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� Introduction

One of the well�known visibility problems in Computational Geometry is the Art
Gallery Problem originally raised by V	 Klee in ��
�	 It asks how to station a
number of watchmen in a polygon �art gallery such that they can see every point
of the polygon	 This is clearly equivalent to covering the polygon by stars	 A star
in a polygon P is the union of a family of convex regions all contained in P with a
non�empty common intersection	 Klee�s problem has been solved by V	 Chv�atal ���
in ��
� proving that

�
n




�
watchmen are always su�cient and sometimes necessary

to guard a simple polygon on n vertices	 Since then many variations of the problem
and its algorithmic aspects have been studied	 The interested reader is referred to
the excellent monograph of J	 O�Rourke ���� � see also ����  and a recent survey by
T	 Shermer ��
� containing almost all material on this subject	
Here we are studying the problem for rectilinear polygons with holes	 In ���� J	
Kahn� M	 Klawe� and D	 Kleitman ���� showed that for simply connected rectilinear
polygons on n vertices

�
n

�

�
is the tight bound	 Later J	 O�Rourke ���� and E	

Gy�ori ��� gave much simpler proofs of this result	 Especially they showed that the
watchmen can be chosen in such a way that each has to watch a rectangle or an
L�shaped region only� i	e	 a rectilinear star of size � �	 The main result of the
present paper �which is a detailed and revised version of a conference paper �
�and
partly of ��� shows that the

�
n

�

�
�bound also holds for rectilinear polygons with an

arbitrary number of holes �Conjecture �	� in ����	 The case of rectilinear polygons
with at most � holes has previously been solved by A	 Aggarwal in his thesis ���	
Moreover� we can show that our solution corresponds to partitioning the polygon
into rectilinear stars each of size at most ��	 While in the ��connected case the
guards can be chosen to sit in vertices of the polygon �vertex guards  we have now
to allow them to sit in any point of the polygon �point guards 	 Figure �a provides
an example of a polygon on �� vertices which requires

�
��
�

�
� � point guards but

� vertex guards	 Iterating this example as shown in Figure �b proves a
�
�n
�

�
�lower

bound hence disproving Conjecture �	� in ���� due to Aggarwal	 We mention that
size �� is the smallest possible to show that using vertex guards only one cannot
prove an

�
n

�

�
upper bound	 So we conjecture the

�
�n
�

�
�bound to be optimal	 The

best known upper bound for the vertex guard model is
�
n




�
� see ����	 However�

the example in Figure � is consistent with Shermer�s
�
nh
�

�
�conjecture ���� for the

vertex guard number in rectilinear polygons with h holes	

As to the discussion of the main result we recall that it was the �rst tight bound
for the guard number in polygons with holes	 In a certain sense it is exceptional since
it states that the general case with holes is not harder �ignoring the increased star
size than the simply connected case	 Recently there has been proved a tight

�
nh



�
�

bound for the number of point guards in general polygons with holes ���� ��� and
a tight

�

n�h�

��

�
�bound for the number of line guards �the watchmen are allowed

to patrol along line segments in rectilinear polygons ���	 So we see that both for
vertex guards and line guards in rectilinear polygons as well as for the point guard
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2n/7 vertex guards are necessaryThis polygon requires 3 point
guards but 4 vertex guardss

(a) (b)

Figure �� A lower bound for the vertex guard model

Figure �� n�� point guards are sometime necessary

model in general polygons the number of holes in�uences the bounds	 The reader is
referred to ��� for a more detailed discussion on the relationship between the number
of holes and bounds for other guard types in rectilinear polygons	

The paper is organized as follows	 In the second section we give all the necessary
technical prerequisites	 In Section � we describe problem reductions and prepare
a translation of a reduced problem into a graph�theoretic formulation which will
be dealt with in Section �	 Finally we brie�y discuss algorithmic aspects and we
conclude with a more detailed discussion of the result and related open problems	

� Preliminaries

Let P be a rectilinear polygon � possibly with holes� i	e	 it is bounded by horizontal
and vertical edges only	 We denote by bd�P  the boundary of P which consists
of the boundary of all holes and the outer periphery and by int�P  the interior of
P 	 Throughout this paper by the term polygon we always mean the union of its
boundary and interior	 So we can think of such a polygon as follows	 We start
from a simple rectilinear polygon and cut out from it a certain number of holes	

�Rectilinear polygons have also been called orthogonal and isothetic�



�

An �n� h�polygon is a rectilinear polygon on n vertices with h holes	 We de�ne
the following partial ordering for polygons� An �n� h�polygon P is smaller than an
�n�� h��polygon P � denoted by P � P � i� n � n� and h � h� 	

