

Higher Order Demand Propagation (draft “tr-b-98-15 (korr)“ from 21 January 1999 12:12) 1

Higher Order Demand Propagation

Dirk Pape

Department of Computer Science
Freie Universität Berlin

e-mail: pape@inf.fu-berlin.de

Abstract.

In this report a new backward strictness analysis for functional lan-
guages is presented. It is called higher order demand propagation and is appli-
cable to a realistic non-strict functional language, which has a polymorphic
type system and supports higher order functions and user definable algebraic
data types. This report defines a semantics for higher order demand propaga-
tion and relates it to the standard semantics of the functional language. Each
definition in a program is mapped to a demand propagator, which is a higher
order function, that propagates context demands to function arguments. The
strictness information deduced by the analysis is very accurate, because
demands can actually be constructed during the analysis. These demands con-
form better to the analysed functions than abstract values, which are con-
structed alone with respect to the type information like in other existing
strictness analyses. The richness of the semantic domains of higher order
demand propagation makes it possible to express generalised strictness infor-
mation for higher order functions even across module boundaries. An
approach to integrate the higher order demand propagation analysis into an
existing compiler for a lazy functional language is sketched at the end of the
report.

1 Introduction

This report describes work in progress in the domain of strictness analysis for lazy
functional languages. Strictness analysis is one of the major techniques used in
optimising compilers for lazy functional programs. If a function is identified to be
strict in some arguments, these arguments can be calculated prior to the function
call, saving the effort of building a suspension and later entering it. Strictness
information can also be used to identify concurrent tasks in a parallel implementa-
tion since referential transparency guarantees that arguments of function calls can
be reduced independently.

Generalised

 strictness analysis cannot only deduce that arguments are needed
and hence will surely be evaluated. But it can also derive an amount of evaluation,
which is safe for a larger data structure. Such information can be used to find
larger parallel tasks in a parallel implementation ([Bu91] or [Ho95]). Though it is
not always recommended to use generalised strictness information for a sequen-
tial implementation – because of the danger to introduce space leaks – it can in
general improve simple strictness analysis results even in the sequential setting.

In this paper a new approach to backward general strictness analysis is pro-
posed. The analysis is called demand propagation because evaluation demands
are propagated from composed expressions to its components. In contrast to other
approaches to backward analysis like projection analysis (Wadler and Hughes
[WH87], Davis [Da94]) or abstract demand propagation (Tremblay [Tr94]) this

2 Higher Order Demand Propagation (draft “tr-b-98-15 (korr)” from 21 January 1999 12:12)

analysis is applicable for a higher order

and

 polymorphic language and works
with infinite domains in the non-standard semantics.

In section 2 a simple but realistic functional module language – based on the
polymorphically typed lambda calculus – is introduced together with its standard
semantics.

Demands and demand propagators are defined and the demand propagation
semantics is presented in section 3. This non-standard semantics assigns a safe
demand propagator to each expression. The role of demand propagators in gener-
alised strictness analysis and the notion of safety are defined in section 4.

The demand propagation semantics departs from other abstract interpretations
for strictness analysis. Its abstract values are not equivalence classes of standard
values but higher order functions, which can calculate the generalised strictness
information via backward propagation of demands. A serious implication of this
is, that the domains in demand propagation semantics are infinite. This has the
advantage, that more accurate strictness information of a function can be
expressed and made available to functions that are composed of it, even across
module boundaries. This can be seen by looking at the examples in the appendi-
ces. On the other hand the analysis has to deal with those infinite domains, and its
termination as well as efficient calculation have to be guaranteed. An approach to
achieve this is sketched in section 5 and needs to be refined in further work. It
includes the possibility to trade accurateness against speed, making the analysis
applicable for different stages of program development.

Further research topics and related work are discussed in sections 6 and 7.

2 Core Language Syntax and Semantics

A simple but realistic functional language is defined in this section, which bases
on the polymorphically typed lambda calculus. The language is higher order and
provides user definable algebraic data types. It is a module language and the
standard semantics of a module is not its main expression value, but a transforma-
tion of environments. The module’s semantics transforms a given

import

 environ-
ment into an

export

 environment by adding to it the denotations of functions,
which are defined in the module.

The reason for defining a modular standard semantics is, to be more related to
the non-standard semantics defined in section 3. The modular semantics concept
is more adequate to formulate the demand propagation semantics, because here
we are not only interested in the semantics of one main expression but in those of
all functions which are defined in the module.

2.1 Syntax of the Core Language

The syntax of the core language and its associated type language is summarised in
figure 1. It consists of user type declarations and function declarations. Expres-
sions can be built of variables, function applications, lambda abstractions,

case-

and

let

-expressions. Since the language shall be truly higher order, variables can
stand for values of all types, including function types. All expressions are
assumed to be typed, but for simplicity all type annotations are omitted in this
paper. In a real implementation the principle types can be inferred by Hindley-
Milner type inference. Nevertheless we define a type language, which is used to

Higher Order Demand Propagation (draft “tr-b-98-15 (korr)“ from 21 January 1999 12:12) 3

index the semantic domains assigned to the types. Polymorphic types are defined
by universal quantification of all free type variables at the outermost level of the
type. Hence an expression’s type must not contain a free type variable. The same
holds for the definitions of user defined type constructors. This is a usual
approach, e. g. followed in the definition of the functional language Haskell
([PH97]). Such a polymorphic type can be applied to a number of types yielding a
specialised type, which yet may or may not be polymorphic. Constructors of an
algebraic data type are assumed to be unique over all types.

Constants are not incorporated into the expression language. Instead they are
assumed to be declarations in a prelude module. Thus the usual constants 0, 1, -1,
…, +, *, … appear in the language as variables with their semantics assigned to
them in a prelude environment. Integer numbers on the other hand also represent
constructors, which tag the components of the infinite sum
Z

⊥

≅

 ({0}

⊕

{1}

⊕

{-1}

⊕

…)

⊥

 and which can be used in a pattern of a

case

-alternative.
The

case

-expression in the core language always contains a default alternative,
to eliminate the necessity to handle pattern match errors in the semantics. An ordi-
nary

case

-expression without a default alternative can easily be transformed by
adding a default alternative with the expression

bot

, where

bot

 is defined in the
prelude environment for all types with the semantics

⊥

.

Type language

type

 :== [

∀

 {

typevar

 }

.

]

monotype
monotype

 :==

typevar

|

flat

|

functional

|

typeapplication
flat

 :==

INT

functional

 :==

monotype

→

monotype
typeapplication

 :==

typeconstructor

 {

monotype

 }

User type declaration language

usertype

 :== [

∀

 {

typevar

 }

.

]

algebraic
algebraic

 :== [

algebraic

+

]

constructor

 {

monotype

 }

Expression language

expression

 :==

var

|

constructor

|

expression

expression

|

λ

var

.

expression

|

case

expression

of

 {

constructor

 {

var

 }

⇒

expression

 }

var

⇒

expression

|

let

module

in

expresssion

Module language

module

 :== {

typeconstructor

=

usertype

 } {

var

=

expression

 }

Figure 1.

Core Language Syntax

4 Higher Order Demand Propagation (draft “tr-b-98-15 (korr)” from 21 January 1999 12:12)

2.2 Standard Semantics of Core Language Modules

The definition of the standard semantics is given in figure 2 and consists of four
parts:

1.

The type semantics

D

:

 the semantic domains are indexed by the types of the
type language. They are constructed out of the flat domain for

INT

 by function
space construction for functional types and sum-of-products construction for
user defined algebraic data types. Function domains are generally lifted to con-
tain a least element

⊥

, denoting functional expressions, which have no weak
head normal form. A domain for a polymorphic type is defined as a type
indexed family of domains. User type declarations can be polymorphic and
mutual recursive. The domains for user defined types are represented by poly-
morphic type constructors, which can be applied to the appropriate number of
types and yield the domains for recursive data types, which themselves are
defined as fixpoints of domain equations in the usual way ([Fe89]). For simplic-
ity and because we are mainly interested in the expression semantics we do not
repeat the discussion of recursive domain equations here, but we handle the
typeconstructors as if they are predefined in the type environment for the type
semantics.

2.

The expression semantics

E

: Syntactic expressions of type τ are mapped to
functions from an environment – describing the bindings of free variables to
semantic values – into the domain belonging to τ. The semantics of polymor-
phic (functional) expressions are families of functions for all possible instances
of the polymorphic type.

3. The user type declaration semantics U: The sum-of-products domains for user
defined data types come together with unique continuous injection functions
inC into the summands tagged with the constructor C and with projection func-
tions projC,i to the i-th factor of the summand tagged with C. The injection func-
tions can explicitly be used in the functional program and their semantics are
provided by the user type declaration semantics. The projection functions are
only used implicitly in the semantics of the case-expression. For convenience
we also define a function tag, which maps any non-bottom value of a sum to the
tag of the summand it belongs to. For v≠⊥ it holds v∈Image(intag(v)).

