LIST OBJECTS AND RECURSIVE ALGORITHMS IN ELEMENTARY TOPOI

Christian E. G. Maurer
Fachbereich Mathematik und Informatik
Freie Universität Berlin

11.6.96

Abstract

The paper generalizes results of [B] by formulating their background in categories with a sufficiently rich internal logic, e. g. elementary topoi, using the well known initial algebra approach. Thus the right setting for program transformations in the sense of [B] is given by embedding them into the generalisation of primitive recursion over the naturals in the sense of $[\mathrm{F}]$ to lists. Particularly there is a simple concept of tail recursion, hence an outline on a systematic transformation of naive recursive programs into tail recursive i. e. more efficient iterative forms.

Let \mathcal{E} be an elementary (Lawvere-Tierney-)topos with a natural number object (NNO) $1 \xrightarrow{0} N \xrightarrow{s} N$ (see [F] or [J] for details).

The following standard notations are used:
$A \xrightarrow{A} A$ is the identity and $A \xrightarrow{g f} C$ the composition of $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$. 0 is the initial and 1 the terminal object, $0 \xrightarrow{?} A$ and $A \xrightarrow{!} 1$ the related unique morphisms.

Products are denoted by \times and projections by π (with the appropriate indices), the uniquely determined morphism h for a pair $A \xrightarrow{f} B$ and $A \xrightarrow{g} C$ s. t. $\pi_{B} h=f$ and $\pi_{C} h=g$ by $A \xrightarrow{(f, g)} B \times C$. The notations + and σ are reserved for coproducts and injections resp.
A^{B} is the exponential with $\mathcal{E}(C \times B, A) \cong \mathcal{E}\left(C, A^{B}\right), A^{B} \times B \xrightarrow{\mathrm{ev}_{A B}} A$ the evaluation morphism. Toggling between morphisms and their exponential transposes by adjointness is denoted by a bar.
$1 \xrightarrow{\text { true }} \Omega$ is the subobject classifier in \mathcal{E}.
Not everywhere in this paper the full power of the topos axioms is used - so most results are true in the more general situation of \mathcal{E} just being cartesian closed.

Underlying intuitive ideas are indicated in footnotes, in general by using a sort of functional programming language.

1. Universal Characterisation and Properties of Lists.

We start off with the basic definition and some consequences of it.

[^0]1.1 Definition. For any object E in \mathcal{E}, an object L with a pair of morphisms ${ }^{1}$ $1 \xrightarrow{e} L$ and $E \times L \xrightarrow{c} L$ is called a list object over E, iff this situation is initial in the following sense:
for all pairs of morphisms ${ }^{2} 1 \xrightarrow{x} X$ and $F \times X \xrightarrow{f} X$ and all morphisms ${ }^{3} E \xrightarrow{u} F$ there is a unique $L \xrightarrow{r} X$ such that the diagrams

commute. (Equivalently, $E \xrightarrow{u} F$ could have been replaced by $E \xrightarrow{E} E$.)
This situation could of course be expressed in terms of an adjoint situation, although in this paper no particular use will be made of that:
1.1a Alternative description. Let \mathcal{E}_{E} be the category of actions of E on objects of \mathcal{E} with objects and morphisms of the type

If the underlying functor $U_{E}: \mathcal{E}_{E} \rightarrow \mathcal{E}$, sending the above morphism to $X \xrightarrow{f} Y$, has a left adjoint $\mathcal{E} \xrightarrow{F_{E}} \mathcal{E}_{E}$, then $E \times L \xrightarrow{c} L$ is just $F_{E}(1)$ and $1 \xrightarrow{e} L$ is the front adjunction $1 \xrightarrow{\eta_{1}} U_{E} F_{E}(1)$.
Proof. Simply by describing the adjoint situation $F_{E} \dashv U_{E}$ in terms of the corresponding universal morphism problem.
1.2 Corollary. For every pair $F \times Y \xrightarrow{h} Y, 1 \xrightarrow{y} Y$ and any $E \times L \xrightarrow{v} F$ there is a unique $L \xrightarrow{r} Y$ s. t. the diagram

commutes.
Proof. By choosing $X=L \times Y$ and $f=E \times L \times Y \xrightarrow{(c, v) \times Y} L \times F \times Y \xrightarrow{L \times h} L \times Y$ in 1.1 one finds a unique $L \xrightarrow{(l, r)} L \times Y$ s.t.

[^1]commutes. Combining this with

gives by uniqueness $l=L$, combining it with

yields the result.
By universality, one then immediately has:
1.3 Lemma. A list object over E is uniquely determined up to an isomorphism rendering the appropriate diagrams commutative.
1.4 Example. The NNO is the list object over 1.

Proof. Choose $E=1, e=1 \xrightarrow{0} N$ and the successor map $N \xrightarrow{s} N$ for c, identifying $1 \times N \cong N$.