Figure �� � and � stars are necessary

Let Q����x� � � � � Q����x denote the four quadrants of the plane with respect to
a point x	 For points x and y in the plane we denote by �x� y� the corresponding
connecting closed line segment and by �x� y the open line segment	 The two coordi�
nates of a point x are denoted by x� and x�	 Further� let x�y be the point with �rst
coordinate x� and second coordinate y�	 Using this notation we de�ne the rectangle
R�x� y� to be spanned by x� y� x�y� y�x and set R�x� y � int�R�x� y�	 We say that
two points x� y � P see each other� denoted by x� y� i� �x� y� � P 	 In this paper�
however� we use the following stronger visibility notion ����� The points x and y are
rectangularly visible to each other� denoted by x�y� i� R�x� y� � P 	 An edge �y� z�
is rectangularly visible from x if x�y and x�z	

Now we can formulate the main problem we are interested in	 For x � P we
de�ne V �x � fy � P jx�yg	 Clearly this set forms a rectilinear star S� i	e	 it is a
union of rectangles all contained in P with a non�empty common intersection �the
kernel ker�S 	 Further we set V �i��x � V �x �Q�i��x� for i � �� � � � �	
We say that a family fxigi�I of points �guards covers the polygon P i� P �S

i�I
V �xi	 For a given polygon we look for a minimal covering� that is we want to

determine the minimal cardinality r�P  of a point family covering P 	 Finally� let
r�n� h � maxfr�P jP is an �n� h� polygong	

The aim of this paper is to prove that r�n� h �
�
n

�

�
	 First of all it is trivial to

show that
�
n

�

�
is a lower bound also in the presence of holes� compare with Figure �	

Observe� this lower bound holds for either of the above visibility notions� whereas
we prove the upper bound for the restricted model	 We remark that for a concrete P
the usual visibility notion based guard number is very sensitive to small changes of
the polygon �see Figure � in contrast to a covering by rectilinear stars	 This will be
detailed out later	 In the following the term visible always stands for rectangularly
visible� stars are rectilinear stars� and polygon means rectilinear polygon	
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We give a few more technical notations	 Let D denote the set of the main compass
directions D � fn� e� s� wg and let � � n � e� s � w be a cyclic permutation on
D	 We consider the holes of a polygon to have boundaries with clockwise orientation
whereas we �x the outer periphery to have counterclockwise orientation� see Figure
�	 Hence� walking along a boundary the interior of the polygon is always on the
left hand side	 In this notation a vertex x � P is a concave �convex corner of the
polygon if the boundary passing through this vertex is labelled r��r �resp	 ��rr 
for some r � D	 The direction inverse to r � D is denoted by r��	 An rr��stair �
with r� 	� r�� is a boundary path in a polygon labelled alternatingly r and r�	

w(x)                    x

n(x)

n*(x)

south−edge west −edge

Figure �� Orientation of edges and the neighbor relation

Finally� we de�ne two neighbors of a point x � P associated with an r � D	
The neighbor r��x is the point which lies in direction r of x such that �x� r��x� has
maximal length and is completely contained in P 	 Further� the neighbor r�x of x �
int�P  is that point in direction r on the boundary of P for which �x� r�x � int�P 	
If x itself is on a boundary then r�x is either the �rst polygon vertex in direction
r di�erent from x such that �x� r�x� � bd�P  or� as before� the �rst boundary point
we hit shooting a ray in direction r	 If there is no point in direction r of x reachable
in P we set r�x � r��x � x	 We write rr��x to denote the point r�r��x� for
r� r� � D	

� Problem Reductions

Problem reduction is one of the basic ideas used frequently in this paper	 In general
terms� we say that the guarding problem for an �n� h�polygon P can be reduced to
the guarding problems for a set of smaller polygons Pi� if there are solutions for the
Pi which imply an

�
n

�

�
�solution for the original polygon P 	 In this situation we say

that P is reducible	 The �rst lemma gives a trivial example of such a reduction� see
also ����� ����	

Lemma ���� If in a polygon P there are concave vertices x and y such that
x � r�y for an r � P and �x� y � int�P � then P is reducible	



�

Proof� One adds �x� y as a new �wall� of ��width to bd�P 	 This does not change
the total number of vertices	 But either this wall decreases the number of holes
by � or it dissects the polygon into two smaller ones	 In both cases the reduction
property is trivially ful�lled	