The deconstructor case could be defined as a family of implicit functions for
each user type. But here it is included as a language construct. The reason for
this is, that with this notion the case-selection on the (infinite) data type INT can
be handled in the same manner as scrutinisation on an algebraic data structure.

4. The module semantics M: The semantics of a core language module is a trans-
formation of environments. Declarations in a core language module can recur-
sively cite variables defined in the module itself or in the import environment,
referring to their associated semantics. Each variable, which is free in a defini-
tion in the module must be defined somewhere in the module itself or must
have a semantics assigned to it by the import environment. The semantics of
the set of mutual recursive declarations in a module is the (always existing)
minimal fixpoint of an equation describing the transformation of environment
transformations.

See figure 2 for the formal definitions of the standard semantics functions.

Higher Order Demand Propagation (draft “tr-b-98-15 (korr)“ from 21 January 1999 12:12) 5

Domains associated to types
D : Types → Typeenvironment → Domains

where Typeenvironment := (Typevars ⊕ Typeconstructors) → Domains
D[[∀α1…αn. τ]] σ = (D1,…,Dn) |→ D[[τ]] σ[D1/α1, …, Dn/αn]

D[[α]] σ = σ α
D[[INT]] σ = Z⊥
D[[τ1 → τ2]] σ = [D[[τ1]] σ → D[[τ2]] σ]⊥
D[[Τ τ1…τn]] σ = σ Τ (D[[τ1]] σ,…,D[[τn]] σ)

D[[C1 τ11…τ1a1
 + … + Cn τn1…τnan

]] σ = (D1 ⊕ … ⊕ Dn)⊥

where Di := D[[τi1]] σ × … × D[[τiai
]] σ

Expression semantics
E : Expressions → Environment → Values

where Environment := (Vars ⊕ Constructors) → Values
E[[x]] ρ = ρ x
E[[C]] ρ = ρ C
E[[e1 e2]] ρ = ⊥, if E[[e1]] ρ = ⊥

= E[[e1]] ρ (E[[e2]] ρ), otherwise

E[[λx. e]] ρ = λv. E[[e]] ρ[v/x]
E[[case e of C1 v11…v1a1

 ⇒ e1; …; Cn vn1…vnan
 ⇒ en; v ⇒ edef]] ρ

= ⊥, if e = ⊥
= E[[ei]] ρ[projCi,1 (e)/vi1, …, projCi,ai

 (e)/viai
], if tag(e)=Ci

= E[[edef]] ρ[e/v], otherwise

where e = E[[e]] ρ
E[[let m in e]] ρ = E[[e]] (M[[m]] ρ)

User type definition semantics (implicit constructor functions)
U : Usertypes → Environment
U[[∀α1…αm. C1 τ11…τ1a1

 + … + Cn τn1…τnan
]] = [c1/C1, …, cn/Cn]

where ci = λv1…vai
. inCi

 (v1,…,vai
)

Standard module semantics
M : Modules → Environment → Environment
M[[T1 = υ1; …; Tm = υm; fdefs]] ρ = F[[fdefs]] (ρ++U[[υ1]]++…++U[[υn]])

where F[[v1 = e1; …; vn = en]] ρ = μΡ. ρ[E[[e1]] Ρ/v1, …, E[[en]] Ρ/vn]

Semantics f of a variable f in a module m with import environment ρi
f = M[[m]] ρi f

Prelude semantics are provided for integer numbers, + and bot

Figure 2. Standard Semantics of the Core Language

6 Higher Order Demand Propagation (draft “tr-b-98-15 (korr)” from 21 January 1999 12:12)

3 Higher Order Demand Propagation Semantics

This section defines the non-standard higher order demand propagation seman-
tics as an abstract interpretation. It introduces a type semantics and an expression
semantics as well as the semantics for user type declarations and whole core lan-
guage modules, following the structure of the definition of the standard seman-
tics.

The semantics of an expression in higher order demand propagation is a
demand propagator. A demand propagator is a higher order function, which
propagates context demands to subexpressions. It is important to see that the
demand propagators can be typed and that their types can be deduced from the
types of their inducing expressions. That is especially the case for demand propa-
gators for polymorphic functions, which have themselves a polymorphic type.
Latter is the main reason why demand propagation analysis works for a polymor-
phic language.

The definition for demand propagators, which will be introduced in section 3.2,
bases on demands defined as characteristic functions. It can probably be general-
ised to demands defined as projections as in [WH87], yielding a more powerful
analysis, which would be able to analyse e.g. general head strictness. The latter is
not possible with the notion of demands used in this paper, nor is it with the
standard approach for strictness analysis by abstract interpretation as has been
proven in [Ka92]. But since the semantics and the analysis would become more
complicated in this generalised case, it is not addressed in this report.

3.1 Demands

A domain of demands Demandτ is defined for each type. A demand for a type τ
can be interpreted as an evaluation strategy for values of type τ. In the context of
generalised strictness analysis it is sufficient to define it by a characteristic func-
tion on the value domain, distinguishing the values for which the evaluation suc-
ceeds from those for which it fails.

There are other approaches in the literature for defining demands or so called
evaluators. Some will be mentioned and compared in remark 3.1.5.

Definition 3.1.1 (demand). A demand of type τ is a continuous function from the
standard semantic domain D[[τ]] to the two-point-domain 2={1}⊥. Demands repre-
sent evaluation strategies like evaluators do in [Bu91]. It maps a semantic value to
⊥, if and only if the related evaluation strategy fails for that value.

Continuity implies monotonicity, hence if the evaluation fails for some value it
also fails for all less defined values. That is what we expect for evaluation strate-
gies.

There are three basic demands, which are fully polymorphic and thus can be
applied to all values. Those are namely NO (no evaluation), WHNF (evaluation to
weak head normal form) and FAIL (non terminating evaluation). Algebraic
demands (e.g. for lists) can be constructed out of component demands. Their defi-
nitions are given in figure 3. Note that the evaluation strategy for a constructor
demand e.g. CONS WHNF NO forces evaluation to a Cons-node and the evaluation
of the head of that node to weak head normal form. If applied to an empty list

Higher Order Demand Propagation (draft “tr-b-98-15 (korr)“ from 21 January 1999 12:12) 7

Nil, it does not terminate or semantically equivalent yields an error. Such con-
structor demands arise from the analysis of a case-alternative.

Definition 3.1.2 (operators on demands). Demands can be combined by the oper-
ators | and &, which are defined as pointwise supremum respectively infimum.

In addition to this, algebraic demands can be projected to a component or
restricted to some summands of the sum. The projected demand is the demand,
which is induced on the specified factor of the sum-of-products. Projection is used
when analysing constructor applications. The restriction operation restricts the
demand to be not in a specified set of summands of a sum. The restricted demand
yields ⊥ on the elements of those summands. Restriction is used to describe the
propagation in a default alternative of a case-expression. The definitions of the
demand operators can be studied in figure 3.

Some algebraic rules for &, |, ↓ and \, which are essential for the demand
propagation analysis and which can easily be proven, are summarised in figure 4.

The domain of demands

Demandτ = D[[τ]] → 2

Basic, fully polymorphic demands:
NO v = 1, for all v
WHNF v = ⊥, if and only if v = ⊥
FAIL v = ⊥, for all v

Algebraic demand for sum components:
(C Δ1…Δn) v = inf {Δ1 v1, …, Δn vn}, if tag(v)=C hence v=inC (v1,…,vn); otherwise ⊥

Compound demands with & and |:
(Δ1 & Δ2) v = inf {Δ1 v, Δ2 v}

(Δ1 | Δ2) v = sup {Δ1 v, Δ2 v}

Projection to demand components by ↓:
Δ↓C,i v = ⊥, iff for all v1…vn: Δ (inC (v1,…,v,…,vn)) = ⊥ (v at i-th position)

Exclusion of demand components by \:
Δ\CS v = ⊥, if tag(v)∈CS

= Δ v, otherwise

Recursive demands can be defined as fixpoints (examples):
SPINE = μΔ. NIL | CONS NO Δ
(EVEN,ODD) = μ(Δ1,Δ2). (NIL | CONS NO Δ2 , NIL | CONS WHNF Δ1)

Figure 3. Demands and Demand Operators

8 Higher Order Demand Propagation (draft “tr-b-98-15 (korr)” from 21 January 1999 12:12)

Remark 3.1.3 (no demands on function domains). The general demands NO,
WHNF and FAIL are also defined for function types. But demand propagation
semantics is not interested in more complex functional demands which can be
imagined. One speciality of the demand propagation semantics is, that only non-

FAIL rules before construction:
C … FAIL … = FAIL

& and | are commutative and associative, and they distribute.

