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Abstract

This paper proves a lower bound on the independence number of general hyper-
graphs in terms of the degree vectors. The degree vector of a vertex v is given by
d(v) = (d1(v),dz2(v),...) where dy,(v) is the number of edges of size m containing v.
We define a function f with the property that any hypergraph H = (V, E) satisfies
alH) > Zvev f(d(v)). This lower bound is sharp when H is a matching. Further-
more this bound generalizes known bounds of Wei/Caro and Caro/Tuza for ordinary
graphs and uniform hypergraphs.
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1 Introduction

Wei and Caro independently discovered the following nice lower bound for the independence num-
ber of a graph in terms of the degrees (see also [G]).

Theorem 1 [W,C] Let G = (V, E) be a graph with independence number a(G). Then
1
a(G) > _—
I

where d(v) is the degree of the verter v.

This bound is tight if (and only if) G is the union of disjoint cliques. This result raises the question
if a similar lower bound can be found for the independence number of hypergraphs. Before stating
the results we have to make some definitions.

A hypergraph is a pair H = (V, E) where V is a finite set and F is a collection of non-empty
subsets of V', i.e. B C 2Y \ {0}. The rank r of a hypergraph H = (V, E) is the maximal size of
an edge in . The hypergraph H is k-uniform if all edges in £ have size k. A set I C V is called
independent if 27 N E = 0, i.e. the set I contains no edge of £. The maximal size of an independent
set of H is defined as the independence number o(H).

Caro and Tuza proved the following result, which is an extension of Theorem 1.

Theorem 2 [CT] Let H = (V, E) be a k-uniform hypergraph with k > 2. Then

a(H) > Y f(d(v)),

veEV

where d(v) is the degree of v, i.e. the number of edges containing v and the function f is given by

o :ﬁ(“m)

i=1

In fact the result of Caro and Tuza is slightly more general.
Remark. The function f in Theorem 2 can be simplified to f(d) = (d+1/c(lk_1))_1. Thus we may

rewrite the result as
d(v) + ==
wnz 3 (")

veEV
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For k = 2 (ordinary graphs) this is the Wei/Caro bound.

In order to generalize this result to arbitrary (non-uniform) hypergraphs we have to generalize
the concept of the degree of a vertex. The first idea maybe simply to define the degree of a vertex
v similarly as the number of edges containing v. But we will run into troubles with this approach,
since we don’t have any information about the sizes of the edges containing v. More useful is the
following approach.

Let H = (V, E) be a hypergraph of rank r. For every vertex v € V define the degree vector
d(v) = (di1(v),d2(v),...,dr(v)) € N{ where dy,(v) is the number of edges of size m containing v
for1<m<r.

Definition. Let » > 1 be an integer. Define the function f, : Nj — R by

frd)= 3 [H CZZ)] Z(n(z_—l)l?:@ +1°

ieNy

The product and the inner sums are taken over all 1 < m < r. Note that the outer sum is finite
since all summands are zero unless ¢ € [0,d] := {j € N[ : 0 < ji < dpp for all 1 < m < r}. Now
we are in the position to state our main theorem.
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Theorem 3 Let H = (V, E) be a hypergraph of rank r. Then

o) 2 3 Fo(d(v) .

veEV

Suppose H = (V, F) is k-uniform, k > 2. Let v € V be arbitrary, ¢; denotes the k-th unit
vector. Since H is k-uniform f(d(v)) reduces to

-1

(see Concrete Mathematics [GKP] p. 188). Thus the theorem is a generalization of the results of
Wei/Caro and Caro/Tuza. Let us also consider the case k = 1, i.e. I is l-uniform. Then f(d(v))
reduces to

dl(v) .
di(v) . lifdi(v) =0
d = f(d = —1) = .
) = 1) = 3 (M) = {3
This is what we expect: The unique maximum independent set i1s given by the set of vertices of
degree 0.