The main aim of this section is to describe two other local visibility con�gurations
which imply the possibility to reduce the problem	 These are empty convex corners

and X�shapes	 In both situations the reduction will be of the following pattern	 We
choose a point v in P and a star S with v � ker�S and S � P 	 The removal of S
from P de�nes a partition of P n S into a set of smaller �ni� hi�polygons Pi � P
such that

P
i
ni � n��	 The reduction property is ful�lled since

P
i

�
ni

�

�
�
�
n

�

�
��

and we need only one guard for S	

Remark� To reduce a polygon can be interpreted in the following way	 We will
see later on that stationing guards is not a local problem	 That means� in general
one cannot decide whether a given point x can be chosen as a guard position knowing
only V �x and not the whole polygon	 However� in all three reductions described in
this section this is possible	

Let v be a convex vertex of in a polygon de�ned by boundary edges u � v and
v � x labelled ��r and r � D� respectively	 We say that this vertex v is an empty

convex corner if R�x� u� � P 	

Theorem ��� �Reduction B�� If a rectilinear polygon P contains an empty
convex corner� then P is reducible	

We start with a lemma which covers a special case of the statement above� namely�
if there are two consecutive empty corners in P 	

Lemma ��� � Assume there is in P a boundary path p� say from x to y� which
is a stair of length �	 If there are � convex corners on p from x to y seperated by a
concave corner and if p is completely visible from some point z � P nR�x� y� then
P is reducible	

Proof� W	l	o	g	 let this path from be a se�stair	 We know that �y�x�p	 Observe
that y�x � bd�P  is possible	 The star S de�ned by the stair p and the edges
�x� y�x� � �y� y�x� has size � and is completely contained in P 	 Clearly� it can be
watched by � guard	 But P n S is a smaller polygon P � of size n� � with the same
number of holes as P 	 So the reduction property is ful�lled	 Figure � illustrates the
situation	 Observe� that this construction works independently of whether x and y
are convex or concave corners	
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x

y

S S

y#x

Figure �� Reducing consecutive empty convex corners

Proof� �Theorem ���� Let v be the empty convex corner and without restriction
of generality r be the east direction	 De�ne u � n�v� x � e�v and z � x�u	
The proof will be accomplished by a rather long case inspection according to whether
u�x are convex�concave and to completely visible edges in V �i� � V �i��z� for i �
�� �� �	 In the formulation of the �sub� cases we use the following convention	 For
each case we assume the properties explicetely stated plus the negated assumptions
of all cases already discussed	

Case �� Both u and x are concave vertices	
Let us order all z�visible edges counterclockwise	 We know� all complete edges

in V ��� must be w�edges or s�edges	

Case ���� In V ��� there are � consecutive polygon edges �c�� c�� �c� c��� such that c
is concave	
Observe that by assumption the rectangles R�z� v�� R�z� c���� R�z� c�� all are completely
contained in P 	 Their union forms a star S of size �	 By cutting out S from P we
decrease the problem size by �� so the reduction property is ful�lled	 Figure �a
illustrates the situation	 We remark that c� and c�� can be convex	

Case ���� The last complete edge in V ��� is an s�edge	
Let �c�� c� be this edge	 First we observe that under this assumption w�u can be
assumed to be concave	 Otherwise �nw�u� w�u� would have to be the edge �c�� c�
and we could apply Lemma �	�	
Again� we �nd a star as shown in Figure �b that can be cut out to reduce the
polygon	

So far we have seen that if there are �complete   edges in V ��� then all can be as�
sumed to be w�edges	 This follows from the fact that the last edge in V ��� cannot be
an s�edge and if an s�edge is followed by a w�edge we are in case �	�	 Symmetrically�
all edges in V ��� can be assumed to be n�edges	
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Figure �� Illustration of case �	� and �	�

Case ���� z�wn�z
This assumption applies for example if in V ��� there are �if any only w�edges	 An
analogous construction works if z�se�z	

Case �	�	�� z�en�z
We move the segment �n�z� en�z� south until we hit either a ws�corner c in V ���

or we reach the horizontal line starting in s�x	 So we can delete either the star
R�wn�z� z� 
 R�v� z� 
 R�n�z� sen�z� 
 �R�z� s�c� � R�z� es�x� or� in the latter
case� R�wn�z� z� 
R�v� z� 
R�ne�z� s�x�� see Figure 
a	

Case �	�	�� z 	�en�z and z 	�ne�z	
Then there must be a pair of consecutive polygon edges� say �c�� c�� �c� c��� in V ��� which
forms an wn�vertex	 We shift the horizontal edge of R�z� c�� to the south and proceed
in V ��� analogously to subcase �	�	�	 From V ��� 
 V ��� we add R�wn�z�c��� c�z�	
Together with R�v� z� we obtain a star of size at most ��	 Figure 
b illustrates the
situation	