For all demands Δ hold:
NO & Δ = Δ
NO | Δ = NO
FAIL & Δ = FAIL
FAIL | Δ = Δ

For effective demands Δ hold:
WHNF & Δ = Δ
WHNF | Δ = WHNF

For algebraic demands hold:
C Δ1 … Δn & C Δ’1 … Δ’n = C (Δ1&Δ’1) … (Δn&Δ’n)

C Δ1 … Δn & C’ Δ’1 … Δ’m = FAIL, if C’≠C

C Δ1 … Δn | C Δ’1 … Δ’n = C (Δ1|Δ’1) … (Δn|Δ’n)

For the projection operator ↓ holds:
(C Δ1 … Δi … Δn)↓C,i = Δi , if Δj≠FAIL for all j=1…n

(C Δ1 … Δn)↓C’,i = FAIL , if C’≠C

NO↓C,i = NO

FAIL↓C,i = FAIL

For the restriction operator \ holds:
(C Δ1 … Δn)\CS = C Δ1 … Δn , if C∈CS

(C Δ1 … Δn)\CS = FAIL , if C∉CS

NO\CS = NO
FAIL\CS = FAIL

↓ and \ distribute with & and |:
(Δ1 & Δ2)↓C,i = Δ1↓C,i & Δ2↓C,i

(Δ1 | Δ2)↓C,i = Δ1↓C,i | Δ2↓C,i

(Δ1 & Δ2)\CS = Δ1\CS & Δ2\CS

(Δ1 | Δ2)\CS = Δ1\CS | Δ2\CS

Figure 4. Algebraic Rules for &, |, ↓ and \

Higher Order Demand Propagation (draft “tr-b-98-15 (korr)“ from 21 January 1999 12:12) 9

functional demands are propagated through the demand propagators. Non-func-
tional demands are those defined for types that do not have “→” as the outermost
type constructor. The demand which shall be propagated by a demand propagator
for a function, is always interpreted as a demand on the non-functional result type
of the function, which can always be deduced from the function’s type. The non-
functional result type can be a type variable, hence a freely polymorphic type.
However some instances may instantiate the type variable with a functional type.
This turns out to be no problem because the propagated demand will also be pol-
ymorphic then and can be applied to additional arguments if they are present for
that specialised instance of the function.

The result of the propagation is a so called parameterised demand (see defini-
tion 3.2.3), which states the dependence of the propagated demand from the fur-
ther propagation by arguments of the function. The parameterised demand can be
seen as a function, which can be applied to the demand propagators of statically
known arguments, yielding a result demand (the propagated demand).

This limitation to the propagation of only non-functional demands has also
been done for projection analysis by Davis [Da94]. It corresponds with the com-
mon operational semantics of lazy functional languages, which do not evaluate
function applications until they are satisfied, meaning they are provided with the
number of arguments stated in their definition.

Paradoxly the lack of functional demands seems to be crucial to make the
demand propagation semantics higher order.

Definition 3.1.4 (more-effective relation, effective). The complete partial order of
the domain of demands, which is induced by standard function domain construc-
tion, has FAIL as its bottom element and NO as a universal greatest element. Since it
is somehow counter-intuitive to say that the demand NO is the greatest demand, a
new partial order is defined on demands:

With respect to », WHNF is the least effective demand. All other demands are
comparable with and strictly greater than NO and WHNF. And they are comparable
with FAIL the most effective demand.

Remark 3.1.5 (other demand concepts). In the existing abstract interpretations for
strictness analysis, e. g. that defined by Burn ([Bu91]), evaluators for a type are
defined as subsets of the standard semantics domain for that type. This is isomor-
phic to the notion given here as a characteristic functions on the standard seman-
tics domain. In contrast to that, in projection analysis a demand is defined as a
projection, that is an idempotent function which approximates the identity. This
concept has been proven to be more powerful, because it can express for instance
general head strictness which cannot be expressed with the former notion of
demands. However the definition of a demand propagator here seems to be inde-
pendent from the choice of concept for demands and can probably also be based
upon a notion of demands as projections. Latter will be examined thoroughly in
further work.

A demand Δ is called more effective than Δ’, noted Δ»Δ’ ,
if and only if Δ<Δ’ with respect to the natural c.p.o.

Δ is called effective at all, if and only if Δ»NO .

10 Higher Order Demand Propagation (draft “tr-b-98-15 (korr)” from 21 January 1999 12:12)

3.2 Demand Propagators and Parameterised Demands

The higher order demand propagation semantics maps syntactical function
definitions to demand propagators. The latter are higher order functions which
propagate context demands to the function’s arguments. Since context demands
are always interpreted as demands on the non-functional result type of an expres-
sion (see remark 3.1.3), the propagation of such a demand to arguments of an
expression of function type has to reflect this speciality. In general the demand,
which is propagated to a function argument will depend on all arguments of the
function in at least two senses:

1. It depends on the existence of arguments of the function, since a function appli-
cation will only be evaluated, if it is saturated with the number of arguments
provided in the function’s definition.

2. If one argument is itself a function – which is a usual case in higher order func-
tional languages – and if this argument function is applied to the argument, to
which the demand shall be propagated, the propagation may depend on the
propagation of some demand through this argument function. This is for exam-
ple the case if the strictness of the higher order function map in its second argu-
ment is analysed for a strict or a non-strict function as the first argument (see
example B.2).

To deal with this situation, the result of a demand propagation for a function is a
so called parameterised demand, which states the dependence of the propagated
demand from argument demand propagators.

In this sense the demand propagator of a function never yields a propagated
demand itself, but it only describes the dependence of the demand propagation
from the existence and the value of argument demand propagators. Propagation
of a demand to a specific argument of a function – with the goal to deduce strict-
ness information for that argument – must be done by applying the demand prop-
agator of the function to a combination of special argument propagators. This
connection between demand propagators and generalised strictness information
will be explained in section 4.

Before giving the formal definitions for demand propagators (3.2.2) and param-
eterised demands (3.2.3), a simple example illustrates, how demand propagation
works and introduces a simple notation for parameterised demands, the λ-
abstraction.

Example 3.2.1 (Motivation of demand propagators for functions). Let f be de-
fined in the core language as follows:

then the inferred demand propagator F for f is:

F is a function which takes a demand Δ as the first argument and yields a
parameterised demand, noted by λ-abstractions. A λ-abstraction can be inter-
preted as follows: If it is applied to an argument demand propagator, then it is an
ordinary lambda abstraction stating a functional dependence of the body from the
abstracted argument. In the example above this yields another λ-abstraction. If it

> f = λa. λb. a+b

F Δ = λA. λB. A WHNF & B WHNF .

Higher Order Demand Propagation (draft “tr-b-98-15 (korr)“ from 21 January 1999 12:12) 11

is not applied it can be read as the propagated demand NO, stating that no demand
is propagated to any argument, because the function is provided with an insuffi-
cient number of arguments. To achieve this dual semantics the λ-abstraction is
defined as a pair of a propagated demand and an ordinary abstraction in defini-
tion 3.2.3.

It is important to notice, that the equation for F only holds for effective
demands Δ. Precisely, it is taken as the defining equation for the demand propaga-
tion on effective non-failure demands. We implicitly assume that each propagator
propagates the demand NO to NO and the demand FAIL to FAIL regardless of the
arguments of the function, because only such propagators are of interest in gener-
alised strictness analysis.

The explanation above shows, that the equation for F can be unfolded to:

If F is applied to an effective non-failure demand and further to two argument
demand propagators A and B, the body A WHNF & B WHNF of the abstraction states,
that a WHNF demand is propagated to the first and to the second argument.

To test f’s strictness in any of the arguments, F Δ is applied to a combination of
the special demand propagators NO and ID, specifying propagation by arbitrary
arguments or by an argument being tested. If an application of f to some statically
known arguments is analysed – e. g. in another function definition using f – the
argument propagators are also statically known and may for instance express the
propagation to a commonly shared subexpression.

Observe also that the demand propagator F can be typed and is only defined for
context demands Δ of type INT. The same holds for the demand propagator of the
function g below, which has the same non-functional result type but only one
argument:

g is a partial application of f to one statically known argument, and its demand
propagator can be inferred by partially applying the demand propagator of f
(pedantically saying: the second component of the parameterised demand result-
ing from the demand propagator of f) to the demand propagator of the constant
1, which is constantly NO since 1 has no arguments and no free variables. Hence:

Definition 3.2.2 (demand propagator, context demand). A demand propagator for
an expression of type τ = τ1→…→τn→τ' (τ' non-functional), is a continuous func-
tion, which maps a demand of type τ' (the context demand) to a parameterised
demand (the domain PDemandτ is defined in definition 3.2.3). The domain of
demand propagators of type τ as above is the function space

Since the definition of the domains for parameterised demands itself depends
on the domains of demand propagators, this definition and the following defini-
tion 3.2.3 are mutually recursive.

