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Chapter 3: Homogenous Nucleation of Ice in Supercooled 
Liquid Water 
 
 

Until now, several experimental studies were conducted to investigate the homogeneous 

nucleation of ice in supercooled liquid water (Hagen, Anderson et al. 1981; Angell 1983; Taborek 

1985; Sassen and Dodd 1988; Huang and Bartell 1995; Kramer, Hübner et al. 1999; Duft and 

Leisner 2004; Stöckel, Weidinger et al. 2005). In addition, the growth of the critical nucleus was 

simulated in molecular dynamics (MD) studies (Matsumoto, Saito et al. 2002; Radhakrishnan and 

Trout 2003; Vrbka and Jungwirth 2006). While the experiments provided nucleation rate data to 

check the validity of theoretical calculations, the molecular dynamics simulations revealed 

promising results in understanding the mechanism of critical-nucleus formation.  

 

Although, these studies contributed much to the understanding of the nucleation phenomenon in 

supercooled liquid water, a complete picture of the dynamics of ice nucleation has not been 

readily drawn. At first, the comparison of experimental results and the early theoretical 

calculations had shown that there is a discrepancy between the experimentally obtained results 

and the theoretical estimations. It was found  that the theory overestimates  the nucleation rates at 

warmer temperatures and underestimates at colder temperatures (Pruppacher and Klett 1997). 

Secondly, the present molecular dynamics simulations are performed at most with a few hundreds 

of molecules, for very small time intervals. Therefore, the results of MD simulations should be 

evaluated cautiously in making analogies to the macroscopic evaluation of a critical ice nucleus at 

the homogenous nucleation temperature.   

 

The unusual behaviour of metastable liquid water in relation to its structure adds more 

complexity to the problem. Since water molecules strongly associate through hydrogen bonding, 

and there exists large number of possibilities for their network configurations, there also exists 

large number of possibilities in defining a path, connecting the metastable phase of supercooled 

liquid water into stable solid phase (Matsumoto, Saito et al. 2002).  In this respect, MD 

simulations may only partially describe the dynamics of critical nucleus formation. 
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The first theoretical calculations that deviated from the experimental results were based on the 

classical theory of homogeneous nucleation (CNT). The nucleation rate equation obtained from 

the classical theory contains both thermodynamical and kinetic parameters. The thermodynamic 

parameters are related to the energy of nucleus formation, and the kinetic parameters to the flux 

of molecules on the surface of the nuclei, that affords the growth. To match the theoretical 

estimations to the experimental results, several authors have modified the nucleation rate equation 

of CNT. Those, of whom mainly focused on the kinetic term {Hagen et al (1981)(Hagen, 

Anderson et al. 1981) , Pruppacher and Klett (1995) (Pruppacher and Klett 1997), Huang and 

Bartel (1995) (Huang and Bartell 1995)}, modified the prefactor in the nucleation rate equation. 

The thermodynamical term, which is the energy of germ formation, was also studied by several 

other authors (Eadie 1971). They mainly focused on the precise calculation of the interfacial free 

energy and the chemical potential differences of the mother and daughter phases.   

 

As a result of different approaches in modifying the nucleation rate equation in CNT, different 

expressions had appeared. They differ in the parameterisation of the kinetic or thermodynamic 

terms. However, the basic mechanism assumed for the kinetics of nucleation growth stays the 

same, i.e the ice nucleus grows by the addition of molecules (or molecular aggregates) from the 

mother phase, by a particle flux. 

 

In Chapter 2, we have introduced a modified physical model of supercooled liquid water. The 

most prevailing assessment of this model is the presence of big patches, which behave as 

independent identities, and which are the smallest units that can characterizes the thermodynamic 

properties of liquid water.  In this model, the ice-embryos grow from the ice-like agglomerates 

that are found inside the patches. These agglomerates are separated from each other by diffuse 

surface layer of defect molecules. This model lends a new insight into the dynamics of 

homogeneous ice nucleation. 

 

We propose that the agglomerates near the surface of the patches can grow faster than the 

agglomerates in the interior of the patches. This is because; near a patch surface the agglomerates 

grow by the addition of non-bonded water molecules from the interphase in between the patches. 

The non-bonded molecules can diffuse faster on the surface of the agglomerates, in comparison to 

the molecules inside the patches. 
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We wish to formulate this new insight to describe the kinetics of ice nucleation. At first step, we 

find it useful to give a review of the classical nucleation theory to familiarize the reader with the 

concepts and formulations of the nucleation rate equation. This is done in Section 3.1.We will 

also point out to other alternative approaches; in Section 3.2. Our new approach to the kinetics of 

ice nucleation is formulated in Section 3.3. 

 

3.1 The Review of the Classical Nucleation Theory 

 
The nucleation of ice in nature is mostly heterogeneous, i.e. foreign particles or surfaces take part 

in the formation of ice embryos. In the absence of foreign particles and surfaces, a critical nucleus 

of the ice phase has to be formed from the molecules of the mother phase before a phase 

transition occurs. It is then called homogeneous nucleation.  

 

The growth of ice germs is described by the nucleation rate in supercooled water. The 

homogeneous nucleation rate is calculated in two steps: The first step involves finding out the 

size distribution of embryos at a given temperature from the energetic of embryo formation. A 

steady-state distribution of embryos is assumed.  Critical size for the nucleus that would 

spontaneously grow into the crystal of new phase is calculated from the maximum energy of 

embryo formation. The second step then consists of finding out the net flux of molecules that 

attach on the surface of the critical cluster. 

