si�� � Sk��� �
tX

i�k��

�Si � Si���
� � ����

thus combining ���� and ���� we obtain
Pt

i��m
�
i �

Pt
i�� �Si � Si���

� which �nishes the
induction step�

Let P be a set of points in the plane R� and let C be a set of circles in R�� De�ne
a bipartite graph G with vertex set P � C and edge set E where �p� c� � E p � P and
c � C if and only if p lies on the circle c� Let I�P�C� denote the number of incidences
between points and circle that is the number of edges in this bipartite graph G� In our
arguments we will use the following result of Clarkson Edelsbrunner Guibas Sharir and
Welzl�

Theorem �	 �CEGSW� Let P be a set of points in R� and let C be a set of circles in
R�� Then

I�P�C� � O
�
jP j	�� � jCj��� � jP j� jCj

	
� ����

Now we are ready to prove Theorem ���
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Proof� Let P � R� be a set of n points in the plane� Assume that m� � m� � � � � � mt�
Around each point p � P draw circles with radius d�� d�� � � � � dt� For j � �� �� � � � � t let Cj

be the set of all such circles with radius d�� d�� � � � � dj� Then we have jCj j � jn and

I�P�Cj� � � �
jX

i��

mi � ����

Thus by ���� we have

I�P�Cj� � c� � n	�� � �jn���� � ����

where c� � � is a constant�
Combining ���� and ���� we infer that

jX
i��

mi � c�
�
� n��� � j���

for j � �� �� � � � � t�
On the other hand we have

lX
i��

mi �
�
n

�

�



n�

�
����

for l � �� �� � � � � t�
Put c� � max f���� c���g and

Sj �



c� � n��� � j��� if � � j � n	��

c� � n� if n	�� 
 j � t�

Clearly the sequences S�� S�� � � � � St and m�� m�� � � � � mt satisfy the assumptions of Lemma
��� Hence

tX
i��

m�
i �

tX
i��

�Si � Si���
� �

n���X
i��

�Si � Si���
� � c�� � n���� �

n���X
i��

�
i���� �i� �����

	�
� ����

Since i��� � �i� ����� � i���� for i � � ���� becomes

tX
i��

m�
i � c�� � n���� �

n���X
i��

i���� � ����

The function g�x� � x���� x � � is decreasing thus

n���X
i��

i���� � ����� �

Z n���

�
x����dx � � �

�

�
�n
��� � �� 


�

�
n
��� �

We infer with ���� that
tX

i��

m�
i � c � n�	��



��

for some constant c � ��

Surprisingly the situation changes radically if our point set is in general position i�e�
no three points lie on a common line� More generally we have

Theorem �
 Let P be a set of n points in the plane R� such that at most s points are
on a line� If these points determine distinct distances d�� d�� � � � � dt with corresponding
multiplicities m�� m�� � � � � mt� then

tX
i��

m�
i �

�s � ��n

�
�
�
n

�

�
� ����

Remark� If one assumes in contrast to Theorem �� that the n points lie on s lines
�instead of  at most s points on a line�� then one can show by a similar argument thatP

m�
i � sn

�
n
�

�
holds�

Proof� We will give an upper bound for ��P � �see De�nition ���� By assumption the
perpendicular bisector of any two points p and q contains at most s points of P � Thus

��P � � s �
�
n

�

�
� ����

By Lemma �� we infer that

tX
i��

m�
i �

n

�
�
�

��P � �

�
n

�

��
� �s � ��n

�
�
�
n

�

�
�

Theorem �� Let P be a set of n points in the plane R� in general position� If these points
determine the distinct distances d�� d�� � � � � dt with multiplicities m�� m�� � � � � mt� then

tX
i��

m�
i �

�

�
n��n� �� � ����

If we further assume that the n points are in convex position� then

tX
i��

m�
i �

�

�
n��n� ��� n�

�
�

This proves a conjecture of Erd
os and Fishburn �Fi	 �EF	� In their paper �EF	 an even
stronger statement is conjectured namely that for convex n�gons one has