Case �	�	�� z 	�en�z and z�ne�z
We can assume that z 	�se�z	 Otherwise� we would have the �symmetric assump�
tions of case �	�	�	 This implies that ne�z�s�x	 We shift the segment �ne�z� e�z�
to the west until we reach the horizontal line through vertex w�u or the horizontal
line of a sw�corner in V ���	 Further we proceed like in case �	�	�	�symmetric version
and add from V ��� the rectangle R�e�z� s�x� to the star	
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Figure 
� Illustration of case �	� and �	�

Case ��	� z 	�wn�z and z 	�se�z

Case �	�	�� z�en�z
We can cut out the star R�z� nw�u�
R�z� v�
R�en�z� s�x�� compare with Figure

c	

Case �	�	�� If additionally z 	�en�z and z 	�ne�z
We can proceed as in case �	�	�	

Case �	�	�� z 	�en�z and z�ne�z
Either there is an e�edge in V ��� �a case which we have dealt with or we have
ne�z�s�x	 Here R�ne�z� w�u� 
R�z� v� 
 R�ne�z� s�x� is the star to be cut out	

Case �� u is a convex� x is concave	

Case ���� e�u is left of z	
We can treat the edge �u� e�u� like a last edge in V ��� and repeat the case inspection
from above	

Case ���� e�u is right of z	
This can be treated like Case �	�	�	

Case �� Both u and x are convex corners	
The subcases that e�u�n�x or that �z�ne�u are trivial and can be excluded�
compare with Figure �a	 Observe that here it can happen that z is not in the kernel



��

e(u)         z
u

v                           x

u              e(u)

c’       c
z

v                                    x

(a) (b)

ne(u)

Figure �� Illustrations of case �

of the star we cut out	
We can assume that there is an w�edge in V ���� take the �rst such edge� say �c� c��	
We move the horizontal segment �c�u� z� to the north until it hits either n�x or
n�c and cut out the star R�z� v� 
 R�z� c�� 
 �R�z� n�c� � R�c�u� n�x�� see Figure
�b	

This completes the proof of Theorem �	�	

There is another local situation� called X�shape� where a reduction is always
possible	 It is de�ned as follows	 Consider a point z � P and an z�visible edge
�x� x��� i	e	 z�x and z�x�	 Assume further that for an i � f�� �g we have zi � xi � x�

i

or zi � xi � x�
i
	 In this case we associate with �x� x�� the compass direction from

xi to x�
i
	 We say� that z is the center of an X�shape if there are four z�visible

edges representing all four main compass directions	 To avoid confusion with the
orientation of an edge de�ned before let us remark that an edge representing �north�
in an X�shape with center z is either an n�edge in V ����z or a s edge in V ����z
where V �i��zis again the i�th quadrant in V �z	
Observe� that the vertex of such an edge which is closer to z is concave �provided
that there are no empty convex corners	 Moreover� two edges may share such a
vertex	 Figure � shows �up to symmetries�rotations all possible modi�cations of
X�shapes under the assumption that P has no empty convex corners	 The dashed
lines in the �gure indicate the visibility assumptions	

Theorem ��� �Reduction C�� If a polygon P contains an X�shape� then P is
reducible	

Proof� We may assume that P is already reduced with respect to reduction types
A and B� i	e	 P is in general position and it has no empty convex corners	 The
proof now is very similar to that of Theorem �	�	 We construct explicitely the star
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z

z

z

z

Figure �� Possible X�shape con�gurations

cut out	
Let z be the center of an X�shape	 We can assume w	l	o	g	 that among all z�visible
edges representing the north�direction in an X�shape with center z we choose the
edge �y� y�� with smallest y��	 Analogously we choose the other edges	 Let �x� x�� be
the edge representing west	 We can assume that x� � y�	 Otherwise� we consider the
X�shape with center z� � x�y	 Observe that both x and y are concave� see Figure
��a for illustration	 Similar assumptions can be made for all pairs of neighboring
compass directions	
With this assumption the construction now is simple	 Let x�� � � � � x� be the endpoints
�i	e the points which have greater distance from z of the four edges in the X�shape
in counterclockwise order 	 The star S implying the reduction is de�ned by

S �
��

i��

�R�xi� xi�� 
R�z� xi� � V �z

where x	 is set to be x�	 By construction each �R�xi� xi��
R�z� xi��V �z contains
at most one polygon corner not lying on the edges de�ning the X�shape	 Hence the
size of S is bounded by ��	 Figure ��b shows a typical situation	