 

This approach, which is known as classical nucleation theory (CNT) has been first introduced by 

Volmer and Weber(Volmer and Weber 1926) for the droplet condensation from supercooled 

water vapour. Subsequent developments are followed (Becker and Döring 1935; Zeldovich 1942).  

It is adapted to homogeneous nucleation in supercooled liquids by Turnbull and Fischer (Turnbull 

and Fisher 1949). 

 
The basic kinetic mechanism assumed in the classical nucleation theory is that the small clusters 

grow and decay by the absorption or emission of single molecules: 

 

(H2O)n +  H2O ↔ (H2O)n+1  
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In droplet condensation from supercooled water vapour, (H2O)n represents the liquid phase 

clusters containing n water molecules. In ice nucleation, these are the ice embryos embedded in 

the mother phase of liquid water.   

 

The steady state nucleation rate, which is the number of embryos formed per unit volume per 

second, is given by: 

 

J = cg· f· ΩΩΩΩg                           (3-1) 
 

Here cg is the concentration of critical ice germs per unit volume, ΩΩΩΩg is the surface area of the 

critical germ,  and f is the net flux of water molecules on the surface of the critical germ. In this 

theory, the critical germ is assumed to be spherical. By convention, the nucleation rate is given in 

“number of ice germs per cubic centimetre per second”: 

 

J (mol ⋅ cm-3 ⋅ s-1) = cg (mol ⋅ cm-3) x f (mol ⋅ cm-2 ⋅ s-1) x  ΩΩΩΩg (cm2
 ⋅⋅⋅⋅ mol-1) 

 

The detailed description and derivation of the parameters that takes part in Equation (3-1) will be 

given in the following sections. By substituting the equivalent expressions derived for these terms, 

we arrive at the nucleation rate equation given below: 
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N: Total number of the water molecules in the system. 

Nc: Number of monomers of water in contact with the unit area of the ice surface. 

Z: The Zeldovitch factor. 

∆Gn*: The free energy of critical-nucleus formation. 

∆g*: Free energy of activation for the diffusion of water molecules across the ice-water interface. 

 

The quantity Nc · Z · Ωg is usually on the order of unity in most nucleating systems. By equating 

it to unity the Equation (3-2) simplifies to (3-3): 
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Equation (3-3) does not require the knowledge of the number of molecules in contact with the 

surface of an ice-embryo (Nc), in evaluating the homogeneous nucleation rates. 

 

3.1.1 The Free Energy of Critical Nucleus Formation 

 
The energetic of embryo formation is evaluated by getting use of macroscopic quantities in the 

classical approach, assuming that the embryos have bulk properties. This is referred to as the 

capillary approximation(Debenedetti 1996).  These quantities are the surface tension of  the ice-

water interface (σi/w) and the difference of the bulk free energies (∆µ = µi - µw) of liquid and solid 

phases. The free energy of ice-germ formation from n water molecules is given by Equation. (3- 

4): 

 

∆Gn = σi/wAn + n∆µ                          (3-4)

     

σi/w: Surface tension of ice-water interface. 

An: Surface area of the ice-germ composed of n molecules of the new phase. 

∆µ: The difference of chemical potential per molecule in ice and liquid water. 

n: The number of water molecules.  

 

The surface area of the germ composed of n molecules is described as: 
 
An = γ · n2/3                           (3-5) 
 
Here γ is a geometric factor, which is assumed to be independent of n.  
 
For the critical cluster, ∆Gn passes through an absolute maximum, thus the number of molecules 

n* in the critical cluster is found by equating (∂Gn/∂n) to zero: 

 

 n* = (-2· γ· σi/w / 3 ·∆µ)3                         (3-6) 
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In a spherical nucleus γ =  4π(r)2 ,  where r  is  the Van der Waals radius of the water molecule in 

ice.  “r” can be approximated by dividing the molar volume of ice to Avagadro’s  number NA, for 

a hard-sphere of water molecule: 

 

(4/3) · π · r3 =  VM / N.A.                         (3-7) 

 

In Eq. (3-7), VM  is the temperature-dependent molar volume , which equals to  M.W. / ρi (T)  . It 

then follows from (3-7): 
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By substituting Equation (3-9) into (3-6), we get the expression for finding the number of water 

molecules involved in the critical nucleus in terms of bulk values of free energy differences and 

ice-water surface tension: 
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This expression is very similar to that is given by Huang and Bartell (1995) (Huang and Bartell 

1995) 2. The corresponding free energy of critical nucleus formation following from Equation (3-

4), (3-5) and (3-10) is: 

 

                                                 
2 The change in the total volume of outer phase due to forming of nucleus with different density inside would be 
quite small and is not involved in the calculations. 
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The energy barrier for ice-germ formation at a given temperature can be calculated if the values 

for ρi (density of ice), σi/w, and ∆µ are known.   