First, we are going to derive some conclusions of this concept.
1.5 Proposition. If (E, L, e, c) is a list object, then $E \times L \xrightarrow{c} L \stackrel{e}{\leftarrow} 1$ is a coproduct in \mathcal{E}, i. e. there exists an isomorphism ${ }^{4} L \xrightarrow{p} 1+E \times L$ whose inverse is given by $1+E \times L \xrightarrow{(e, c)} L$

Proof. Let σ_{1} and $\sigma_{E \times L}$ denote the coproduct injections into $1+E \times L$; furthermore let $E \times(1+E \times L) \xrightarrow{d} 1+E \times L$ be defined as composition

$$
E \times(1+E \times L) \xrightarrow{E \times(e, c)} E \times L \xrightarrow{\sigma_{E \times L}} 1+E \times L .
$$

By 1.1 there is a unique $L \xrightarrow{p} 1+E \times L$ such that

commutes. We now prove the proposition by showing that the bottom row of this diagram constitutes a list object over E :

[^2]Let $E \xrightarrow{u} F$ and $F \times X \xrightarrow{f} X \stackrel{x}{\leftarrow} 1$ be given. By taking the unique $L \xrightarrow{r} X$ from 1.1, we consider the diagonal

$$
f(u \times r)=r c: E \times L \rightarrow X
$$

This allows for $g=(x, r c): 1+E \times L \rightarrow X$, such that

commutes.
Combining the two diagrams we get $g p=L \xrightarrow{r} X$ with regard to the uniqueness property of 1.1. Particularly for $(F, x, f)=(L, e, c)$ we get $(e, c) p=L$; therefore $g \sigma_{E \times L}=g \sigma_{E \times L}(E \times(e, c))(E \times p)=g d(E \times p)=g p c=r c$, which together with $g \sigma_{1}=x$ determines g uniquely.

The equation $p(e, c)=1+E \times L$ is simply a consequence of the main argument.
Alternatively, one could say that $T(L)=1+E \times L \xrightarrow{(e, c)} L$ is a least fixpoint in an appropriate category.
1.6 Lemma. Let the head and the tail morphism ${ }^{5} L \xrightarrow{\kappa} 1+E$ and $L \xrightarrow{\tau} 1+L$ be given by

$$
\begin{aligned}
\kappa & =L \xrightarrow{p} 1+E \times L \xrightarrow{1+\pi_{E}} 1+E \quad \text { and } \\
\tau & =L \xrightarrow{p} 1+E \times L \xrightarrow{1+\pi_{L}} 1+L
\end{aligned}
$$

Then the following diagrams commute:

Proof. Immediate by $p e=\sigma_{1}$ and $p c=\sigma_{E \times L}$.
1.7 Lemma. For any list object $E \times L \xrightarrow{c} L \stackrel{e}{\leftarrow} 1$, the construction morphism c and the projection $E \times L \xrightarrow{\pi_{L}} L$ define a coequalizer diagram $E \times L \rightrightarrows L \stackrel{!}{\longrightarrow} 1$.
Proof. Let $L \xrightarrow{t} X$ be given such that $t c=t \pi_{L}$. Then the problem 1.1 for $E=$ $F, f=F \times X \xrightarrow{\pi_{X}} X$ and $x=1 \xrightarrow{t e} X$ is solved by t and $t e!$, which therefore are equal. Since $!_{L}$ is a retraction, the factorization of t through 1 is unique.

[^3]1.8 Lemma. Let the list length morphism ${ }^{6}$ be the unique $L \xrightarrow{\nu} N$, for which

commutes. Then both these squares are pullbacks, i. e. $(s: \mathbb{N} \rightarrow \mathbb{N}, 0: 1 \rightarrow \mathbb{N})$ is a "list classifier".
Proof. The proof rests on some typical elementary topos arguments relying on the existence of the adjunction $\nu^{*} \dashv \Pi_{\nu}: \mathcal{E} / L \rightarrow \mathcal{E} / N$.

The left sqare and the outer diagram in

are coproduct diagrams, hence pushouts; so the right sqare is a pushout, which is bound to be a pullback, because by $1.5 E \times L \xrightarrow{c} L$ is monic (in a topos the pushout of a mono gives a pullback).

Let

be a pullback and $1 \xrightarrow{a} A \xrightarrow{h} L$ the unique factorization of $1 \xrightarrow{e} L$. By pulling back the coproduct $1 \xrightarrow{0} N \stackrel{s}{\leftarrow} N$ along $L \xrightarrow{\nu} N$ we get the coproduct diagram

We consider the morphism $1+E \times L \xrightarrow{a+E \times L} A+E \times L$; composing it with the resulting iso $A+E \times L \xrightarrow{(h, c)} L$ yields $1+E \times L \xrightarrow{(e, c)} L$, from which by 1.5 follows that it is an isomorphism itself.