F NO = (NO , λA. (NO , λB. NO))
F FAIL= (FAIL , λA. (FAIL , λB. FAIL))
F Δ = (NO , λA. (NO , λB. A WHNF & B WHNF)), if Δ»NO, Δ≠FAIL .

> g = f 1

G Δ = F Δ 1 =(λA. λB. A WHNF & B WHNF) 1 = λB. 1 WHNF & B WHNF = λB. B WHNF .

Propagatorτ = Demandτ'→ PDemandτ .

12 Higher Order Demand Propagation (draft “tr-b-98-15 (korr)” from 21 January 1999 12:12)

Definition 3.2.3 (parameterised demand, propagated demand). A parameterised
demand is a pair of a demand (the propagated demand) and a continuous function
that maps an argument demand propagator to a new parameterised demand.
First a draft definition for propagated demands is given, to be refined in the next
paragraph:

The domain PDemandτ of parameterised demands of type τ = τ1→…→τn→τ' (τ'
non-functional) is a recursive domain, defined by the equations:

The propagated demand in this draft definition has no specific type, because it
can belong to each subexpression of the expression the demand propagator is
assigned to. But since all argument propagators must propagate to the same sub-
expression, all propagated demands must have the same type. Hence, the exact
definition introduces the domain of demand propagators for a type
τ = τ1→…→τn→τ' (τ' non-functional) as a type indexed family of domains, hence a
polymorphic domain, which is formally defined – together with a revised defini-
tion of the demand propagator domain – as follows:

The final definition expresses the constraint, that in order to yield a propagated
demand of type α all argument propagators of the parameterised demand must
propagate to a demand of type α.

Definition 3.2.4 (λ-abstraction for parameterised demands). The λ-abstraction to
define a parameterised demand has already been motivated in example 3.2.1 and
is formally defined as follows:

Let π=π(P) be a parameterised demand, which can depend on a demand propa-
gator P. Then λP. π denotes the parameterised demand (NO,λP. π). Figure 5 lists the
definitions of the demand propagators NO, ID and STRICT, which are essential for
general strictness analysis, using the λ-abstraction.

Remark 3.2.5 (notation convention for using parameterised demands). The defi-
nition of a parameterised demand for a function type as a pair of a propagated
demand and an abstraction reflects that there are two things we want to do with it.
The first purpose is to apply it to a demand propagator given for an argument of
the function. Applying a parameterised demand always means applying its sec-
ond component.

On the other hand we want to see the parameterised demand as a propagated
demand for instance to propagate it further. In this case we refer to the first com-
ponent of the parameterised demand. This duality of the parameterised demand
corresponds to the concept that functional expressions are first class objects in a
functional language. They can be seen as objects themselves (that can be
demanded with WHNF for instance) and as functions, which map objects to objects.

PDemandτ' = Demand where Demand is the union of all Demandτ

PDemandτ = Demand × [Propagatorτ1 → PDemandτ2→…→τn→τ'] .

PDemandτ' = ∀α. Demandα

PDemandτ = ∀α. Demandα × [Propagatorτ1 α → PDemandτ2→…→τn→τ' α]

Propagatorτ = ∀α. [Demandτ' → PDemandτ α] .

Higher Order Demand Propagation (draft “tr-b-98-15 (korr)“ from 21 January 1999 12:12) 13

It would be a mess of notation if we always wanted to write the projection to
the correct component in the given utilisation of the parameterised demand. For-
tunately from the context it is always clear whether the propagated demand or the
second component of the pair is used. So the notation can be shortened in both
cases: Applying the parameterised demand to a demand propagator means apply-
ing its second component. And using it as a demand means using its first compo-
nent. Two examples for the use of the convention are given:

Only with this meaning it makes sense to say, a parameterised demand is
applied to an argument propagator or a parameterised demand is propagated by
a demand propagator.

λ-abstraction for parameterised demands
λP. π(P) = (NO,λP. π(P))

Basic demand propagators NO, ID and STRICT

NOτ Δ = NO, if τ is non-functional

NOτ→τ' Δ = λX. NOτ' Δ
IDτ Δ = Δ, if τ is non-functional

IDτ→τ' Δ = STRICTτ→τ' Δ
STRICTτ Δ = WHNF, if τ is non-functional

STRICTτ→τ' Δ = (WHNF,λX. STRICTτ' Δ)

Figure 5. Example Demand Propagators

“P Δ P1 P2” is the short form for “snd (snd (P Δ) P1) P2”

“P (P1 Δ) P2” is the short form for “snd (P (fst (P1 Δ))) P2”

op∈{&,|} is defined on parameterised demands πi recursively by:
π1 op π2 := (Δ1 op Δ2,f)

where (Δi,fi) = πi

f X = f1 X op f2 X

projection and restriction on parameterised demands are defined by:
π↓C,i := (Δ↓C,i,f’)

where (Δ,f) = π
f’ X = (f X)↓C,i

π\CS := (Δ\CS,f’)
where (Δ,f) = π

f’ X = (f X)\CS

Figure 6. Generalisation of Demand Constructions to Parameterised Demands

14 Higher Order Demand Propagation (draft “tr-b-98-15 (korr)” from 21 January 1999 12:12)

Remark 3.2.6 (generalisation of demand constructions). The operations on de-
mands, which were introduced in definition 3.1.2, generalise in a natural way to
parameterised demands by applying them to the first component and recursively
to the second (see figure 6). The algebraic rules also generalise naturally.

3.3 Definition of the Demand Propagation Semantics

We are now able to define the denotational demand propagation semantics as an
abstract interpretation of the core language, taking the domains of demand propa-
gators as the non-standard semantic domains. The formal definition is listed in
figure 7.

Most defining rules of the expression semantics are straightforward parallel to
the definitions in the standard semantics. Some notes about application, case-
expression and user type definitions shall emphasize the particularities:

1. Since the domain of parameterised demands is not an explicitly lifted domain
the parameterised demand E[[e1]] ρ Δ in the application rule can be directly
applied to the argument propagator without having a special case for ⊥.

2. The propagator for a case-expression propagates a WHNF demand to the expres-
sion to be scrutinised and propagates the context demand to all alternatives of
the case-expression building the union of all propagated demands. That is cor-
rect, since if the evaluation of the scrutinised expression does not fail, one of the
alternatives of the case-expression is demanded with the context demand.

The case-expression fails, if the evaluation of the expression to scrutinise to
constructor normal form fails. The propagation to the alternatives can safely
constrain the scrutinised value to match the pattern of the alternative and must
take care of binding it components to the pattern variables.

3. A user type definition induces implicitly a demand propagator for each con-
structor, similar as it has induced a constructor function in the standard seman-
tics. The propagator of a constructor propagates the accordant projections of
the context demand to the components of the value.

The main property required for the demand propagation semantics is its safety
with respect to the standard semantics. The safety of the demand propagation
semantics shall reflect the promise, that if using the information deduced from the
demand propagators for changing the evaluation order, this will not alter the
semantics of the program.

The next section points out the connection between the demand propagators
and generalised strictness information and therefore the opportunities for chang-
ing the evaluation order. A safety condition is formulated and proven, which
claims the connection between demand propagation semantics and standard
semantics of the core language.

4 The Safety of Higher Order Demand Propagation

The safety condition for demand propagation semantics defines the connection
between non-standard and standard semantics. In order to be useful for program
optimisation the demand propagator assigned to an expression must express cor-
rect information about its standard semantics. A demand propagator has to be safe

Higher Order Demand Propagation (draft “tr-b-98-15 (korr)“ from 21 January 1999 12:12) 15

for that function, that means the information it provides has to be correct in terms
of not altering the standard semantics if it is used in an optimisation procedure.