 

According to the theory of reaction rates, the probability of forming a cluster with n molecule is 

is related to its free energy of formation, and proportional to exp (-∆Fn/kT).  Therefore the 

probability of forming a critical germ in a system composed of N molecules is given by: 

  

P(n*) = N · exp (-∆Gn*/kT)                       (3-12) 

 

Similarly a size distribution of various cluster sizes n can be calculated by using (3-12). In the 

metastable state of equilibrium, this distribution would lead to finite probabilities also for clusters 

being larger than the critical cluster. Furthermore the system would be more populated by larger 

clusters owing to monotonic decrease in the distribution function after the critical size, which is 

in conflict with the theory. To solve this conflict it is assumed that n > n* is an unstable condition, 

and the critical cluster grows very rapidly to the solid phase. The cluster size distribution near the 

critical size is corrected by the use of Zeldovitch- Factor, and the distribution for larger sizes is 

neglected. Accordingly, the critical size is taken as point of no return, in the calculation of 

nucleation rates. 
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3.1.2 Calculation of the Molecular Flux on the Surface of the Critical Germ 

 
In the classical theory of nucleation, it is assumed that the embryos of daughter phase grow by the 

addition of single molecules from the mother phase. In the droplet condensation from 

supercooled water vapour, the molecules in the gas phase are assumed to behave like ideal gas, i.e. 

they do not interact with each other. They also freely diffuse to the surface of the critical nucleus. 

However, in ice nucleation from supercooled liquid water, the diffusion of water molecules 

across the ice-water interface is subject to an activation energy barrier(Pruppacher and Klett 

1997). For this process water to water H-bonds are broken, and the molecules diffuse across the 

interface under a force field that is created by the surrounding water molecules. Therefore the 

growth of critical nucleus includes the activation energy barrier (∆g*) for the diffusion of 

molecules across the ice-water interface.  

 

The probability that a molecule will diffuse out the liquid structure near the interface in a unit 

time is given by (3-13): 

 

Pdiff. = (kT/h) exp (-∆g*/kT)                      (3-13) 
 

Consequently the molecular flux is calculated as: 

 

f = Pdiff. · Nc                                      (3-14) 
 
 
where Nc is the number of molecules in contact with the unit  surface of the ice germ. 

 

It is discussed by Eadie (Eadie 1971) that several rate processes such as viscous flow, self 

diffusion, and dielectric relaxation (dipole orientation) are supposed to have essentially the same 

activation mechanism in liquid water. The experimentally obtained values for the activation 

energies of these processes are in close agreement with each other, which supports this 

assumption. Therefore, ∆g* can be calculated from diffusion, viscosity or dielectric relaxation 

data for supercooled liquid water. This has been shown by Eadie as given below: 
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The self diffusion coefficient of liquid water is formulated as: 

 

D = λ2 (kT/h) exp( -∆g≠ / kT)                       (3-15) 

and  

ln D = ln (λ2k / h) + ln T -  ∆g≠ / kT                      (3-16) 

 

Here ∆g≠ = ∆H≠ - T∆S≠.  In condensed phases we can approximate   ∆g≠ ≈ ∆H≠ . It follows from 

Equation (3-16) that: 

 

d(ln D) / d(1/T) = - T - ∆g≠ / k = - (∆g≠ + kT) / k                    (3-17) 

 

By introducing the term effective activation energy as ∆g* = ∆g≠ + kT and rearranging Eq. (3-17), 

we get: 

 

∆g* = -k [d(ln D) / d(1/T)]                       (3-18) 

 

Experimentally, ∆g* is obtained from the slope of Arrhenius diagram for the temperature 

dependence of self-diffusion constant of liquid water. 

 

3.1.3 Shortcomings of the Classical Model 

 

The values necessary to calculate the nucleation rates of ice in supercooled liquid water according 

to Equation (3-3) are the free energy of activation for the diffusion of water molecules across the 

ice water interface (∆g*), and the free energy of critical-germ formation (∆Gn*).  From these 

values ∆g* is equated to the activation energy of self-diffusion for water molecules as explained 

above.  For calculating ∆Gn*, the difference in the chemical potentials of ice and liquid water 

∆µice-liq, and the ice-water interface energy σi/w at supercooled temperatures are required. 

 

The data for the self-diffusion constant of supercooled liquid water is experimentally attainable 

from the measurements of Gillen et al(1972)(Gillen, Douglass et al. 1972) and  Price et al (1999) 
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(Price, Ide et al. 1999).  From these data, ∆g* can be computed. On the other hand the chemical 

potential difference of bulk liquid and solid phases for supercooled liquid water is obtained from 

their equilibrium vapour pressures. The equilibrium vapour pressures of liquid water at 

supercooled temperatures and ice are available from Mason (Mason 1971). More recently Koop 

et al (Koop, Luo et al. 2000) provided an expression that gives ∆µ as a function of temperature.  

 

Finally, the ice-water interface energy (σi/w) is required. Method independent experimental values 

could only be obtained at the melting temperature of ice or at supercooled temperatures that lie 

close to the melting point.  For such a case, the bulk value (or the thermodynamical value) of σi/w 

at 273 K is reported by Huang and Bartell (Huang and Bartell 1995), which is computed from 

equilibrium contact angles between water and two crystals of hexagonal ice sharing a grain 

boundary.  