Since in a topos all diagrams of the form

are pullbacks and pullbacks of epimorphisms are again epic, $1 \xrightarrow{a} A$ turns out to be an isomorphism.

[^4]1.9 Definition. Let the singleton morphism ${ }^{7}$ be $E \xrightarrow{\eta} L=E \xrightarrow{(E, e!)} E \times L \xrightarrow{c} L$. Then the diagrams

are commutative and

is a pullback. ${ }^{8}$
Proof. The first claim follows immediately from the definitions, for the second compose the pullbacks 1.9 with the trivial one $E \xrightarrow{(E, e!)} E \times L \xrightarrow{\pi_{L}} L=E \xrightarrow{!} 1 \xrightarrow{e} L$.

2. Algorithms on Lists.

We now give some examples, how to carve out several recursively defined algorithms, just by using the approach of the previous section. Throughout this chapter, let $(E \times L \xrightarrow{c} L \stackrel{e}{\leftarrow} 1)$ generally denote a list object over E.

First of all, we have a general form of primitive recursion [F, Proposition 5.22] for list objects:
2.1 Proposition. Let $E \times L \times A \xrightarrow{u} F, A \xrightarrow{g} B$ and $F \times B \xrightarrow{h} B$ be given. Then there is a unique $L \times A \xrightarrow{f} B$ such that the diagrams

commute.
Proof. The situation is shifted by adjointness to

because the transpose of the left bottom row is $h\left(\operatorname{ev}_{A F} \pi_{E A}, \mathrm{ev}_{A B} \pi_{L A}\right)$. The unique existence of \bar{F} follows from 1.2 , which proves the proposition.

[^5]2.1a Remark. With respect to $1.1 \mathrm{a}, ~ E \times L \times A \xrightarrow{c \times A} L \times A$ is just the value of the left adjoint $F_{E} \dashv \mathcal{E}_{E} \xrightarrow{U_{E}} \mathcal{E}$ on $A, A \xrightarrow{(e!, A)} L \times A$ being the front adjunction.
2.2 Example. Let the element morphism ${ }^{9} L \times E \xrightarrow{\varepsilon} E$ be given by 2.1 for $A=E$, $F=B=\Omega, u=\delta_{E}$ (characterizing the diagonal), $g=$ false $_{E}$ and $h=\mathrm{V}$, i.e. ε is uniquely determined by the commutativity of the diagrams

Then one has immediately the equation $E \xrightarrow{(\eta, E)} L \times E \xrightarrow{\varepsilon} \Omega=E \xrightarrow{\text { true }_{E}} \Omega$.
2.3 Proposition. Let the concatenation morphism ${ }^{10}$ be the unique $L \times L \xrightarrow{\gamma} L$ such that

commutes. Then $L \times L \xrightarrow{\gamma} L$ is unitary and associative, i. e. the diagrams

commute. Particularly, ${ }^{11} E \times L \xrightarrow{c} L=E \times L \xrightarrow{\eta \times L} L \times L \xrightarrow{\gamma} L$.
Proof. The left side of the first diagram commutes by definition of γ, the right side by commutativity of

[^6]and uniqueness. Futhermore, because the diagram

and its counterpiece with $\gamma \times L$ instead of $L \times \gamma$ commute, associativity holds. The last equation is shown by composing $E \times(e!, L)$ with the defining diagram of γ.
2.4 Remark. L is the free monoid over E with multiplication $L \times L \xrightarrow{\gamma}$ and neutral element $1 \xrightarrow{e} L[\mathrm{~J}$, Theorem 6.41].

Proof. For any monoid $M \times M \xrightarrow{m} M \stackrel{u}{\leftarrow} 1$ and any $E \xrightarrow{h} M$ let $L \xrightarrow{\bar{h}} M$ be the unique morphism such that

Then \bar{h} is a monoid homomorphism, because

is made commutative by $\xi=\bar{h} \gamma$ as well as by $\xi=m(\bar{h} \times \bar{h})$, which follows from the definitions of γ and \bar{h} and the monoid structure on M.