For understanding the safety condition, which is explicated below, it is neces-
sary to understand, which information will be used how in an optimisation proc-
ess. In this report the focus is on general strictness information and it is well

Domains associated to types

D[[τ]] = Propagatorτ

Expression semantics
E[[x]] ρ Δ = ρ x Δ
E[[C]] ρ Δ = ρ C Δ
E[[e1 e2]] ρ Δ = E[[e1]] ρ Δ (E[[e2]] ρ)

E[[λx. e]] ρ Δ = λX. E[[e]] ρ[X/x] Δ
E[[case e of C1 v11…v1a1

 ⇒ e1; …; Cn vn1…vnan
 ⇒ en; v ⇒ edef]] ρ Δ

= E[[e]] ρ WHNF & (π1 | … | πn | πdef)

where πi = E[[e]] ρ (Ci NO…NO) & E[[ei]] ρ[Vi1/vi1, …, Viai
/viai

] Δ

Vij = λΔ. E[[e]] ρ (Ci NO…Δ…NO), with Δ at j-th position

πdef = E[[edef]] ρ[(λΔ. E[[e]] ρ Δ\{C1, …, Cn})/v] Δ
E[[let m in e]] ρ Δ =E[[e]] (M[[m]] ρ) Δ

User type definition semantics
U[[∀α1…αm. C1 τ11…τ1a1

 + … + Cn τn1…τnan
]] = [C1/C1, …, Cn/Cn]

where Ci Δ = FAIL, if Δ v = ⊥ for all v with tag(v)=Ci

Ci Δ = λV1. … λVai
. (V1 Δ↓Ci,1 & … & Vai

 Δ↓Ci,ai
), otherwise

Standard module semantics
M[[Τ1 = υ1; …; Τm = υm; fdefs]]= F[[fdefs]] (ρ++U[[υ1]]++…++U[[υn]])

where F[[v1 = e1; …; vn = en]] ρ = μΡ. ρ[E[[e1]] Ρ/v1, …, E[[en]] Ρ/vn]

Semantics F of a variable f in a module m with import environment ρi
F = M[[m]] ρi f

Prelude demand propagators
NUMn Δm = FAIL, if m≠n; where Δm k = 1, if and only if k=m

NUMn Δn = NO

NUMn WHNF = NO

+ Δ = λX. λY. X WHNF & Y WHNF

BOTτ Δ = FAIL, if τ is non-functional

BOTτ→τ’ Δ = (FAIL,λX. BOTτ' Δ)

Figure 7. Demand Propagation Semantics

16 Higher Order Demand Propagation (draft “tr-b-98-15 (korr)” from 21 January 1999 12:12)

known how it can safely be used in an optimisation of non-strict functional lan-
guages: If a function-argument-combination is known to be strict, the evaluation
order can be changed without altering the semantics. The argument can in this
case be evaluated prior to the function call, as it would happen in a call-by-value
semantics. The generalisation step taken by generalised strictness analysis is that
it considers evaluators (or demands) yielding more context information for the
argument evaluation (e. g. spine strictness instead of simple strictness). The opera-
tional semantics can then specify, that the argument can safely be evaluated to the
given amount prior to the function call.

Now we explain the connection between the demand propagators and general
strictness information.

4.1 Demand Propagators and Generalised Strictness

Assume we have a function with two arguments and want to deduce generalised
strictness information for the second argument if the function call is satisfied. We
state that the result of the function call is demanded at least with weak head nor-
mal form by applying the demand propagator of the function to the context
demand WHNF to propagate this demand to the arguments. The result is a parame-
terised demand with two argument demand propagators. If we want to know
what demand is propagated to the second argument if the first argument is arbi-
trary, we need to apply the parameterised demand to two special argument prop-
agators expressing the further propagation via the arguments, which are not
statically known in this instance. The only safe demand propagator which can be
assigned to an arbitrary expression is NO. So we provide the parameterised
demand with the first argument NO. Since we are interested in propagation to the
second argument we provide it with ID as its second argument, stating that the
propagated demand is captured at this argument. For deducing simple strictness
it would be sufficient to test with the STRICT propagator in the examined argu-
ment.

Hence generalised strictness information of a function can be deduced by
applying the demand propagator of the function to the context demand and to a
combination of NO and ID propagators, where NO stands for arbitrary arguments
and ID for the tested argument. It is easy to see that joint strictness can be inferred
in the same way by having more than one ID argument.

The former explanation states the property which we expect from the demand
propagators to be useful for generalised strictness analysis. We call a demand
propagator with this property safe. The definition of safety given below is stronger
than the former explanation. But the corollaries 4.1.4 and 4.1.5 show, that this defi-
nition produces the property stated above.

Definition 4.1.1 (safety of demand propagators). Let F : D → D[[τ1→…→τn→τ]] (τ
a non-functional type) be a so called dependence. A dependence is a function gener-
ating semantic values from some domain D. Let further be F a demand propagator
of the corresponding type, F∈Propagatorτ1→…→τn→τ. Then F is called safe for F, if
for all m, 0≤m≤n holds:

if for all i, 1≤i≤m, Ai is safe for Ai : D → D[[τi]] then

for all v∈D: (F Δ A1 … Am) v = ⊥ implies Δ ((F v) (A1 v) … (Am v)) = ⊥ .

Higher Order Demand Propagation (draft “tr-b-98-15 (korr)“ from 21 January 1999 12:12) 17

F is defined to be safe for a semantic value f∈D[[τ1→…→τn→τ]], if it is safe for
any dependence F = const f, which yields f ignoring the dependence-argument.
This recursive definition of safety is well-founded by the same definition reading
for non-functional types, where m may only be zero and hence the definition does
not depend on the safety of argument propagators.

The safety theorem in section 4.2 states, that the demand propagators assigned
by higher order demand propagation semantics to syntactic function definitions
are safe for their standard semantics. But to formulate this theorem, first a notion
of safe environments must be defined.

Definition 4.1.2 (safety for environments). Let ρ be an environment of semantic
values, hence ρ : (Vars⊕Constructors) → Values and let ρ be an environment of
demand propagators, hence ρ : (Vars⊕Constructors) → Propagators. Then ρ is
defined to be safe for ρ, if for all x∈Vars⊕Constructors holds: ρ x is safe for ρ x.

Remark 4.1.3 (safe propagators). There are some trivial conclusions from the
safety condition:

1. The demand propagator NO is safe for all dependencies.

2. The demand propagator ID is safe for the dependence ID = λv. v : D → D.

3. Each safe demand propagator must propagate the demand NO to NO.

4. Each demand propagator can safely propagate FAIL to FAIL.

These four conclusions have important implications on the demand propagation
analysis, which will be described in section 5 of this report. The first provides an
always applicable approximation for use in the analysis. This is crucial for guaran-
teeing its termination. The first and the second conclusion are used when testing
for generalised strictness.

The observations 3 and 4 yield two stationary results of every safe demand
propagator, so we only need to define the demand propagators for effective non-
failure demands explicitly.

Corollary 4.1.4 (generalised strictness with demand propagators). Let
F∈Propagatorτ1→…→τn→τ be safe for f∈D[[τ1→…→τn→τ]] and for a context
demand Δ let Δi := F Δc NO … NO ID NO … NO (ID at the i-th position of n arguments)
be the demand propagated to f’s i-th argument. Then f is Δi-strict in a Δ-strict con-
text, meaning:

The proposition follows directly from definition 4.1.1, since NO is safe for all
dependencies and ID is safe for Vi = λv. v .

Corollary 4.1.5 (simple strictness with demand propagators). With the same
premises as above holds: If F WHNF NO … NO STRICT NO … NO » WHNF (ID at the i-th
position of n arguments), then f is strict in its i-th argument. This proposition fol-
lows directly from corollary 4.1.4, since WHNF v = ⊥, if and only if v = ⊥.

Δi vi = ⊥ ⇒ Δ (f v1 … vn) = ⊥, for arbitrary vj, 1≤j≤n, j≠i .

18 Higher Order Demand Propagation (draft “tr-b-98-15 (korr)” from 21 January 1999 12:12)

4.2 The Safety Theorem

We are now able to formulate the safety theorem for higher order demand propa-
gation, which states that for each function definition the demand propagation
semantics of that function is safe for its standard semantics, assuming an initial
safe pair of prelude environments.

Theorem 4.2.1 (safety of demand propagation semantics). Let f be the name of a
core language function in a core language module m. Let ρ be an import environ-
ment and ρ an environment of demand propagators, which is safe for ρ. Then
F:=M[[m]] ρ f is safe for f:=M[[m]] ρ f.

Proof: The proof of this central theorem works by proving a slightly stronger prop-
osition by induction on the structure of f’s definition. It will be published in a fur-
ther report.

5 Demand Propagation Analysis

The goal of demand propagation analysis is to deduce safe demand propagators
for syntactic expressions. The propagated demands for each application of the
demand propagator shall be as effective as possible, with the constraints of being yet
safe and computable. Termination (and also small complexity) of the analysis is
obligatory, because its information shall be used in the compilation process.

It is well-known that strictness is not generally decidable, hence one cannot
hope to compute the most effective propagated demand for each application of a
demand propagator. In fact it is not sure if such most effective safe demand
always exist. See [Da94] for a discussion of this question for projection analysis.

In this section an algorithm for demand propagation analysis is sketched,
which yields safe and good approximations of demand propagators for expres-
sions given in the core language syntax.

The denotational semantics of a demand has been defined in definition 3.1.1 as
a characteristic function on the value domain. In demand propagation analysis a
demand is represented as a finite maybe cyclic graph, describing its construction
by algebraic construction and application of &, |, ↓ and \ out of the basic
demands NO, WHNF and FAIL. This construction is similar to that of rational strict-
ness patterns in [HW87]. It is evident that not all demands can be expressed in this
way and hence the restriction to this notion will be an approximation of its own.
But this is even more the case in the frameworks of abstract interpretation or pro-
jection analysis where the abstract domains are restricted to be finite.