 

It is difficult to obtain experimentally the values for σi/w in supercooled liquid water, since water 

freezes rapidly. Therefore, σi/w is either estimated by various theoretical approaches (Eadie 1971) 

or calculated as a “kinetic parameter” adjusted to the experimentally obtained nucleation rates of 

ice in supercooled water (Pruppacher 1995). However, the theoretical estimations led to 

considerable scatters, and the experimentally obtained “kinetic values” strongly depend on the 

kinetic model used (Huang and Bartell 1995). one of the limitations  of the classical model is the 

absence of reliable and independent experimental values for the specific surface free energy of 

the ice-water interface.  

 

Another critic that is directed to the classical theory is the use of macroscopic quantities for the 

microscopic ice-embryos.  This means that the bulk chemical potential applied to the ice embryos 

might fail, and there might not necessarily be a macroscopically distinguished surface for a 

growing ice-embryo. In reality, the geometry of the ice embryo and configuration of the water 

molecules in the ice water boundary determines the key features of the surface layer. The ice 

embryos can have non-spherical and fractal surfaces instead of having smooth and spherical 

shapes. The surface might be diffuse instead of being a monolayer. Under these conditions, the 

free energy of forming an ice-germ depends on its geometry as well as its size. 
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3.2 Various Approaches to Evaluate the Nucleation Rates 

 
 

The classical theory of nucleation has been continuously improved since it has been first 

developed by Volmer and Weber.  Different approaches to formulate the nucleation rates have 

been emerged in this manner. Among them  the statistical thermodynamical approach of Eadie 

(1971) (Eadie 1971),  Pruppacher’s treatment of activation energy for the transfer of water 

molecules across the ice-water interface (Pruppacher and Klett 1997), equations of states 

approaches of  Jeffery and Austin (1997) (Jeffery and Austin 1997) and of  Kiselev (Kiselev and 

Ely 2002; Kiselev and Ely 2003), and purely kinetic treatment of Ruckenstein and Nowakovski 

(1990) (Ruckenstein and Nowakovski 1990), deserves particular attention to be examined in 

detail. Besides, the non-steady state calculations of the nucleation rates;  the density functional 

theory applied to free energy of embryo formation (in vapour to liquid nucleation) (Debenedetti 

1996); and the Monte Carlo generated cluster free energy differences (in vapour to liquid 

nucleation) (Dimattio 1999) to scale the surface tensions and nucleation rates can be given as 

other specific improvements. 

 

3.2.1 The Statistical Thermodynamic Approach of Eadie 

 
 
Eadie (1971), attempted to obtain consistent theoretical values for the surface free energies of ice 

embryos based on  a statistical thermodynamic approach.  He formulated the free energy of an ice 

embryo composed of g molecules as: 

 

∆G(g) / kT = -ln Q(g) + g ln qw                      (3-19)

  

 

Here gw  is the average molecular partition function of supercooled liquid water, and Q(g) is the 

canonical partition function for an ice embryo of size g.  Eadie determined gw in a similar way, 

which was followed by Nemethy and Scheraga (Nemethy and Scheraga 1962).  
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In determining Q (g), Eadie brought up mathematical expressions to calculate the number of 2-, 

3- and 4- H-bonded molecules for a regular type of compact clusters having an ice-like structure. 

He assigned the average molecular partition function for ice to the 4- bonded molecules For the 

2- and 3- bonded molecules, he assigned molecular partition functions of  2- and 3- bonded water 

molecules in liquid water. By this way Eadie was able to obtain the free energy of ice-germ 

formation from supercooled liquid water and the surface contribution to this process. 

 

Although the ice nucleation rates predicted by Eadie were in  good  agreement with the 

experimental nucleation rates, it was criticised later on by Pruppacher(Pruppacher 1995; 

Pruppacher and Klett 1997) that the activation energy for the diffusion of water molecules ∆g*, 

used by Eadie were significantly lower than the generally cited values. Besides, the ice-water 

interface energy were significantly overestimated at lower temperatures, which compensates the 

low ∆g* values in the calculations. 

 

3.2.2 Pruppacher’s Treatment of Activation Energy for the Diffusion of 
Particles across the Ice-Water Interface 

 
 
More recently, Pruppacher had claimed that the activation energy  for the diffusion of particles 

across the ice water interface decreases with increasing supercooling (Pruppacher 1995; 

Pruppacher and Klett 1997).   At first sight, the claim of Pruppacher contradicts with the fact that 

the activation energy of self diffusion increases with decreasing temperature in liquid water. 

However, Pruppacher lends support to his claim from the proposal of Hagen et al (1981) (Hagen, 

Anderson et al. 1981) that  below certain degree of supercooling the ice-embryos grow on their 

surfaces with  the transfer of increasingly   large clusters of water molecules.  

 

To give a quantitative basis to his treatment, Pruppacher first analyzed several experimental data 

and theoretical estimations for the physical and thermodynamical properties of supercooled water. 

As a result he obtained polynomial expressions to estimate the temperature dependence of σi/w in 

supercooled liquid water, which is the “principal unknown”. This polynomial is the best fit to all 

experimental and theoretical estimations of σi/w and has the following form: 
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σi/w = 28.0 + 0.25T;   -36 ≤ T ≤ 0 °C 

σi/w = a1 + a2T + a3T2 + a4T3;  -44 ≤ T ≤ -36 °C                   (3-20) 

 

with σi/w  in erg · cm-2,  T in °C and a1 = 189.081, a2 = 13.1625, a3 = 0.3469, a4 = 3.125 E-3.   