� The Corridor Graph

Throughout this section let P be a reduced �n� h�polygon	 We will associate with it
a corridor graph C�P  which represents the main features of our visibility problem	
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Figure ��� Reducing an X�shape

Its nodes correspond to pairs of polygon vertices each de�ning a special local shape	
The edges represent straight �corridors� connecting these local situations	
Let us consider the partition of P induced by all edge extensions	 Here� by an edge
extension we mean the prolongation of a polygon edge through a concave corner
until it hits the boundary	 A horizontal �resp	 vertical corridor in P is a maximal
rectangle contained in P whose horizontal �resp	 vertical edges are contained in
polygon edges whereas both vertical �resp	 horizontal edges are polygon edge ex�
tensions	 Each corridor contains exactly two concave polygon corners which we call
corridor corners	
Let x be a convex ��rr�corner with neighbors x�� x�� and let y be a concave r����r���
corner	 We say� that the pair fx� yg de�nes an L�shape if

�	 y � R�x�� x���

�	 x�y

�	 y is corner of two corridors	

There is another local con�guration which we call T�shape	
Let x be a concave es�corner and y a concave ne�corner	 We say that the pair fx� yg
de�nes a T�shape of north�orientation if

�	 �x�n�y � �y�n�x

�	 x and y are corners of horizontal corridors	

�	 Either e�x � �y� s�y or w�y � �x� s�x	

�	 Either x or y is corner of a vertical corridor	

�	 �n�x� n�y � bd�P 	
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Analogously� we de�ne T�shapes with east�� south�� and west�orientation	 Figure
�� shows an L� and a T�shape with north orientation	

x 
x

x’
y y

x"

Figure ��� L�shape and T�shape

Our aim is to show that each reduced polygon can be decomposed into such L� �
T�shapes� and corridors	 It is su�cient to show that there is a perfect matching
between all polygon vertices such that each matched pair of vertices de�nes an L�
or a T�shape	

Proposition 	��� Let x be a convex� say a nw�corner in a reduced polygon
P 	 Then there is exactly one concave corner y such that the pair fx� yg de�nes an
L�shape	

Proof� Since x is not an empty convex corner we know that there are vertices in
R�x�� x��� ful�lling the �rst two conditions of an L�shape	 If there is exactly one
such vertex then this vertex also satis�es the third condition	 So� we can assume
that there are at least two concave es�corners	 Let y� be the �rst and y�� the last
in counterclockwise order	 If w�y��x then y� is corner of two corridors	 So we can
assume that this does not hold	 This means it is followed by an s�edge visible from
x	 Analogously� we can assume that x 	�s�y��	 So there must be an es�corner y
such that s�y�x and w�y�x� see Figure ��a	 Finally� if there are two corners y� z
each de�ning with x an L�shape and y preceeds z then the point z�y is the center
of an X�shape and we have a contradiction to our assumption that P was reduced�
see Figure �� for illustration	

Let us consider all concave corners in P which are not matched with a convex
corner	 We de�ne a graph T �P  over this vertex set with an edge between two
vertices if they form a T�shape	 The next theorem shows that T �P  has a perfect
matching	

Theorem 	��� A connected component of the graph T �P  is a single edge� a
simple path of length �� or a cycle of length �	
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Figure ��� Illustrating Proposition �	�

Proof� W	l	o	g	 let x be a concave es�corner with neighbors x� � w�x and x�� �
s�x	 First of all it is easy to see that x can be part of at most two T�shapes�
one with north the other with east orientation	 We �nd two candidate partners
as follows	 We shift the segment �x�� x� to the north and consider the east end of
the boundary edge it meets �rst	 This will be our �rst candidate z unless there is
another x�visible w�edge �take the �rst in counterclockwise order with an incident
x�visible s�edge	 In this case let z be the east end of that w�edge	 Further� let y be
the analogously de�ned candidate partner of x east of �x� x���	 We can assume that
w�z� � x� and s�y� � x�	
The proof will be a case inspection according to the mutual position of x� y� and
z	 In each of the cases we will either show that an arrangement is not possible
because P is reduced or we exibit a T�shape de�ned by x and some other vertex
�not necessarily y or z	 We start with two trivial cases	

Case �� y� z � Q����x and either both are visible or both are not visible from x	
If both are visible and y 	� z then u � y�z � V �x and u is center of an X�shape	
If y � z then fx� yg de�nes an L�shape	In the case that both are not visible then
there must be a concave wn�corner u such that �u�x�� �u�x��	 But then u is the
center of an X�shape	