It is a speciality of higher order demand propagation that propagated demands
can be constructed by the demand propagators and need not be predefined for
each type like in existing strictness analyses. These constructed demands conform
better with the analysed functions, and more of the approximation takes place in
the dynamics of the semantics (in the expression semantics) and not in its statics
(that is: the choice of the abstract values for the finite domains).

Because of the infinite semantic domains for demands and demand propaga-
tors, it is in general not possible to compute the complete function graph of the
demand propagator for a function in finite time as it is done in the standard
abstract interpretation approach. The propagated demands have to be computed

Higher Order Demand Propagation (draft “tr-b-98-15 (korr)“ from 21 January 1999 12:12) 19

at the points they are needed for. Demand propagation analysis will achieve that
by providing an approximating operational semantics for demand propagators.
Demand propagators can now define the construction of new demands out of a
context demands by following the rules of the higher order demand propagation
semantics in figure 7. The algebraic rules presented in figures 3 and 4 can then be
interpreted as reduction rules on demands and parameterised demands.

The example strictness derivations in appendix A for non-recursive functions
and in appendix B for recursive functions motivate the algorithm of demand
propagation analysis. A key feature to get accurate results for the analysis of
recursive functions is the detection of recursive patterns in the propagated
demand. This can probably be done in a realistic implementation of the analysis in
a similar way as Hughes and Ferguson describe in [HF92], where they introduce a
loop-detecting interpreter for a lazy functional language. Some changes have to be
taken into account, since demands are represented by graphs and not by trees.

In the case where no loop can be detected in a given time, approximation has to
be applied to guarantee termination. Fortunately approximation with NO is
always safely possible, though it in general yields less accurate results.

5.1 Design of a Demand Propagation Analysis Framework

The abstract values of higher order demand propagation are demand propaga-
tors, hence higher order functions. It is the task of the demand propagation analy-
sis to generate those functions and apply them to special values for getting the
desired strictness information.

Fortunately there is a known efficient way to calculate higher order functions,
namely executing higher order functional programs! This leads to the following
design for developing a demand propagation analysis framework:

1. An abstract interpretation of the functional core language assigns a demand
propagator to each expression. This assignment is known to be safe in the
meaning that the demand propagators yield correct generalised strictness
information which can be used in program optimisation.

2. Demand propagators are higher order functions. They are represented in a sim-
ple specially suited higher order functional language, the semantics of which is
given by the semantics of the demand propagators and of the operations on
demands and parameterised demands.

3. An operational semantics for demand propagation can then be introduced,
which is sound with respect to the denotational demand propagation semantics
and which makes it possible to define an abstract machine that calculates
demand propagator applications to demands and argument propagators, yield-
ing generalised strictness information.

4. The operational semantics is augmented by loop-detection as well as approxi-
mation to guarantee its termination.

In the next part of the section we briefly present a design for the functional lan-
guage, which is used to express the demand propagators.

20 Higher Order Demand Propagation (draft “tr-b-98-15 (korr)” from 21 January 1999 12:12)

5.2 Representation of Demands and Propagators

The higher order functional language for noting demands and demand propaga-
tors mainly consists of a list of mutual recursive demand definitions and demand
propagator definitions.

The sublanguage for defining demands is capable of expressing finite cyclic
graphs of demands constructed out of the basic demands by the standard demand
constructions. Cycles are expressed by naming and referring nodes, which are
entries of a cycle.

The sublanguage for defining demand propagators consists of a term language
to construct parameterised demands and to note a propagator by giving the result
parameterised demand in dependence of a symbolic demand Δ. The parameter-
ised demand can be constructed symbolically out of demands using operators and
λ-abstraction. A propagator can be applied to a demand yielding a parameterised
demand. Changes in the environment are reflected by a let-expression for param-
eterised demands. The complete syntax is summarised in figure 8.

5.3 Analysis by Execution of Demand Propagators

The demand propagation semantics defined in figure 7 can now be treated as a
program transformation which transforms a core language module to a module
definition in the language for demand propagation analysis. Latter can itself be
treated as a functional program with the demand propagation semantics as its
denotational semantics.

We know, that given a function f in the core language, its strictness properties
can be tested by applying the associated demand propagator F to a combination of
the special propagators ID and NO. We calculate this application by evaluating the
expression F WHNF NO … NO ID NO … NO on the basis of the definitions resulting
from the program transformation, checking whether the propagated demand is
effective or not and so deducing the generalised strictness of f by using corollary
4.1.4.

This can be done by defining an operational semantics (for instance a reduction
semantics) for the language of demand propagation analysis and proving it sound
with respect to its denotational semantics. Latter will be done in a subsequent
report. The reduction semantics follows the algebraic rules proven for the opera-

module :== { dvar = demand } { pvar Δ = pdemand }
demand :== NO | WHNF | FAIL | dvar | constructor { demand }

| demand op demand | demand ↓ constructor,int
| demand \ { { constructor } }

pdemand :== demand | Δ | λ pvar . pdemand | pdemand op pdemand
| pdemand ↓ constructor,int | pdemand \ { { constructor } }
| pvar dvar { pvar } | let module in pdemand

op :== & | |

Figure 8. Syntax of the Demand Propagation Language

Higher Order Demand Propagation (draft “tr-b-98-15 (korr)“ from 21 January 1999 12:12) 21

tions defined on demands and demand propagators, as well as use some implica-
tions from how the safe demand propagators are constructed.

Assuming such a sound operational semantics is successfully defined, an
abstract machine can be specified, which is capable of loop-detection and approxi-
mation to guarantee termination of each program written in the language. Then
we have a powerful tool for strictness analysis. Moreover a trade-off between
accuracy and time consumption of the analysis can be easily achieved by tuning
the level of recursive reduction before applying approximation.

A possible integration of demand propagation analysis in a real compiler for a
functional language is sketched in the following part of the report.

5.4 Integration of the Analysis (Raw Design)

In every compiler for a lazy functional language there is a stage where the source
program has been transformed into a semantically equivalent program in a
restricted language which is mostly a sublanguage of the core language used in
this report. At this stage demand propagation analysis can step in, transforming
the core module into a demand propagation language module. This module can
actually be compiled and linked together with a run time system and the other
modules, which it depends on, to build a program, which is able to calculate prop-
agated demands for functions standing in a demanded context.

To infer strictness information for some functions in the core module the
demand propagator program can be queried for the propagated demand for the
function’s propagator applied to the special values yielding the generalised strict-
ness information. This call of the demand propagator leads to recursive calls of
other demand propagators, which it depends on, until a recursive pattern is
detected or eventually approximation takes place. The strictness information can
then be delivered to further steps of the compilation process, where it finally will
be used to optimise the programs operation. This flow of the analysis is sketched
in figure 9.

6 Conclusions and Further Work

A new approach to strictness analysis is defined in this report. The analysis is
capable of deducing generalised strictness for a serious functional programming
language. This is achieved by mapping function definitions to demand propaga-
tors by means of an abstract interpretation. Demand propagators are higher order
functions which act on demands, propagating them to the arguments of the func-
tion. Generalised strictness information can be deduced by applying a demand
propagator to a context demand and to special arguments. The safety theorem
guarantees the correctness of this strictness information. The actual computation
of demand propagator applications is achieved by generating functional declara-
tions for the demand propagators in a new functional language. Demand propa-
gation can now take place by running programs on a – yet to be formally defined –
abstract machine which supports loop-detection and approximation. A prototype
implementation of the analysis in Haskell is in development.

As far as we know, higher order demand propagation analysis is the first back-
ward strictness analysis, which can analyse polymorphic and higher order func-
tions. This is possible because the new demand propagation language itself is

22 Higher Order Demand Propagation (draft “tr-b-98-15 (korr)” from 21 January 1999 12:12)

polymorphically typed and higher order. The infinite semantic domains for higher
order demand propagation allow very accurate generalised strictness information
to be expressed and propagated even across module boundaries. Latter is difficult
in existing implementations of strictness analysis, where the information is com-
piled into flat annotations to the functions type.

This report is just a first introduction to higher order demand propagation. To
make it applicable in a real implementation, further work has to be done:

1. The operational semantics of the language used in demand propagation analy-
sis has to be defined. This task is mainly completed and will be published in a
subsequent report together with a proof for the soundness of the operational
semantics with respect to the denotational semantics of demand propagators
given in this report.

2. We plan to integrate a prototype of the analysis into a state-of-the-art compiler
for a lazy functional language, proving that the analysis is not only correct but
also usable for realistic software engineering. At this stage it will be necessary
to identify and attack complexity and efficiency issues of the analysis which has
been unattended so far.

3. Some examples in the appendices of this report show that higher order demand
propagation can be more accurate than other existing strictness analyses. A
methodical comparison of the power and the complexity of different strictness
analyses would be very interesting but also seems to be very difficult. The com-
parison would be even more interesting, if higher order demand propagators
generalise over demands defined as projections (as mentioned in remark 3.1.5).