!
tX

i��

m�
i �

n� � �n� ��

�
"
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for n � � being an odd integer� For n � �� an even integer it is stated in �EF	 that perhaps

!
tX

i��

m�
i �

n� � ��n� ��

�
"

In both cases the regular convex n�gon would be an extremal con�guration attaining the
upper bounds� For n � �� �� � they proved that this bound does not hold�
Remarks� ��� F#uredi proved in �F#u	 that under the assumptions of Theorem �� i�e�
P is a convex n�gon one has mi � ��n logn for i � �� �� � � � � t� Applying this in the
straightforward way one gets

Pt
i��m

�
i �

Pt
i��mi � max fm�� m�� � � � � mtg � �n	 � logn�

��� According to the second remark after Theorem �� we see that it really makes a
di�erence to assume general position�
Proof� If the points of P are in general position then ���� follows by Theorem �� with
s � �� So assume that the points of P determine a convex n�gon� Observe that the
bisector of x and y contains at most one point from P if x and y are adjacent along the
boundary of the convex hull of P � Thus

��P � � �

�
n

�

�
� n �

By Lemma �� we infer that

tX
i��

m�
i �

n

�

�
�

�
n

�

�
� n �

�
n

�

��
�

�n��n� ��

�
� n�

�
�

It might be worth noting that the following upper bounds for the sum
Pt

i��m
�
i match

the conjectured upper bounds of Erd
os and Fishburn stated above�

Theorem �� Let P be a set of n points in R�� which has the following property�
	
� no circle with center p � P contains three or more other points of P �

Let these n points determine distinct distances d�� d�� � � � � dt with corresponding multi�
plicities m�� m�� � � � � mt� Then�

tX
i��

m�
i �

�
n�n���

� if n is odd
n��n�	�

� if n is even�

Proof� By �$� we have mi � n for i � �� �� � � � � t� Thus

tX
i��

m�
i �

�n
�

�
n
n� �

n��n� ��

�
�

which shows the assertion for n being an odd integer�
For n even consider as above the bipartite graph G �

�
�P 	� � P�E

�
with ffx� yg� zg �

E if and only if z lies on the perpendicular bisector of x and y� To determine jEj � ��P �



��

�x a point p � P � Let d�p� denote the degree of p in G� Then d�p� is equal to the number
of unordered pairs fx� yg � �P n fpg	� such that p lies on the perpendicular bisector of x
and y� Property �$� implies that these pairs form a matching� As n is even we obtain
d�p� � �n� ���� and therefore

��P � �
X
p�P

d�p� � n�n � ��

�
�

With Lemma �� we infer that

tX
i��

m�
i �

n

�

�
��P � �

�
n

�

��
� n���n� ��

�
�

Next we will consider the corresponding selection problems�

Theorem �� Let P be a set of n points in general position in the plane� Then there exists
a subset X 	 P with mutual distinct distances such that

jX j � c � n��	

for some positive constant c � ��

Remark� An upper bound of O�n���� is given by the regular n�gon�

Proof� Let P � fp�� p�� � � � � png be given as above� Let d�� d�� � � � � dt be the occurring
distinct distances with corresponding multiplicities m�� m�� � � � � mt� We will construct a
hypergraph H � �P� E	 � E�� as follows�

Let fpi� pj� pkg � E	 	 �P 		 if and only if d�pi� pj� � d�pi� pk� where d�p� q� denotes
the euclidean distance between p and q� Moreover fpi� pj� pk� plg � E� 	 �P 	� if and only
if d�pi� pj� � d�pk� pl��

Consider two points p� p� � P and let Q � fq � P � d�q� p� � d�q� p��g� We observe that
all points in Q lie on the perpendicular bisector of p and p�� Since P is in general position
we know that jQj � � thus

jE	j �
�
n

�

�
� � 
 n� � ����

Concerning jE�j we have by Theorem �� that

jE�j �
tX

i��

�
mi

�

�
� c� � n	 � ����

We make a random experiment consisting of two steps� First choose a random subset
X � P by selecting points independently with probability p � c� � n���	 where c� � �
is a constant that will be speci�ed later� In the second step we delete from X one point
from each edge in E�	 � �X 		 
 E	 and E�� � �X 	� 
 E�� By ���� and ���� this results in an
independent set Y � X with average size

E�jY j� � E�jX j�� E�jE�	 j�� E�jE�� j� � p � n� p	 � jE	j � p� � jE�j
� c� n

��	 � c	� � c� c
�
� n

��	 �
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Choosing c� � min f������ ��c�����	g we obtain that

E�jY j� � c�
�
� n��	�

Hence there exists a set Y � P of the desired size and with distinct mutual distances�

Using Theorem �� one can show using ���� and ���� in a similar fashion the following

Theorem �� Let P be set of n points in the plane R� such that at most s points of P lie
on any line� Then there exists a subset X 	 P with mutual distinct distances such that

jX j � c �
�n
s

	��	
�

where c � � is an absolute constant 	independent of s��

For n points in arbitrary position we have the following result�

Theorem �� Let P be a set of n points in R�� Then there exists a subset X 	 P with
mutual distinct distances such that

jX j � c � n��� �
where c � � is a constant�

This improves a former result from �Th	 where the lower bound jX j � c � n��
 has been
given� An upper bound of O�n�����logn����� follows from the

p
n� pn�grid�

Proof� The arguments are similar to those used in the proof of Theorem ��� We form a
hypergraph H � �P� E	 � E�� as before� Pach and Sharir have shown in �PS	 that n points
in the plane determine O�n��	� isosceles triangles hence

jE	j � c� � n��	

and by Theorem ��
jE�j � c� � n�	�� �

By choosing vertices at random with probability p � c	 � n�	�� for some small enough
positive constant c	 we obtain as above a subset Y 	 P with mutual distinct distances
such that jY j � c � n����

With Theorem �� we see that for an n�point set P in R� the fraction of those k�element
subsets of P which determine less than

�k
�

�
distinct distances is bounded from above byPt

i��m
�
i �
�
n��
k��

�
� O�n��	� � �n�	k�	

�
�n
k

� � O

�
k�

n	��
�

k	

n��	

�

Thus if k � o�n	���� then almost all k�element subsets of P determine distinct mutual
distances� This improves former results from �AEP	 and �Th	 where k � o�n���� respective
k � o�n���� has been shown� In �AEP	 it was stated with respect to an upper bound for
this problem that for n equidistant points on a line and supposing k � %�n���� then a
positive percentage of all k�sets determine less than

�
k
�

�
distinct distances� Here we will

make this statement more precise in the following form�



��

Theorem �� Let p�� p�� � � � � pn be n equidistant points on a line� Then the number of
k�element subsets of fp�� p� � � � � png� which determine less than

�k
�

�
distinct distances� is

at least �
�� c

k
� cn

k�

	
�
�
n

k

�
�

where c is a positive constant�

Proof� Let P � fp�� p�� � � � � png be the set of equidistant points on a line� Form a
hypergraph G � �P� E	 � E�� with E	 	 �P 		 and E� 	 �P 	� as follows� fpi� pj� pkg � E	 if
and only if d�pi� pj� � d�pi� pk�� Moreover let fpi� pj � pk� plg � E� if and only if d�pi� pj� �
d�pk� pl� �where d denotes the euclidean distance�� Clearly

c�n
	 � jE�j � c

�

�n
	 � ����

Let E� � fS�� S�� � � � � Stg where c� � t
n�
� c

�

�� Now pick a k�element subset K uniformly
at random among the set of all k�element subsets of V � Let E denote the event that
�K		 
 E	 � � and �K	� 
 E� � �� In the following we will determine an upper bound for
the probability that E occurs� For i � �� �� � � � � t let zi be indicator random variables for
the events Si 	 K i�e�

zi �



� if Si 	 K
� else�

De�ne another random variable Z �
Pt

i�� zi and let E�Z� be its expected value� Then
by Chebychev�s inequality

Prob �E� � Prob �Z � �� � Var �Z�

E�Z��
� ����

By linearity of expectation we have

E�Z� �
tX

i��

E�zi� � t �
�
n��
k��

�
�n
k

� � t � �k	�
�n	�

� ����

where �n	l � n � �n� �� � � � � � �n � l � �� denotes the falling factorial�
For s � �� �� �� � let as denote the number of unordered pairs fSi� Sjg � � i 
 j � t

with jSi � Sj j � s� Then we have for the variance that

Var �Z� � E
�
�Z � E�Z���

�
� � �

X
��i	j�t

E�zizj� � E�Z�� E�Z��

� � �
�X

s��

as � �k	s
�n	s

� E�Z��E�Z�� � ����

Next we will give upper bounds on as � � s � �� First �x an edge E � E�� For
the following considerations notice that for a �xed distance d � � and every integer i
� � i � n the number of points pj  � � j � n with d�pi� pj� � d is at most two�
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To bound a� choose a three�element subset R � E� Then R can be extended to an
edge in E� n fEg in at most � ways hence

a� � ��t � ����

To bound a� choose a two�element subset R of E� Then R can be extended in at most
��n� �� ways to an edge in E� n fEg hence

a� � t �
�

�

�

�
� � � �n� �� � ��nt � ����

To bound a� take an element x � E� Then the number of edges E� � E� n fEg with
x � E� is at most �n� �� � �n � �� � � thus

a� � �n�t � ����

Finally we have

a� � �t�� � ����

Inserting ���� ���� ���� and ���� in ���� yields for k� n � �

Var �Z� � ��t � �k	�
�n	�

� ��tn � �k	�
�n	�

� ��tn� � �k	�
�n	�

� � �
�
t

�

�
� �k	�

�n	�
� t � �k	�

�n	�
�
�
t � �k	�

�n	�

��

� ��tn� � �k	�
�n	�

� t � �k	�
�n	�

� t � �k	�
�n	�

� ��tn� � �k	�
�n	�

� t � �k	�
�n	�

� ����

With ���� ���� ���� and ���� we infer for k� n � � that

Prob �E� � Prob �Z � �� �
t �
�

��n� � �k�
�n�

� �k��

�n��

	
t� �
�
�k��
�n��

	�
� �� � n	

t � k �
�n	�

�k	� � t �
��

k � c� �
�� � n
k� � c� �

c

k
�
c � n
k�

�

where c � ��
c�

�

Corollary �� For k � ��n���� and n equidistant points on a line almost all k�element
subsets determine less than

�
k
�

�
distinct distances�

Considerations similar to those in the proof of Theorem �� yield the following

Corollary �� Let p�� p�� � � � � pn be the points of the regular n�gon� Then the number of
k�element subsets of fp�� p�� � � � � png� which determine less than

�
k
�

�
distinct distances is

at least �
�� c

k
� cn

k�

	
�
�
n

k

�
�

for a positive constant c�



��

By Theorem �� and ���� it follows that for every n�point set P in R� in general position
the fraction of those k�element subsets of P which determine less than

�k
�

�
distinct distances

is bounded from above byPt
i��m

�
i �
�n��
k��

�
� n� � �n�	k�	

�
�
n
k

� � O

�
k�

n
�
k	

n

�
� O

�
k�

n

�
�

Thus for k � o�n���� almost all k�element subsets of P determine distinct mutual dis�
tances� By Corollary �� this bound is tight since almost all k�sets of the points of the
regular n�gon determine less than