Case �� z � V ����x� y � V ����x
We can assume that x�y and that y is a concave ne�corner since otherwise we would
�nd an X�shape	 If y� � z� then there cannot be a vertical edge d� north of x visible
from some point in R�x� y�	 With such an edge we would have a point from which
simultaneously d�� �x� x��� �x� x!�� and �y� e�y� are visible	 Hence� especially n�x and
n�y are points on the same horizontal edge d� the left end v of d is visible from x�
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and y is the corner of a horizontal corridor	 So fx� yg de�ne a T�shape and neither
x nor y can be part of a second T�shape	
Assume now y� � z�	 If z�y then fx� zg forms a T�shape	 Otherwise we �nd a
center of an X�shape on the segment �x�z� e�z�	

Case �� z � V ����x� y � V ����x

z
x’

x

x’’

y

u
v

u’

v’

z
x’

x

x’’

y

v v’
d

(a) (b)

Figure ��� Illustration of Case � and Case �

We observe that both y and z are concave and that R�x� y�z� � P 	 Let us consider
the following two conditions�

�V There is a point on �y�w�y� which sees a vertical edge north of it	
�H There is a point on �z� s�z� which sees a horizontal edge east of it	

We already know that these conditions cannot hold simultaneously since this would
imply the existence of an X�shape	

Case ���� Neither �V nor �H hold	
De�ne v � wn�x � v� � en�x � u � ne�x � u� � se�x� see Figure 

b	

Case �	�	�� x�v and x�v�

Here fx� yg forms a T �shape	 Analogously� if x�u and x�u�� then fx� zg de�nes a
T�shape	

Case �	�	�� x�v but x 	�v�

Under this assumption x�u 	 On the other hand we know that x�u� or x�e�y	
Hence fx� zg or fx� yg form a T�shape	

Case �	�	�� x 	�v� x 	�v�� and x 	�u�

Here� x is the center of an X�shape	



��

Case �	�	�� x 	�v� x 	�v�� x�u�

In this situation we know that x�n�z and x�u	 If z� � u� then x�u is center of
an X�shape	 Otherwise� fx� zg de�nes a T�shape	

Case ���� Condition �V holds	 Let�s denote this edge by �t� n�t�	

Case �	�	�� t is a wn�corner	 That implies x� � t�	
We can assume z� � u�	 To avoid an X�shape with center x we have x�u�� x�u	
Now either z�u implying that fx� zg is a T�shape or �v� v�� is x�visible and fx� v�g
forms a T�shape	

Case �	�	�� t is sw�corner	
As in the previous case� the only possibility to avoid reducibility is that fx� tg forms
a T�shape	

Case 	� z � V ����x� y � V ����x
Again� either z�y and fx� zg is a T�shape or the east end of the lowest horizontal
edge in R�z� y� de�nes with x a T�shape	

Case �� z � V ����x� y � Q����x n V ����x
Clearly� we can assume R�z� y� � P 	 But then fx� zg is an edge in T �P 	

This concludes the case inspection	 So far we have seen that in a reduced polygon a
concave corner is either part of an L�shape or there is a concave corner y such that
x and y de�ne a T�shape	 Now assume that a corner x has two neighbors y� z in
T �P 	 We know x�v� v is concave� and y 	�n�z	 If fz� ug de�nes a T�shape then
fy� vg is a T�shape� too	 So we get a ��cycle	 Otherwise� if z 	�n�v and v 	�n�z
we �nd north of �z� x�z� a concave corner z� de�ning with z a T�shape	 Therefore
x is on a path of length � in T �P 	 Compare with Figure ��	 An analysis of all
cases shows that Case � is the only possibility for x to form with two other vertices
T�shapes	

Corollary 	��� The graph T �P  has a perfect matching	

We are now going to de�ne the corridor graph C�P  of a reduced polygon P 	
First we �x a perfect matching of T �P � say M 	 The vertex set of C�P  consists of
all pairs fx� x�g of vertices from P � either de�ning an L�shape or being an element
of M 	 So C�P  has n�� vertices	 Two vertices fx� x�g� fy� y�g are joint by an edge
in C�P  if there are corners u � fx� x�g� v � fy� y�g belonging to the same corridor	
The edges are labelled by the orientation of the corresponding corridors	

Proposition 	�	� A corridor graph C�P  has the following properties	
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z
x

y

z
x

y

edges in T(P)

v
v

Figure ��� A ��cycle and a length � path of T�shapes

�iC�P  is a planar rectilinear graph� i	e	 it has a straight line� orientation preserving
embedding into the integer grid	 All nodes have degree � or �	
�ii If C�P  is a bipartite graph� then