Figure 9. Analysis Flow

program transformation

compile DP-modulescompile core program

core
modules

demand
propagator

modules

run DP-modules

strictness query
strictness answer

run core program

optimised
executable

executable
programs

Higher Order Demand Propagation (draft “tr-b-98-15 (korr)“ from 21 January 1999 12:12) 23

7 Related Work

The most widely used framework for strictness analysis for lazy functional lan-
guages is an abstract interpretation introduced by Mycroft [My81] and later
enhanced for algebraic data types and higher order functions (Wadler [Wa87],
Burn [Bu91]) and for polymorphism (Baraki [Ba93]). Strictness analysis by abstract
interpretation is a forward analysis using finite abstract domains. Strictness infor-
mation for functions defined in modules are traditionally represented by annota-
tions on the function’s type yielding in general poor propagation of strictness
information to other modules.

Abstract reduction described by Nöcker [Nö93] is a method that can handle
infinite domains and uses a loop-detecting abstract reduction machine. However
the analysis is a forward one, and module interfaces only capture selected strict-
ness information yielding poor transportation of strictness information across
module boundaries.

Projection analysis was first formulated by Wadler and Hughes [WH87] for a
first-order monomorphic language. It was generalised to a higher order (but mon-
omorphic) language by Davis [Da94] and to a polymorphic (but first order) lan-
guage by Baraki [Ba93]. Projection analysis uses finite domains for all data types.

Backward analyses that use infinite domains have been proposed by Dybjer
(Inverse Image Analysis [Dy87]), by Hall and Wise [HW87] and by Tremblay
(Abstract Demand Propagation [Tr94]). All these analyses are restricted to first
order functions.

Another interesting relation of this work is to the proposal of evaluation strate-
gies for parallel programming in [TH98]. The definition of an evaluation strategy
as a function from some type to the unit type () is semantically equivalent to the
definition of demands given here. However the intention of the proposal is to
allow the programmer to specify an evaluation strategy for a calculation in a pro-
gram. The focus is not on the safety of these strategies. The semantics of the
enriched program may be different from the semantics of the original program.

It would be interesting to examine how higher order demand propagation anal-
ysis can be used to transform functional programs automatically to programs dec-
orated with safe evaluation strategies and how this implicit parallelisation affects
execution time.

References

[Ba93] G. Baraki: Abstract Interpretation of Polymorphic Higher-Order Functions.
Ph.D. Thesis, University of Glasgow 1993

[Bu91] G. Burn: Lazy Functional Languages: Abstract Interpretation and Compila-
tion. Pitman 1991

[Da94] K. Davis: Projection-Based Program Analysis. Ph.D. Thesis, University of
Glasgow 1994

[Dy87] P. Dybjer: Inverse Image Analysis. In Th. Ottman, editor: Automata,
Languages and Programming, LNCS 267, Springer 1987

[Fe89] E. Fehr: Semantik von Programmiersprachen. Springer, Heidelberg, 1989

[HW87] C. V. Hall and D. S. Wise: Compiling Strictness into Streams. Proceedings -
14th Annual ACM Symposium on Principles of Programming Languages,

24 Higher Order Demand Propagation (draft “tr-b-98-15 (korr)” from 21 January 1999 12:12)

Munich 1987

[Ho95] M. Horn: Improving Parallel Implementations of Lazy Functional Languages
Using Evaluation Transformers. Technical Report, Freie Universität Berlin
1995

[HF92] J. Hughes and Alex Ferguson: A Loop-detecting Interpreter for Lazy, Higher-
order Programs. In J. Launchbury and P. M. Sansom, editors, Functional
Programming, Workshops in Computing, Springer 1992

[Ka92] S. Kamin: Head Strictness is not a monotonic abstract property. Information
Processing Letters, North Holland 1992

[My81] A. Mycroft: Abstract Interpretation and Optimising Transformations for Appli-
cative Programs. Ph.D. Thesis, University of Edinburgh 1981

[Nö93] E. Nöcker: Strictness Analysis using Abstract Reduction. Technical Report,
University of Nijmegen 1993

[PH97] J. Peterson, K. Hammond (editors) and many authors: Report of the Program-
ming Language Haskell – A Non-strict, Purely Functional Language – Ver-
sion 1.4. Available at <http://www.haskell.org/onlinereport/>

[PJ87] S. L. Peyton Jones: The Implementation of Functional Programming Lan-
guages. Prentice-Hall 1987

[TH98] P. W. Trinder, K. Hammond, et.al. Algorithm + Strategy = Parallelism. In
Journal of Functional Programming, 8(1), January 1998

[Tr94] G. Tremblay: Parallel Implementation of Lazy Functional Languages using
Abstract Demand Propagation. Ph.D. Thesis, McGill University Montréal
1994

[Wa87] P. Wadler: Strictness Analysis on Non-Flat Domains by Abstract Interpreta-
tion. In S. Abramsky and C. Hankin, editors, Abstract Interpretation of
Declarative Languages, Ellis-Horwood 1987

[WH87] P. Wadler and R.J.M. Hughes: Projections for Strictness Analysis. In
Proceedings of the 1987 Conference on Functional Programming Languages
and Computer Architecture, Portland, Oregon, LNCS 274, Springer 1987

Appendix A (Non-Recursive Examples)

Example A.1: Conditional

Let cond be the conditional function defined by

cond has the type ∀α. Bool → α → α → α. From the rules in figure 7 we con-
struct the demand propagator COND for cond.

An effective demand on the result of the conditional will propagate to one of
the arguments x or y and a WHNF demand is propagated to b. The information is
even more precise, stating that either b is forced to evaluate to True and the
demand is propagated to x, or b is forced to evaluate to False and the demand is
propagated to y.

> cond = λb.λx.λy. case b of True ⇒ x; False ⇒ y

COND Δ = λB. λX. λY. B WHNF & (B TRUE & X Δ | B FALSE & Y Δ) .

Higher Order Demand Propagation (draft “tr-b-98-15 (korr)“ from 21 January 1999 12:12) 25

From this information it can safely be deduced that cond is strict in its first
argument but not in the others, because:

But more information (so called joint strictness) is expressed, as can be seen in
the next example.

Example A.2: Joint Strictness

Imagine that cond will be used to define another function

In this context of use the second and the third argument of cond are always
identical. So in the application of the demand propagator for cond in the demand
propagator for uncond the context demand is propagated to x in both alternatives
of the conditional, hence always, implying that uncond is strict in both argu-
ments. More: if the context demand is more effective than WHNF, so is the propa-
gated demand (they are identical).

hence:

This example shows that so called joint strictness can be analysed. But the
demand propagator contains even more information, which enables demand
propagation to infer strictness, which other strictness analyses cannot detect:

Example A.3: Forcing Summands of a Sum

Imagine that cond will be used in the function

The demand propagator of cond (as described above) states that e is either
forced to evaluate to True and then x is demanded. Or it is forced to evaluate to
False and y is demanded. The demand propagator of e now states, that in order
to evaluate e, n is demanded with WHNF and in order to evaluate e to False, x is

COND Δ ID NO NO ⇓ ID WHNF & (ID TRUE & NO Δ | ID FALSE & NO Δ)
⇓ WHNF & (NO | NO)
⇓ WHNF

COND Δ NO ID NO ⇓ NO WHNF & (NO TRUE & ID Δ | NO FALSE & NO Δ)
⇓ NO & (Δ | NO)
⇓ NO

COND Δ NO NO ID ⇓ NO WHNF & (NO TRUE & NO Δ | NO FALSE & ID Δ)
⇓ NO & (NO | Δ)
⇓ NO .

> uncond = λb.λx. cond b x x

UNCOND Δ = λB. λX. COND Δ B X X ⇓ λB. λ X. B WHNF & (B TRUE & X Δ | B FALSE & X Δ)

UNCOND Δ NO ID ⇓ NO WHNF & (NO TRUE & ID Δ | NO FALSE & ID Δ)
⇓ NO & (Δ | Δ)
⇓ Δ .

> strange = λn.λx.λy. cond e x y
> where e = case n of 0 ⇒ (case x of x ⇒ False); n ⇒ True

26 Higher Order Demand Propagation (draft “tr-b-98-15 (korr)” from 21 January 1999 12:12)

demanded with WHNF, because the only alternative, in which the expression e
evaluates to False is, if n is zero, and in this case x will be evaluated.

It reduces as follows:

since

It follows:

TRUE and FALSE are the implicitly defined demand propagators for the alge-
braic data type Bool = False | True. They can be applied to demands of type
Bool, where:

Hence demand propagation analysis can detect that strange is strict in its first
and in its second argument. No other strictness analysis we know would have found
the strictness in the second argument.