Observation. Let H = (V, E) be a matching of rank r, i.e. [T is a hypergraph with the property
ete € E=ene =0. Then

a(H) = fr(d(v).

veEV

Proof. Since H is a matching the independence number of H is given by
a(H) = Ftvertices of degree vector zero + Z(|e| -1).
1=
On the other hand f.(0) = 1 and for every edge ¢ € £/ we have ) . f.(d(v)) = |e|(1—1/[e]) =
el = L. Thus a(H) = 3,y fr(d(0) 0
Lemma 4 Letr € N, C1,Cs,...,C > 0 and Cy > 0 be given. The function g : Ny — R given by

_ dn\] _ (=D&
sd) =2 06 seisa
15 the solution of the recurrence

Crdpg(d — e
g(d)zzk kdig(d —ex)
> Crdr + Co

with g(0) = Cy ' In particular g(d) is non-negative for all d € N,
By this lemma we infer that our function f satisfies the recurrence

Yk —=1) -dipf(d—ep)

with f(0) = 1. In particular 0 < f(d) < 1 for all d € N§. For later purposes we need the following
equivalent partial difference equation for f

F(d) = (m=1) - dn [f(d = em) = £(d)] (1)

m

fd) =

for d # 0.



2 Proof of the Main Theorem

For convenience let us define the function F'(H) := 3 .y f(d(v)) for every hypergraph i = (V, F),
where f = f, and r = rank(H). Suppose z is a vertex of H. Let H \ # denote the resulting
hypergraph after removing « together with all incident edges from H. The key to the proof of our
main theorem is

Lemma 5 Let H = (V, F) be a hypergraph with E # (. Then there exists a vertezx x € V with
F(H\z)> F(H).

The main work will be the proof of this lemma.

Proof of Theorem 3. Lemma 5 enables us to use the following algorithm to find an independent
set I in H.

WHILE E(H) #0 DO

Choose ¢ € V(H) with F(H \ z) >
F(H);
H:=H\ux;

END;

Output independent set [ = V(H).

Since f(0) = 1 we know that F'(I) = |I|. On the other hand the value of F' never decreases by
the choice of the deleted vertices. Thus F(H) < F(I) = |I| < a(H).
O
We remark that the proof implies a polynomial algorithm that computes an independent set
of size at least F'(H) in an arbitrary hypergraph H of constant rank. In particular, for uniform
hypergraph, this is the so-called max-algorithm (see also [CT, G]): Successively remove vertices of
maximum degree with all incident edges until no edges are left. It is easy to see that a vertex z
with maximum degree in a uniform hypergraph has always the property F(H \ #) > F(H).

3 Proofs of Lemmas
For the proof of Lemma b we need

Lemma 6 Letr € N, d € Ny and A € [0,d] be given. Then
Fd=2)=f(d) > Y Ap - [f(d = em) = f(d)] -
m=1

Proof of Lemma 5. Let H = (V,E) be a hypergraph of rank r with £ # @. Define V*
to be the set of all non-isolated vertices, i.e. vertices # with d(x) # 0. By assumption, V* #
0. Furthermore for two distinct vertices x,w € V the co-degree vector is given by d(z,w) =
(di(z,w), da(z, w), ..., dr(x,w)) € N, where dp,(z, w) is the number of edges of size m containing
both z and w. Set d(w,w) := 0. Now let € V* be arbitrary, then

F(H\ )= F(H)= ) [f(d(w) = d(z,w)) = f(d(w))] = f(d(x)) .

weV*

Consider one summand. Lemma 6 implies

[f(d(w) = d(z,w)) = f(d(w)] > D du(@,w) - [f(d(w) = em) = f(d(w))] .
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Thus
F(H\ x) > )Y dp(x,w) (w) = em) — fd(w))] = f(d(x)) .

weV* m

We sum these differences up over all z € V*:

Y [F(H\2) — F(H)

TEV*

v

TzeEV*weV* m reV*

m zeEV*weV* reV*

m weV* \zeV=*

= > (Z(m — 1) - dp(2) [f(d(z) = en) = fld(2))] = f(d(x)))
= 0.

There we made use of the following observation

> d(w,w) = (m = 1) - dyp(w)

TEV*

Yo D D dmle,w) - [f(d(w) —em) = f(d(w))] = Y fld(x))
Yo Y dmle,w) - [f(d(w) —em) = f(d(w))] = Y fld(x))

> (Z dm(%w)) [f(d(w) = em) = f(d(w))] = Y f(d(z))
YD (m=1)dn(w) [f(d(w) = em) = f(d(w))] = Y fld(x))

and the fact that f(d) satisfies the partial difference equation (1) for d # 0. By definition, d(z) # 0

for all z € V*.

We infer that for a random « € V* the expectation of F/(H \ ) — F(H) is non-negative. Thus

there exists an € V* C V with FI(H \ z) > F(H).