�
n

�

�
point guards are su�cient to solve the

Art Gallery Problem for P 	

Proof� �i The planarity follows from the characterization of planar rectilinear
graphs given in ����	
�ii Let a � fx� x�g be a vertex of C�P 	 If a represents an L�shape then de�ne
Ra � R�x� x��	 Otherwise� if a corresponds to a T�shape of r�orientation we set
Ra � R�x� r�x�� � R�x�� r�x�	 A guard stationed in any point of Ra can simultane�
ously watch all incident corridors and all Rb� for all edges �a� b in C�P 	 So� we can
take a ��coloring of C�P  and station guards in all Ra� where a is in the smaller
color class of size �

�
n

�

�
	

We remark that the proposition above implies for example the Art Gallery The�
orem for all rectilinear polygons with at most one hole� since their corridor graph is
either empty or a bipartite cycle of L�shapes	
However� the polygon from Figure �a has a non�bipartite corridor graph	 We �rst
sketch the idea how to deal with this special graph� see Figure ��	
If a graph is not bipartite then it contains an odd cycle	 In our context this means
that there are two consecutive corridors fa� bg� fb� cg in C�P  with the same orien�
tation� say horizontal	 Assume that all their other incident edges are vertical	 We
know� the corridors have di�erent vertical width� say fa� bg is wider than fb� cg	
Assume further that we delete the latter from the graph and that� moreover� the
resulting graph is bipartite	 This implies� that either a or b is in the eventually
chosen smaller color class	 Say� this is a	 But still we can choose a guard position
in Ra from which the complete corridor corresponding to fb� cg and Rc can be seen	
Of course the width of the fb� cg�corridor imposes a restriction on the vertical �not
on the horizontal  position of a guard in Ra	 Let�s call the deleted edge dummy	
This aproach suggests to delete all dummy edges� i	e	 all edges whose corresponding



��

corridor graph delete dummy edges

2−coloring

find guard positions

Figure ��� Guarding the lower bound example

corridor has a neighbor of the same orientation but with greater width	 Clearly� the
remaining edges form a bipartite graph and we could apply our coloring argument	
Figure �� shows how this works for our lower bound polygon	

Now� consider the example in Figure ��	 Here� in a path of length � a south�T�
shape is followed by a north�T�shape	 Deleting the �rst and the last edge from
the corridor graph can lead to a situation where only a is in the chosen color class	
But there is no way to watch simultaneously from Ra all three horizontal corridors	
How to overcome this deadlock" The idea is to insert a new horizontal edge into the
graph connecting d and c	 This guaranties that� provided the new graph is bipartite�
either d or e is in the chosen color class	 Moreover we can watch all three horizontal
corridors as indicated in Figure ��	

In sum� de�ning the corridor graph C�P  we lost certain geometric information
about the polygon� especially about corridor widths	 In fact� if this graph is bipartite
we do not need this information at all	 Otherwise� we use it to de�ne a bipartite
graph C ��P  on at most n�� vertices derived from C�P  by deleting and adding
edges such that a coloring of this new graph still implies a solution for the original
guarding problem in P 	

Consider a straight horizontal path � in C�P 	 Let�s denote by 	�e the image
of the corridor corresponding to an edge e � � under the projection on the y�
axis	 Observe� that for two neighboring edges e� e� we have either 	�e � 	�e� or
	�e� � 	�e	 Moreover� the symmetric di�erence of 	�e and 	�e� is connected	
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possible
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Figure ��� Adding new edges

We de�ne that an edge e belongs to the set Max�� �resp	 Min�� if 	�e contains
�resp	 is contained in the images 	�e� of all its neighboring edges e�	
Remark� Neighbor always means direct neighbor� i	e	 an edge has at most � neigh�
bors	

Moreover� we de�ne the following edge sets�

LMax�� � feje is left neighbor of an element from Max��
and either e 	�Min�� or e is leftmost edge in ��g

RMax�� � feje is right neighbor of an element from Max��
and either e 	�Min�� or e is rightmost edge in ��g

Char�� � LMax�� 
RMax�� with left to right order
New�� � ff � �x� yjx is left end of some e � LMax���

y is right end of some e� � RMax�� and
e� is immediate successor of e in Char��g�

Analogously we de�ne these sets for vertical paths in C�P 	 Now� we de�ne the
modi�ed corridor graph C ��P  as follows	 It is spanned by the edge set

�

���

Max�� 
 New��

where # is the set of all vertical paths and all horizontal paths in C�P 	



��

this guard watches a 
star of size 16

edges in C’(P)

edges in C(P)−C’(P)

guard positionss

12

Figure �
� Illustrating the graph C ��P 

Theorem 	��� The graph C ��P  has the following properties	
�� C ��P  is bipartite	
�� Stationing guards in P according to the smaller color class in a ��coloring of
C ��P  solves the watchman problem for P 	