�
k
�

�
distinct distances for k � ��n�����

Similar conclusions can be obtained for the n�n�grid Gn� Namely construct as in the
proof of Theorem �� a hypergraph H � �Gn� E	 � E�� with vertex set being the points of
the n � n�grid� Then by Theorem �� we infer

jE	j � c	 � n� � lnn ����

jE�j � c� � n� � lnn � ����

Thus by ���� and ���� the fraction of those k�element subsets of the n � n�grid Gn with
less than

�
k
�

�
distinct distances is bounded from above by

jE	j �
�n��	
k�	

�
� jE�j �

�n���
k��

�
�
n�

k

� � c	 � k
	 � lnn
n�

� c� � k
� � lnn
n�

�

Hence for k � o
�

n���

lnn����

	
almost all k�element subsets of Gn determine distinct mutual

distances�
On the other hand using the ideas of the proof of Theorem �� with corresponding

random variable Z for the n � n�grid and using Theorem �� and ���� one can show by
Chebychev�s inequality that

Prob�Z � �� � c � n c�

ln ln n

k � ln n �
c � n�
k� � ln n �

where c� c� are positive constants� Thus for k � �
�

n���

lnn����

	
almost all k�element subsets

of the n � n�grid determine less than
�
k
�

�
distinct distances�

We remark that one can show that for the corresponding problem for the nd�grid
d � � we also have a �� � law with threshold function f�n� �

p
n as can be seen along

the lines above using ���� Theorem �� and the remark after Theorem ��� In particular
for k � o�n���� almost all k�element subsets of the nd�grid determine distinct mutual
distances while for k � ��n���� almost all k�element subsets of the nd�grid determine less
than

�k
�

�
distinct distances�

� B��Sets

For �nite sets X � N a subset S 	 X is called a B��set �or Sidon set� if all pairwise
sums s � s

�

 s �� s
�

 are distinct� One is interested in the maximum size of S� For
the case X � f�� �� � � � � ng the maximum size of a B��set S 	 X is asymptotically well
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known by results from Erd
os and Turan to be
�
�
� � o���

� � n���� In �AE	 Alon and Erd
os
considered the maximum size of B��subsets of the set f��� ��� � � � � n�g consisting of the
�rst n squares� Using an idea similar to the one given in the proof of Theorem �� they
showed the following�

Theorem �	 �AE� For every � � � there exists c � c��� � � such that for every positive
integer n there exists a B��set S � f��� ��� � � � � n�g with

jSj � c � n��	�� � ����

As already observed in �AE	 by a theorem of Landau �La	 one has the upper bound
jSj � c

� � n
lnn����

� Here we will improve inequality ���� namely we will show�

Theorem �
 For every integer n � � there exists a B��set S � f��� ��� � � � � n�g with
jSj � c � n��	 � ����

where c � � is a constant�

The �rst idea to prove Theorem �� might be to consider a complete graph with vertex
set V � f��� ��� � � � � n�g and a coloring of the edges where the edge fi�� j�g receives color
i� � j�� Then a totally multicolored complete subgraph on k vertices gives rise to a B��
subset of V of cardinality k� But Theorem � is not applicable to prove Theorem �� as
by condition �ii� we can only guarantee a totally multicolored complete subgraph of size
less than c � n���� But it turns out that with more re�ned counting arguments a similar
strategy as used for the proof of Theorem � will show �����
Proof� As in the proof of Theorem � we can assume that n is su�ciently large� In
the following c�� c�� � � � � c�� are positive constants� We construct a ��uniform hypergraph
G � �V� E� with vertex set V � f��� ��� � � � � n�g and edges fi�� j�� k�� l�g � E 	 �V 	� if and
only if i� � j� � k� � l�� As the number of representations of any positive integer x by a
sum of two squares is given by r��x� we have by Theorem �� that

jEj �
�n�X
i��

�
r��i�

�

�
� c� � n� � ln n � ����

Next we will count the number of ��cycles in G� To count c����G� choose an edge
E � E  say E � fi�� j�� k�� l�g where i� � j� � k� � l�� There are six possibilities to choose
a two�element subset of E say we choose fi�� j�g� Then the number of pairs fx�� y�g with