Example A.4: Construction of Conforming Demands

This example will show how demands are constructed by the demand propaga-
tion analysis yielding demands, which are not in the abstract domains for existing
strictness analyses like abstract interpretation or projection analysis.

Let the function sum2 be defined by

STRANGE Δ = λN. λX. λY. COND Δ E X Y
where E Δ = N WHNF & (X WHNF & FALSE Δ | TRUE Δ) .

STRANGE Δ ⇓ λN. λX. λY. N WHNF & (E TRUE & X Δ | E FALSE & Y Δ)
⇓ λN. λX. λY. N WHNF & (N WHNF & X Δ | N WHNF & X WHNF & Y Δ)
⇓ λN. λX. λY. N WHNF & X WHNF & (X Δ | Y Δ)

E WHNF ⇓ N WHNF & (X WHNF & FALSE WHNF | TRUE WHNF) ⇓ N WHNF
E TRUE ⇓ N WHNF & (X WHNF & FALSE TRUE | TRUE TRUE)

⇓ N WHNF & TRUE TRUE = N WHNF
E FALSE ⇓ N WHNF & (X WHNF & FALSE FALSE | TRUE FALSE)

⇓ N WHNF & X WHNF & FALSE FALSE = N WHNF & X WHNF .

STRANGE Δ ID NO NO ⇓ ID WHNF & NO WHNF & (NO Δ | NO Δ) ⇓ WHNF
STRANGE Δ NO ID NO ⇓ NO WHNF & ID WHNF & (ID Δ | NO Δ) ⇓ WHNF
STRANGE Δ NO NO ID ⇓ NO WHNF & NO WHNF & (NO Δ | ID Δ) ⇓ NO .

FALSE FALSE, TRUE TRUE, FALSE WHNF, TRUE WHNF ⇓ NO
and FALSE TRUE, TRUE FALSE ⇓ FAIL .

> sum2 = λxs. case xs of
> Nil ⇒ 0
> Cons a t ⇒ case t of
> Nil ⇒ 0
> Cons b t ⇒ a+b

Higher Order Demand Propagation (draft “tr-b-98-15 (korr)“ from 21 January 1999 12:12) 27

The demand propagator for sum2 is given by the following equation:

It reduces as follows:

Hence

A WHNF demand on the application of sum2 propagates to the demand “evalu-
ate the first and the second element of the list to weak head normal form” on its
argument. The latter demand is neither an element of the 4-point-list-domain used
in abstract interpretations by Wadler [Wa87] or Burn [Bu91], nor of the finite list
domain of projections used in projection analysis by Davis [Da94]. Though it
could be defined in both of these frameworks, there is no general approach to
identify the evaluators, which are well suited for a given program. Those analyses
can only infer simple strictness for sum2, which turns out to be a loose of informa-
tion, if for instance the function plus should be analysed:

The demand propagator for plus is:

It reduces as follows:

since

Hence:

Demand propagation analysis finds correctly that plus is strict in both argu-
ments. If only the simple strictness information of sum2 had been used as it is the
case in other strictness analyses, the strictness of plus would not have been
detected, hence plus had been compiled without taking the advantage of optimi-
sation.

SUM2 Δ = λXS. XS WHNF
& (XS NIL | XS (CONS NO NO)

& (T NIL | T (CONS NO NO) & A WHNF & B WHNF))
where T Δ = XS (CONS NO Δ)

A Δ = XS (CONS Δ NO)
B Δ = T (CONS Δ NO) .

SUM2 Δ ⇓ λXS. (XS NIL | XS (CONS NO NIL) | XS (CONS WHNF (CONS WHNF NO)) .

SUM2 Δ ID ⇓ NIL | (CONS NO NIL) | (CONS WHNF (CONS WHNF NO)) .

> plus = λa.λb. sum2 (Cons a (Cons b Nil))

PLUS Δ = λA. λB. SUM2 Δ C
where c Δ = CONS (A Δ↓Cons,1) (CONS (B Δ↓Cons,2↓Cons,1) NIL) .

PLUS Δ⇓ λA. λB. (C NIL | C (CONS NO NIL) | C (CONS WHNF (CONS WHNF NO)))
⇓ λA. λB. A WHNF & B WHNF

C NIL and C (CONS NO NIL) ⇓ FAIL
and C (CONS WHNF (CONS WHNF NO)) ⇓ A WHNF & B WHNF .

PLUS Δ ID NO ⇓ WHNF
PLUS Δ NO ID ⇓ WHNF .

28 Higher Order Demand Propagation (draft “tr-b-98-15 (korr)” from 21 January 1999 12:12)

Appendix B (Recursive Examples)

The analysis of recursive functions makes it necessary to calculate recursive
demand propagators and to detect recursive patterns in the propagated demands.
This is done in the following examples as stated in their explanations.

Example B.1: Generalised Strictness of length

Define the function length by:

The demand propagator for length is defined by the (simplified) equation

The amount of strictness for the argument of length can be correctly inferred
as SPINE as the following reduction shows:

We were using the fact that CONS NO (LENGTH WHNF ID) is a safe approximation
for LENGTH WHNF T with the given binding T Δ = ID (CONS NO Δ).

The last reduction follows from matching a recursive pattern: LENGTH WHNF ID
is referred to in its own reduction. The observed recursive pattern is that of the
SPINE demand.

Example B.2: Higher Order, Polymorphic

Define the higher order and polymorphic function map by:

The demand propagator for map is given by the following equation:

Now let us infer the amount of strictness for the second argument in a context
of a SPINEELEM demand (SPINEELEM = CONS WHNF SPINEELEM). For illustration F

remains a variable in this reduction:

> length = λxs. case xs of
> Nil ⇒ 0
> Cons h t ⇒ 1 + length t

LENGTH Δ = λXS. XS WHNF & (XS NIL | XS (CONS NO NO) & LENGTH WHNF T)
where T Δ = XS (CONS NO Δ) .

LENGTH WHNF ID ⇓ ID WHNF & (ID NIL | ID (CONS NO NO) & LENGTH WHNF T)
⇓ WHNF & (NIL | (CONS NO NO) & (CONS NO (LENGTH WHNF ID)))
⇓ NIL | CONS NO (LENGTH WHNF ID)
⇓ SPINE .

> map = λf.λxs. case xs of
> Nil ⇒ Nil
> Cons h t ⇒ Cons (f h) (map f t)

MAP Δ = λF. λXS. XS NIL | XS (CONS NO NO) & F Δ↓Cons,1 H & MAP Δ↓Cons,2 F T

where H Δ = XS (CONS Δ NO)
T Δ = XS (CONS NO Δ) .

MAP SPINEELEM F ID
⇓ NIL | (CONS NO NO) & F WHNF H & MAP SPINEELEM F T
⇓ NIL | CONS (F WHNF ID) (MAP SPINEELEM F ID)

Higher Order Demand Propagation (draft “tr-b-98-15 (korr)“ from 21 January 1999 12:12) 29

map can be analysed for generalised strictness in its second argument. We do
this first in the general case, when nothing is known about f and then in two
examples, when generalised strictness information is statically available for f.

F = NO implies:

Strictness of f (F WHNF ID ⇓ WHNF) implies:

If even more strictness of f is known (e. g. f = length with LENGTH WHNF ID =
SPINE, see example B.1), then the propagated demand is again more informative:

The last reductions in each case are done by loop-detection and naming the
recursion pattern appropriately.

Example B.3: Analysing Arbitrary User Defined Polymorphic Data Types

This example shows a result for polymorphic algebraic data types. Given the data
type of a binary tree, the function flatten is analysed, which transforms a binary
tree into a list.

Since flatten is a polymorphic function, the inferred demand propagator for
flatten is polymorphic, too. Hence it can be called with any polymorphic
demand or with a specialised demand for a specialised use of the function flat-
ten.

Demand propagation analysis deduces correctly, that demanding the weak
head normal form of the flattened tree, demands the left spine of the tree up to the
leftmost leaf. If the head of the flattened tree is demanded with any suited (poly-
morphic or specialised) demand, higher order demand propagation can infer that
the value of the leftmost leaf is demanded with the same demand. The complete
analysis however is long and therefore omitted here.

Again the demands inferred here are not in the standard abstract domains of
other strictness analyses.

MAP SPINEELEM NO ID ⇓ NIL | CONS NO (MAP SPINEELEM NO ID) ⇓ SPINE .

MAP SPINEELEM F ID ⇓ NIL | CONS WHNF (MAP SPINEELEM F ID) ⇓ SPINEELEM .

MAP SPINEELEM LENGTH ID
⇓ NIL | CONS SPINE (MAP SPINEELEM LENGTH ID) ⇓ SPINESPINE .

> data Tree a = Leaf a | Node (Tree a) (Tree a)
>
> flatten = λt. case t of
> Leaf v ⇒ Cons v Nil
> Node l r ⇒ append (flatten l) (flatten r)