Proof�
�� This follows almost trivially from the de�nition	 The only thing to check is that
a vertex x cannot be simultaniously left end of an edge �x� y � LMax�� and right
end of �z� x � RMax��	 But this is impossible since one of these edges would be
in Min��	
�� Consider a horizontal path � in C�P 	 We have to show that each color class
of the proper ��coloring of vertices in Max�� 
New�� de�nes guard positions to
watch all horizontal corridors de�ning �	
Firstly� Max�� is not empty	 Assume further that New�� is empty� i	e	 in Char��
there is no element from LMax�� preceeding an element from RMax��	 This
applies for example if one of these sets is empty	 Especially� if LMax�� is empty
we know that the leftmost edge in � is in Max�� and the left neighbors of all other
maximal edges are in Min��	 But then all edges between two succesive maximal
edges can be watched from the left maximal edge independent of whether the guard
is placed in the left or right end of this edge	
The case that RMax�� is empty is symmetric� hence we can assume that both sets
are non�empty	
If in Char�� the set RMax�� is left of all elements from LMax�� �i	e	� especially
New�� is empty we can apply the same argument as before	
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So we can assume� that New�� is not empty	 Consider an e � �x� y � New��	
Let e�� ���� em be the edges from Max�� which are between x and y	 It is clear
that between some ei and ei� there is exactly one edge in C�P � say e�

i
	 Now� if

the guard sits in x� then this guard can watch all corridors left of e� up to �and
inclusively the next minimal edge� say e��	 Moreover� each ei gets a guard which
has to watch ei and e�

i
	 Observe� that this is possible even when he is placed in the

left end of ei	 Finally� we have to remark that the guard stationed on em watches
all corridors on the right of em up to the next minimal edge say e�	 Eventually� we
can remove the segment �� which starts with e�� and ending on e� from � and iterate
the procedure	

With the above de�nition of C ��P  we cannot bound yet the size of a star a single
watchman has to guard	 But this can be now easily accomplished by adding to C ��P 
as many as possible edges without destroying the bipartiteness of the graph	
Let � be a straight path in C�P 	 Denote by rest�� the subgraph of � spanned
by all vertices not incident to an edge in C ��P 	 First� we add to C ��P  a maximal
matching in rest��	 Then we traverse the remaining isolated vertices from left
to right connecting each consecutive pair of them by a new edge which we add to
C ��P 	 Finally� for each � there is at most one isolated vertex left	

Corollary 	��� The watchman problem for a reduced polygon can be solved by
at most

�
n

�

�
point guards each of which has to guard a rectilinear star of size at

most ��	

Proof� After augmenting edges to C ��P  for each � � # as described above each
guard has to watch at most � horizontal �vertical and � vertical �horizontal corri�
dors	

Figure �
 shows an example of a con�guration that yields a star of size ��	

� Concluding Remarks

�	 We have shown that a rectilinear polygon �possibly with holes on n vertices
can be partitioned into at most

�
n

�

�
rectilinear stars each of size at most ��	

The presented self�contained proof has two parts� a problem reduction and
the graph�theoretic treatment of reduced polygons	 In both parts stars of size
�� occur rather naturally	 So� we don�t think that the maximal star size can
be decreased within the presented approach	

�	 A lower bound for the maximal star size is �� as proved by the unique watch�
man solution for the example in Figure �	 It remains open whether �� or ��
is the right answer	 The same example shows that one needs point guards to



��

prove an
�
n

�

�
upper bound	 If we are restricted to vertex guards the exact

bound is not known yet	 There is some strong evidence that one can prove
our

�
�n
�

�
�lower bound to be tight using the multicoloring technique introduced

in ����� where the best known upper bound of
�
n




�
	 Expressed as a function of

n and h the correct bound for the vertex guard model is also not known$ the
current lower bound is

�
nh
�

�
� the best upper bound is still the trivial

�
n�h
�

�
�

see ����	

�	 The presented solution �via partitioning into rectilinear stars of the Art
Gallery Problem is invariant under the following stretching operations	 Con�
sider a horizontal �or vertical cut through the polygon by a line L that does
not meet any vertical �horizontal edge and scale all edges hit by a constant
factor	 Since a stretching applied to a rectilinear star gives a rectilinear star
and the guards can be placed on vertices or crossings of edge prolongations
only we have that the image of guard positions under a stretching de�nes a
valid guarding set	 This is not true if one starts with a partition into general
stars as demonstrated by Figure �	
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