i� � j� � x� � y� is bounded from above by r��i
� � j�� � n

c�
ln ln n �cf� �HW	�� Now consider

those pairs fx�� y�g with i��x� � j��y�� Assuming j � i we have j��i� � �x�y���x�y�
i�e� �x � y� divides j� � i�� Fixing this divisor �xes both x and y� Hence the number of
such pairs fx�� y�g is bounded from above by the number of divisors of �j�� i�� which is

at most n
c�

ln ln n �see �HW	�� Summarizing these considerations we have

c����G� � c� � n� � lnn � n
c�

ln ln n � ����

Concerning c��	�G� we choose an edge E � E and a three�element subset T � E� Then
T can be extended in at most two ways to an edge E

� � E n fEg thus

c��	�G� � c� � n� � ln n � ����



��

As in the proof of Theorem � we choose a random subset of V by picking vertices
v � V  independently of the others with probability

p � n���	�� � �lnn����	 �

where � 
 �
�� � Let R be the arising random subset of V � Then

Prob �jRj  pn� � �� o��� ����

and by ���� we have

E�j�R	� 
 Ej� � p� � jEj � c� � n
��	���

�lnn���	
� ����

The expected number E�c��R�� of ��cycles in the subhypergraph induced on R can be
bounded from above by ���� and ���� as follows�

E�c��R�� � p� � c����G� � p� � c��	�G� � c� � n
���

c�
ln ln n

lnn
� c� � n

��	���

�lnn���	
� o�pn� ����

for � 
 �
�� �

As in the proof of Theorem � we infer with ���� ���� and ���� by using Cherno��s and
Markov�s inequality deleting one point from each ��cycle and deleting points of degree
bigger than say twice the average degree that there exists a subset Y � V  jY j � c� �p �n
such that the subhypergraph G �

of G induced on Y has no ��cycles has at most c� � p� � jEj
edges and has maximum degree at most t	 � c
 � n	�� By Theorem � applied to G �

we see
that

	�G� � 	�G �

� � c�� � n��	��

t � �lnn���	
� �ln t���	 � c � n��	 �

which �nishes the proof�

� Algorithmic Aspects

In this section we will discuss some algorithmic aspects of the selection problems considered
in this article� All these selection problems can be formulated in terms of edge colorings of
complete graphs� The general question is� given an edge coloring f of the complete graph
Kn what is the maximum size r�f� of a totally multicolored complete subgraph i�e� a set
of vertices determining mutually distinct edge colors� Clearly this problem is NP�hard�
With an edge coloring we associate a hypergraph H � �V �Kn�� E	 � E�� where E	 is the
family of ��sets of vertices determining two equal edge colors and E� is the family of ��sets
of vertices that determine two equal colors but do not contain a ��set from E	� Hence we
have r�f� � 	�H� where 	�H� is the independence number of H�

We de�ne the probabilistic bound

&	�H� �� max
p������

�pn� p	jE	j � p�jE�j��
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which is a lower bound for 	�H� since we can pick each vertex independently with prob�
ability p and then delete one vertex from each edge occurring in the resulting subhyper�
graph� This gives an independent set of size at least pn � p	jE	j � p�jE�j in the average�
By using derandomization techniques �see �AS	� we can turn this probabilistic argument
into a deterministic algorithm that computes an independent set of the hypergraph and
thus a totally multicolored complete subgraph of the original graph of size at least &	�H��
In the following we will describe the algorithm�

Let the vertex set of Kn be V � f�� �� � � � � ng� Let f � E�Kn� �� T be an edge coloring
and assume that T is totally ordered� For t � T let mt � jf���t�j be the number of edges
in color t� In a preprocessing we form our hypergraph H � �V� E	� E�� by collecting pairs
of edges of the same color� By �rst sorting the set of edges with respect to their colors this
can be done in time O�n� lnn�

P
t�T m

�
t �� Moreover we use the following data structure�

There is a list of the vertices v � V and a list of the edges e � E	 � E�� For each vertex
v � V there are pointers to all edges containing v� For each edge there are pointers to all
vertices contained in it�

Knowing jE	j and jE�j we can easily compute that value p � ��� �	 which maximizes
the expression pn� p	jE	j � p�jE�j� Fix this value of p�

In the following we will examine the vertices of V one by one and decide whether each
vertex belongs to our independent set or not�

Set E � E	 � E�� Suppose that we already made a partial selection of vertices and let
��� ��� � � � � �j be the ���sequence representing this selection that is for some vertices we
determined whether they do ��i � �� or do not ��i � �� belong to our independent set�
De�ne weight functions fj and Fj depending on ��� ��� � � � � �j as follows� For vertices v � V

let

fj�v� �



�v if v � j

p if v � j�

For edges e � E set

fj�e� �
Y
v�e

fj�v� �

Finally set

Fj � Fj���� ��� � � � � �j��� �
X
v�V

fj�v��
X
e�E

fj�e� �

Observe that Fj is the expected value of the number of vertices minus the number of edges
in a random extension of the selection ��� ��� � � � � �j �

At the beginning for j � � we have f��v� � p and f��e� � pjej for v � V and
e � E  thus F� � &	�H�� We will construct a �� ��sequence ��� ��� � � � � �n such that the
values Fj � Fj���� � � � � �j� are nondecreasing for j � �� �� � � � � n� In particular we will have
Fn � F��

Now assume that ��� ��� � � � � �j�� and Fj�� � Fj�� � � � �� F� are given� To determine
�j and thus Fj  we compute the two values

W �
j � Fj���� ��� � � � � �j��� ��

W �
j � Fj���� ��� � � � � �j��� ���

This can be done in time O�� � degH�j��� If W �
j � W �

j  then we set �j � � and Fj � W �
j �

Otherwise if W �
j � W �

j  then set �j � � and Fj � W �
j �



��

By straightforward calculations or by interpreting Fj as an expected value we derive

Fj�� � ��� p� �W �
j � p �W �

j � ����

This implies Fj � Fj���
Continuing in this way we obtain a �� ��sequence ��� ��� � � � � �n with Fn � F�� Set

I � fv � V j �v � �g� We claim that I is an independent set in H� Assume this is not the
case� Thus there is an edge e � E contained in I � Let j be the last vertex of e chosen by
our algorithm� Since j was chosen we know that W �

j � W �
j  which with ���� implies that

Fj � W �
j � Fj�� �

On the other hand since j is the last chosen vertex of e we infer that

Fj � Fj�� � �fj�j�� fj���j��� �fj�e�� fj���e�� � ��� p�� ��� p� � � �

a contradiction� Thus I is an independent set with

jI j � Fn � F� � &	�H�

as desired�
Without the preprocessing this algorithm has a linear running time of O�n�jE	j�jE�j��

Since jE	j� jE�j 

P

t�T m
�
t  we have an overall running time of O�n� ln n �

P
t�T m

�
t ��

By our former results we obtain the following typical consequences� By Theorem ��
given a set P of n points in R� in general position this algorithm �nds in sequential time
O�n	� a subset X 	 P with mutual distinct distances of size at least c � n��	 where c is a
positive constant� Moreover by Theorem �� if the n points of P are in arbitrary position
then the algorithm �nds in time O�n�	��� a subset X 	 P with mutual distinct distances
of size c � n��� for some positive constant c�

On the other hand we remark that by the method described by Alon Babai and Itai
�ABI	 there is an NC�algorithm that computes a totally multicolored complete subgraph
of size at least c � &	�H� for some constant c � ��

Remark� This research was partly motivated by related problems considered in �EGRT	
which have applications to the problem of distance measuring by using radar or sonar
signals see �Go	 and �GT	�
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