 

Consequently he formulated the nucleation rate J as: 

 

J = 2Nc (ρwkT/ρih) (σi/w /kT)1/2 exp [-(∆Gn*/kT - ∆g*/RT)]        (3-21) 

 

Here Nc is the number of monomers in contact with the unit surface area of the ice surface, ρw 

and ρi are the densities of liquid water and ice, ∆g* is the activation energy for the diffusion of 

water molecules across the ice water interface and ∆Gn* is the free energy of critical nucleus 

formation. “k”, T and h have their usual meanings as being Boltzman’s constant, temperature and 

Planck’s constant. 

 

The treatment of Pruppacher can be criticized from different points. One critic is directed to the 

nucleation rate equation where he uses the number of monomers instead of number of clusters 

which contradicts to his hypothesis and leads to a considerable increase in the particle flux on the 

surface of ice germs. Secondly the ∆g* value approaches zero as the temperature approaches the 

singularity temperature of -45°C. This requires a correlated change in ∆Gn* value in order not to 

neglect the contribution of ∆g* in the exponential factor. Although ∆Gn* decreases with 

increasing supercooling, it becomes much larger in comparison to ∆g* around -45°. Near -45 °C, 

the contribution of ∆g* is so small at that it becomes meaningless as a kinetic factor, and the 

nucleation rates are mainly determined by the free energy of germ formation. This is meaningful 

if only it can be supported by independent experimental values of σi/w, ∆g* and ∆Gn*, which 

suggests near the singularity temperature the nucleation rate is purely determined by 

thermodynamical parameters. However at this stage the values for ∆g* and and ∆Gn* are strongly 

dependent on the value of  σi/w which is extracted from a polynomial expression as a best fit to 

several experimental values that significantly scatter from each other. It is also noted by 

Pruppacher that the polynomial expression for the value of σi/w  does not discriminate between 

the basal and prism faces of the ice-crystal lattice. 
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3.2.3 Kiselev’s Crossover Model 

 
 
The equations of states are commonly used to estimate the physical and thermodynamical 

properties of ice and liquid water over a wide range of pressure and temperature; especially when 

there is not enough experimental data. In this manner most equation of states (EOS) are an 

improvement to the van der Waals equation of state, to give better approximations to the 

behaviour of real systems. The applicability of various equations of states to nucleation theory  

can be found elsewhere (Obeidat 2003). In this work there is also a critic stated for the crossover 

equation of Kiselev: 

 

Most EOS generally fail to reproduce the singular behaviour observed at the critical point. 

In this manner, Kiselev and Ely (2002) (Kiselev and Ely 2002) developed a new equation 

of state to be able to describe both the “classical mean filed behaviour far away from the 

critical region” and “smoothly crossover to the singular behaviour near the critical point”. 

They termed it as crossover equation of state (CREOS). Since the concept behind the 

crossover EOS is to get the right behavior near a critical point, to make this equation work 

at low temperatures, the scenario of a second critical point at low temperature was exploited 

by Kiselev and Ely. 

 

Although Kiselev based his  approach on the two-critical point scenario, he also assumed that 

liquid water has a kinetic spinodal, below which the second critical point CP2 of low density 

water (LDW) – high density water (HDW) lies. Therefore,  CP2  is found in a 

“nonthermodynamic habitat”. 

 

 The CREOS-01 (Kiselev and Ely 2002), CREOS-02 (Kiselev and Ely 2003) are used to predict 

the thermodynamic properties and the kinetic spinodal of supercooled liquid water and heavy 

water.  They in turn can be used to describe homogenous nucleation behavior of water by the 

fluctuation theory of homogenous nucleation, near the kinetic spinodal. 

 

In the fluctuation theory of homogeneous nucleation, the homogenous nucleation limit (TH) arises 

due to the mechanical instability of the metastable phase along the kinetic spinodal line. The 

physical boundary of the metastable state is determined by the lifetime of metastable phase (tM) 
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being on the order of the relaxation time (tR) of a homogeneous state. The line where  tM ≈ tR is 

treated as the kinetic spinodal.  On the other hand, the thermodynamic spinodal corresponds to tM 

<< tR. Therefore it is experimentally unattainable. 

 

The equation of motion in the fluctuation theory of homogeneous nucleation is given by Kiselev 

and it is the same as that of a system near a second order phase transition. Solving the equation of 

motion is used one obtains the lifetime of metastable state given by Equation (3-22): 

 

tM = tR ⋅ (4πγ/λ0) ⋅ exp(γWmin/kBT).           (3-22) 

 

Here tM is the lifetime of the metastable state, which corresponds to the homogenous nucleation 

times near the kinetic spinodal. The full parameterization of the crossover equation can be 

obtained from one of the references given above.  

 

In summary Kiselev’s result indicate that the ice nucleation in liquid water at homogeneous 

nucleation TH is facilitated by a kinetic spinodal, which lies near to TH and determines the 

physical boundary of metastable states.  If the surface tension is known the physical boundary 

imposed on a system by a kinetic spinodal can be determined by crossover EOS.  

 

3.2.4 Ruckenstein’s Kinetic Theory of Nucleation in Liquids 

 
Ruckenstein and Nowakovski (1989) (Ruckenstein and Nowakovski 1990) developed a kinetic 

theory of nucleation in liquids, based on the analysis of mean passage times of the adsorbing and 

escaping molecules on the surface of a spherical cluster. The problem they studied was the 

precipitation of a solute from a supersaturated solution.  