Lemma 7 Forr € N, 1 <k, <r and d € Nj with d > 1 we have
fld—er) = f(d) > f((d+er) —er) — fld+er).

Proof. We will show that

[F(d = ex) = F()] — [F((d + 1) = ex) = f(d +e)] 2 0.

Consider the case k # [ first.
S ()

g m#k

() I s
SO s JEZH

fld=ex) = f(d)

Similarly

(e —en) = fd+e) = =3 (d B 11) (d+ 1) 1 (d:f) z&_i)?); T

O



Putting this together yields
[fld—er) = f(d)] — [f(d+e)—ep) = f(d+er)]

- 2GS I () s

£k
= 2 (") 1I () s f{f NI ESy
e, =:Co>0

where g is given by the recurrence

2(m—1)-dng(d —em)

9(d) = S (m —1) - dpm + Co

with g(0) = C'O_1 > 0 according to Lemma 4. In particular g(d — e) is non-negative which proofs
the claim for k # (.
Now let k& = I. We have to prove that [f(d — er) — f(d)] — [f(d) — f(d + e)] > 0. Consider

again
Jd—ex) = f(d) == (Cll: _ 11) I] (f:) Z(T(n_i)1z)i:+ 1

i mzk

and similarly

fld) = fld+ex) = = Z (ikdf 1) ngk (CZZZ) Z(r(n_—l)lz):i: 1
We infer that

[f(d = ex) = f(d)]

[f(d) = f(d +er)]

ZZ,: (21: :21) I (Czl::) Z(r(n_—l)lz)i:Jr 1

mk
= X () I = 1)(;1@

=:Cp>0
= g(d_ek) )

where ¢ is again given by the recurrence

2(m—1) dmg(d —em)
Z(m—l)dm—FCQ

g(d) =

with ¢(0) = C'O_1 > 0 according to Lemma 4. In particular g(d — e, ) is non-negative and the claim
follows also for & = {. ad

Remark. Lemma7 tells us that for any d and k the difference f(d—ep)— f(d) decreases whenever
we increase any component of d. This is essential for the proof of Lemma 6

Proof of Lemma 6. Let » € N, d € N and A € [0, d] be given. Consider the points (d—A) and d
on the N{ grid. A monotonical path between these points is a sequence of grid points starting with
(d—A) and terminating with d where two neighboring points are of the form (d’ —e,,), d’ for some
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1 < m < r. Each monotonical path between (d — A) and d has length ¢ := >~ A,,, and the number
of such paths is given by the multinomial coefficient (AZI:%Z ) Now let P = po, p1,...,ps be such
a monotonical path, pg = d — A and p, = d. According to this path we rewrite f(d — A) — f(d)

as the telescoping sum
g

fld=A) = f(d) = [f(pj—1) — £(p))] -
ji=1
Note that all differences have the form f(d'—en,)— f(d") forsome 1 < m < rand d € [d—A+ep, d].

For each 1 < m < r there are exactly A, differences of the form f(d' — e,,) — f(d’) in the
telescoping sum since P is monotonic. By Lemma 7 we see that each such difference satisfies

Hd —em) = f(d) > f(d —em) — f(d) .

Thus we can estimate

Fd=A) = (d) > S A [(d = em) — ()] -

It remains to proof Lemma 4.

Proof of Lemma 4. Let r € N, C1,C5,...,C, > 0 and Cy > 0 be given. We have to show that
the function g : N — R given by

-] <o

satisfies the recurrence

d) = > Crdrg(d — er)
kdp + Co

with ¢(0) = C5'. It is easy to check that ¢(0) = C5* holds.

Let us rewrite the recurrence as a partial difference equation

Cog(d Z Crdrlg(d — ex) — g(d)]

for d # 0. Suppose dj > 0 then we have
- i — 1 itk Im Zszm + Cy
—— SR D) DL P S
deZ,:HQm)( = S Cin T G

g(d — ex) — g(d)

Hence,
im Cklk
Crdy[g(d — er) g || —ZC A

and therefore

3 Cudela(d = ex) = o(d)] = —;H(%)(—UZ“%
-2 1I (f’”)<—1>z“‘ (1 - chﬁ)

3



- X

=0 for d#0

XTI S

=g(d)

== Cog(d)

as desired. O
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