 

They supposed that the molecule escaping from the surface of a cluster performs Brownian 

motion under a force field applied on it by the molecules belonging to the cluster.  The diffusion 

equation under these conditions (and having a spherical symmetry) is given by backward 

Smoluchowski equation: 
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Here D is the diffusion coefficient and Φ = φ/ kT is the pair wise additive interaction potential in 

between a molecule and a cluster. The solution to the above partial differential equation is the 

Green’s function P(r,t|r0). It defines the transition probability that a molecule initially at the 

distance r0 will be located after time t at the point r. 

 

If the Green’s function is known, the mean passage time ττττ of the escape, which is the average 

time for a particle that it is needed for it to disappear from the vicinity of the spherical cluster can 

be mathematically evaluated: 
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is the survival probability, which defines the probability that a molecule initially at point r0 

within the surface layer will remain in this region after time t. 

 

Ruckenstein and Nowakovski calculated the average mean passage time < ττττ > by imposing a 

reflecting inner wall of the surface layer and a perfect absorption for the molecules that reach the 

outer layer, as boundary conditions. Therefore the dissociation rate is obtained as  

 

α = Ns / < τ >               (3-25) 
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via the kinetic law of first-order reactions. Here Ns is the number of molecules that lie within the 

surface layer. The rate of condensation β is also calculated in the similar way by means of a 

stationary solution of the diffusion equation in an external field.  

 

The analysis of mean passage times makes it available to estimate critical cluster size solely in 

terms of kinetic parameters. Tthe critical cluster size is obtained by the condition of “unstable” 

equilibrium, for which the rates of condensation and dissociation are balanced. 

 
 



Chapter 3: Homogeneous Nucleation of Ice in Supercooled Liquid Water 

 80 

3.3 A New Approach to the Kinetics of Homogeneous Ice Nucleation in 
Supercooled Liquid Water 

 
 
As it is seen by the discussions built up to now, the principal unknown in calculating the 

homogeneous nucleation rates is the free energy of surface formation in between the growing 

embryo of the ice phase and the liquid water molecules that surrounds the embryo σi/w .The 

surface energy should be explicitly defined to calculate the nucleation rates, either by theoretical 

estimations or by the extrapolation of available experimental data. 

 

In this section we present a new approach which differs at two points from the other approaches 

of calculating homogenous ice nucleation rates: 

1. Ice nuclei preferably grow at the surface of big patches in liquid water. 

2. An implicit formulation of the free energy of germ formation from the chemical potential 

differences of the hypothetical phase of lattice defects and the liquid water phase is 

introduced, which circumvents the explicit use of the surface tension. 

 

According to the physical model of liquid water, which is introduced in Chapter 2, we have the 4- 

bonded agglomerates embedded in the big patches of LDL and HDL structures. The ice nuclei 

grow from these 4-bonded agglomerates. However the rates of the growth of these agglomerates 

are not the same at every place. Their growth is proposed to be much faster at the surface of a 

patch due to the more mobile molecules that are found in the interface in between the patches. 

These molecules can reorganize in a faster way on the growing sites.  If a similarity is made to 

heterogeneous nucleation of ice, an agglomerate standing at the surface of a patch acts like a 

proper ice-nucleating surface which catalyses the reordering of the disordered and highly mobile 

interphase molecules.  

 

In the interior of the patches, the ice-like structure dominates. Therefore, the self-diffusion 

constant of water molecules inside the patches can be approximated to the self diffusion constant 

of ice.  Due to highly immobilized water molecules, the growth of an agglomerate that is placed 

inside a patch is too slow.  On the other hand, most of the non-bonded molecules find their places 

in the interphase in between the patches. These molecules are more mobile than the ones in the 
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patches, and their self diffusion constants can be approximated to the self diffusion constant of 

liquid water.  

 

In view of the fact that an agglomerate placed near the surface of a patch can grow much faster by 

the addition of mobile water molecules from the interface, the nucleation rate of ice is governed 

by the growth of the agglomerates, which are found near the surface of the patches. Referring 

back to the nucleation rate equation given by (3-1), the concentration of ice-germs is changed by 

an effective concentration in our approach: 

 

J = ceff ⋅ Ω ⋅ f             (3-26) 

 

Here ceff  is the actual concentration of critical ice nucleus multiplied by the ratio of the number of 

4-bonded agglomerates  placed at the surface of a patch to the total number of agglomerates 

present in the  patch: 

 

ceff = cg ⋅ (NAgg.-S / NAgg.-T)                    (3-27) 

 

It is also necessary to correct for the surface area “ΩΩΩΩ”, since only some parts of the agglomerates 

sees the interface, and the rest looks into the bulk of the patch.  This is illustrated in Figure 3.1 for 

various arrangements of agglomerates at the patch surface.  In reality there is a statistical 

distribution of these arrangements, which can occur in infinitely many ways. In the calculations, 

we assign an effective surface area “ΩΩΩΩeff”, which substitutes for an average value of all kinds of 

arrangements of the agglomerates at the patch surface. In this assignment, we get use of the 

results of statistical thermodynamic considerations developed in Chapter 2:  

 

Weff = Xi ⋅ Wpatch               (3-28) 

 

Here “Wpatch”  is the total surface area  for the inner-shell of a patch just below its adherent 

interface. To find the contribution of 4-bonded ice-like agglomerates to the total surface area, we 

multiply the value of Wpatch  with “Xi” , the mole fraction of ice-like phase in a given patch, 

which is first introduced in Chapter 2.  As a result, we obtain “Weff” as the contribution from the 

surface of 4-bonded agglomerates to the total surface area of a patch.  
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Weff describes a total effective surface area for the growth 

of ice nuclei at the patch surface. To find “ΩΩΩΩeff”, i.e. the 

effective surface area per agglomerate, we must divide 

“Weff” to the number of agglomerates that are found near 

the surface “NAgg.-S”: 

  

Ωeff = Weff / NAgg.-S                   (3-29) 

 

To carry out the calculation given in Equation 3-28 and 3-

29, we assume a spherical shape for a given patch.  The 

total volume of the patch is then, calculated to be: 

 

Vpatch  = (VM(liq.H2O) / 6.022E+23)  x  ST        (3-30) 

 

Here VM(liq.H2O)is the molar volume of the liquid water 

at a given temperature,  and ST is the  total number of 

molecules in a patch including the ones in the adherent 

interface. For a spherical object the volume of the patch 

can also be expressed as: 

 

Vpatch = (4/3) ⋅ π ⋅ r3            (3-31) 

 

where  r is the radius of the sphere. Therefore the radius of a patch having a spherical shape and 

composed of n water molecules is obtained to be: 
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For the radius of the inner shell we consider the thickness of adherent interface to be on the order 

1.4 Ǻ, which corresponds to the hard-sphere radius of a water molecule.  Therefore the radius and 

the corresponding surface area of the inner shell are found to be: 

 
Figure 3.1: Various arrangements of 

agglomerates at the surface of a patch. 
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rinner-shell = rpatch – 1.4 (in Ǻ units)          (3-33) 

Wpatch = 4π (rinner-shell)2 

 

Until now, we defined an effective concentration and surface area of agglomerates in growing the 

ice nucleus.  Finally, to find the nucleation rates, we have to formulate the flux of water 

molecules on the effective surface area of the growing agglomerates.  In doing this we assume 

that the interface consists only of non-bonded water molecules, and the presence of a non-bonded 

molecule in the bulk of the patch is highly improbable. Therefore, we can calculate the number of 

water molecules that is found in the incremental volume of the interface adherent to the patch 

surface, by getting use of the mole fraction of nonbonded water molecules, which is calculated in 

Chapter 2: 

 

ninterface = ST x h0             (3-34) 

 

Here ninterface is the number of water molecules that are found in the interface, npatch is the total 

number of molecules in a patch and h0 is the mole fraction of non-bonded water molecules. As a 

result the number of molecules per unit area of the patch surface is: 

 

ns = (ninterface / Wpatch)                     (3-35) 

 

From these molecules we calculate the monomer flux on the unit area of growing sites by using 

the  equations (3-13) and (3-14): 

 

f = Neff ⋅Pdiff               (3-36) 

Pdiff. = (kT/h) exp (-∆g*/kT)   

 

Here Pdiff  is the probability of the diffusion of water molecules adjacent on the surface of an 

agglomerate at a given temperature,  which is defined by the  frequency of thermal excitations 

(kT/h) and the activation energy of self diffusion for water molecules (∆g*).   
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Combining the equations (3-27), (3-29) and (3-36), we obtain the homogenous nucleation rate of 

ice at a given temperature as: 

 

J = cact⋅(NAgg.-S / NAgg.-T) x (Weff / NAgg.-S) x  (ninterface / Wpatch) x (kT/h) exp (-∆g*/kT)            (3-37) 

 

In the above equation, the terms NAgg.-S  cancel out , leading to the result: 

 

J = (ninterface/ NAgg-T) x (Weff/Wpatch) x (kT/h) exp (-∆g*/kT)       (3-38) 

 

Equation (3-38) implies  that we do not have to explicitly calculate the fraction of 4-bonded 

agglomerates on the surface of a patch. On the other hand, the total number of agglomerates in a 

patch is calculated by dividing the total number of 4-bonded molecules in a patch to the average 

size of 4-bonded agglomerates.   

 

NAgg-T : (ST * h4 / navg-Agg)           (3-39) 

 

The average size of the 4-bonded agglomerates in terms of the number of water molecules “navg-

Agg” is obtained from the size distribution of agglomerates at a given temperature.  The details of 

obtaining the size distributions are previously provided in Chapter 2. 

 

The actual concentration in equation (3-37) corresponds to the concentration of the critical 

nucleus in a patch. This is because we calculate the steady-state nucleation rate, which is defined 

to be the net flux on the surface of the critical nucleus at stationary conditions.  Therefore we 

could express the actual concentration as: 

 

cact = npatch⋅exp(-∆Gn* /kT)           (3-40) 

 

Here ∆Gn* is the Gibbs free energy of the formation of a critical ice nucleus. In the classical 

approache, ∆Gn* = σi/wAn + n∆µ, where the surface tension is explicitly defined.  Here we 

circumvent this parameter in the chemical potential difference of the hypothetical lattice defect 

phase, which contributes to the surface of the 4-bonded agglomerates to form the critical nucleus.  
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As developed in Section 2.3.2 of Chapter 2 we express the free energy of critical nucleus 

formation with the below given equation: 

 

∆G (ice-embryo) = (n4⋅⋅⋅⋅ µµµµice ) + (nd⋅⋅⋅⋅ µµµµd) – (n4 + nd)⋅ µµµµliq     

  

Before ending this section of mathematical evaluation, we finally consider on the activation 

energy of self diffusion of water molecules. The self-diffusion data is obtained from Price et al 

(Price, Ide et al. 1999). Fitting expressions for the experimental data are also provided there. 

These expressions are Vogan Tamman Fulcher equation (VTF) and the Fractional Power Law 

(FPL) equations. It is mentioned by Price et al that FPL gives a better fit to experimental values. 

It also implies singularity behaviour at 220 K. Therefore we use the FPL equation to obtain the 

self-diffusion constants:  

 

D = D0⋅T1/2⋅(T/Ts -1)γ            (3-41) 

The necessary parameters are given to be : 

  Err +/- 

D-0 = 7.66E-10 2.40E-11 

T-s / K = 219.2 2.6 

Gamma = 1.74 0.1 

 

 The activation energy for the self diffusion of water molecules is obtained by taking the 

derivatives of the above equation with respect to temperature.  
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3.3.1 Results 

 
 
The calculated results for the homogeneous nucleation rates of ice  are summarized in Table 3.1 

including the stepwise calculations, at four different temperature points.   

 
Table 3.1: Stepwise calculation of the homogenous nucleation rates of ice in supercooled liquid water 

according to the new kinetic approach 

T  °C -33 -35 -36 -40 

h  J⋅s 6.63E-34 6.63E-34 6.63E-34 6.63E-34 

k JK-1 1.38E-23 1.38E-23 1.38E-23 1.38E-23 

Molar volume of liq. Water Vm(liq)  cm
3
 18.40 18.47 18.51 18.71 

Total Patch size (ST) - 3384 3438 3340 3313 

Volume of a spherical shaped patch  cm
3 1.03E-19 1.05E-19 1.03E-19 1.03E-19 

Volume of spherical shaped patch   A
3
 1.03E+05 1.05E+05 1.03E+05 1.03E+05 

Radius of a patch (rpatch) A 29.12 29.31 29.05 29.07 

Radius of the inner-shell  in A A 27.22 27.41 27.15 27.17 

Surf Area (inner-shell) (Wpatch)  A
2
 9308.4 9439.6 9261.2 9278.6 

Xi - 0.63 0.64 0.65 0.67 

Effective surface area (Weff)  A
2
 5864.3 6041.3 6019.8 6216.7 

Fraction of nonbonded molecules (h0)  0.099 0.091 0.089 0.08 
Number nonbonded molecules in the 
interface - 335.016 313 297 262 

Number of surface molecules per unit area  A
-2 

3.60E-02 3.31E-02 3.21E-02 2.82E-02 

Act. Energy of diffusion according to  FPL  J/molecule 6.78E-20 7.35E-20 7.69E-20 9.52E-20 

Total flux on the effective surface area  A
-2
s
-1 

1.46E+08 4.00E+07 1.86E+07 3.12E+05 

Average size of the 4-bonded agglomerates  - 271 292 200 235 
Number  of agglomerates  with average size 
in a patch  13 12 17 14 
Probability for the formation of an average-
sized agglomerate in a patch  2.70E-27 9.87E-22 7.79E-20 6.81E-12 

Number of patches in 1cm
3
 of liquid water  1.78E+20 1.75E+20 1.80E+20 1.82E+20 

J (Germs per cm3 per s)  5.60E+00 5.87E+05 1.57E+07 2.74E+13 

Corresponding thickness of the diffuse 
surface layer for the ice nucleus  A 2.08 1.98 1.93 1.73 

 
 

The nucleation rates are first calculated for a constant interface thickness of ~2 Å by using the 

activation energy for the self diffusion of water molecules.   It is seen that there is a poor match 

between the theoretical calculations and the experimental results in that case. Therefore we 

change the thickness of the surface layer of critical nucleus as a fitting parameter and we obtain 

the results given in Table 3.1. 
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 These results show that the surface thickness of the agglomerates is reduced with decreasing 

temperatures. The surfaces of the agglomerates separate them from other agglomerates in a patch. 

As the temperature is decreased, the ratio of ice-like phase in the patches increases. This also 

means, the number of the four-bonded molecules, which form the agglomerates increases, and the 

number of defect molecules, which form the surface of agglomerates decreases. Therefore, it is 

reasonable to obtain the result that the thickness of the surface of agglomerates decreases with 

decreasing temperature. 

 

The surface thickness must be even shorter to have a good match at temperatures lower than -40 

°C. However, the free energy of germ formation would be less than the activation energy of self 

diffusion at some point, if the surface thickness continues to decrease. This might be explained by 

a kinetic spinodal that is discussed by Kiselev(Kiselev and Ely 2003).  

 

As will be seen in the following sections, addition of solutes can stabilize the surfaces of embryos, 

bypassing the kinetic spinodal. On the other hand the solution may then experience  large density 

fluctuations when it approaches to the hypothetical second critical point, which might be the 

reason of freezing anomalies  observed for example in water-glycol mixtures. Therefore our 

results indicate both a kinetic spinodal and a second critical point. 