Furthermore, there is the unique factorization

given by the composition of $E \xrightarrow{(E, e!)} E \times L$ with the defining diagram of \bar{h}.
2.5 Corollary. In the special case of 1.3, γ is just the addition of natural numbers $N \times N \xrightarrow{+} N$ and $L \xrightarrow{\nu} N$ is a monoid homomorphism.
2.6 Proposition. Let the append morphism ${ }^{12}$ be the unique $L \times E \xrightarrow{\alpha} L$, for which

commutes, where $E \xrightarrow{\eta} L$ is the singleton morphism.
Then ${ }^{13} \alpha=L \times E \xrightarrow{L \times \eta} L \times L \xrightarrow{\gamma} L$ and the following diagrams ${ }^{14,15}$ commute:

Proof. The definition of γ and η implies the first equation.
The commutativity of the diagrams is a consequence of that, using the defining properties of γ.
2.7 Lemma. Let the last element morphism ${ }^{16}$ be the unique $L \xrightarrow{\lambda} 1+E$, for which

commutes. Then the diagrams

commute.
Proof. Because the diagram

commutes for $\xi=L \times E \xrightarrow{\alpha} L \xrightarrow{\lambda} 1+E$ as well as for $\xi=L \times E \xrightarrow{\sigma_{E}} E \xrightarrow{\pi_{E}} 1+E$, the first diagram commutes by uniqueness. Composing (E, e !) with the defining diagram of λ gives immediately the commutativity of the second diagram.

[^7]2.8 Lemma. Let the (simple) list reverse morphism ${ }^{17}$ be the unique $L \xrightarrow{\varrho} L$, for which

commutes. Then the diagrams ${ }^{18}$

and particularly ${ }^{19}$

are commutative, where \cong denote the swap morphisms $\left(\pi_{2}, \pi_{1}\right)$.
Proof. Composing the defining diagrams of γ with the defining diagram of ϱ shows, that the diagram

is commutative for $\xi=L \times L \xrightarrow{\gamma} L \xrightarrow{\varrho} L$.
Now, the same diagram commutes with $\xi=L \times L \xrightarrow{\cong} L \times L \xrightarrow{\varrho \times \varrho} L \times L \xrightarrow{\gamma} L$, which can be seen by composing the defining diagram of ϱ with 2.6 and some canonical factor commuting isomorphisms.

Hence, by uniqueness of ξ, the first result is proven.
The second is a special case of that by using $\alpha=\mathrm{L} \times E \xrightarrow{L \times \eta} L \times L \xrightarrow{\gamma} L$; the third is immediate from the definition of ϱ and η.
2.9 Corollary. $L \xrightarrow{\varrho} L$ is idempotent, i. e. $\varrho^{2}=L$.

Proof. By Composition of the defining diagram of ϱ with the second result of 2.8 .

[^8]2.10 Corollary. The following equations ${ }^{20}$ hold:
\[

$$
\begin{aligned}
& L \xrightarrow{\varrho} L \xrightarrow{\lambda} 1+E=L \xrightarrow{\kappa} 1+E \quad \text { and } \\
& L \xrightarrow{\varrho} L \xrightarrow{\kappa} 1+E=L \xrightarrow{\lambda} 1+E .
\end{aligned}
$$
\]

Proof. By definition of ϱ and 2.7 one has

hence $\lambda \varrho(e, c)=1+\pi_{E}$. By 1.5 and 1.6 we therefore get $\lambda \varrho=\left(1+\pi_{E}\right) p=\kappa$.
The second equation is a consequence of that, using the preceding corollary.

3. Tail recursion.

3.1 Lemma. Let $E \times L \times A \xrightarrow{u} A$ and $A \xrightarrow{g} B$ be given. Then there is a unique morphism $L \times A \xrightarrow{f} B$, such that the diagram

commutes.
Proof. Consider the internal composition morphism $A^{A} \times B^{A} \xrightarrow{d} B^{A}$, given as exponential transpose by

Then by 1.1 , there is a unique $L \xrightarrow{\bar{f}} B^{A}$ such that

commutes. Crossing this diagram with A and combining it with the above yields the result, since $\left(\pi_{2}, \mathrm{ev}_{A A} \pi_{13}\right)\left(\bar{u} \pi_{E \times L}, \bar{f} \pi_{L}, \pi_{A}\right)=\left(\bar{f} \pi_{L}, u\right) \times A$.

[^9]3.2 Corollary. Let $L \times L \xrightarrow{\varrho^{\prime}} L$ be the unique morphism, given by the preceding lemma for $A=B=L, u=c \pi_{13}$ and $g=L$, s. t. the following diagram commutes:

Then

commute, i. e. in particular, the (simple) reverse morphism ϱ and the fast reverse morphism ${ }^{21} L \xrightarrow{(L, e!)} L \times L \xrightarrow{\varrho^{\prime}} L$ coincide.
Proof. $\gamma(\varrho \times L)$ defines ϱ^{\prime}, because by definition of ϱ and 2.6

commutes. Composing the first diagram with $L \xrightarrow{(L, e!)} L \times L$ renders the second one commutative, by neutrality of γ.
3.3 Corollary. Let $L \times N \xrightarrow{\nu^{\prime}} N$ be the unique morphism, s. t.

commutes. Then the following diagrams are commutative:

[^10]Proof. The top left diagram commutes by definition of ν, together with the commutative rest

which shows by uniqueness that $\nu^{\prime}=L \times N \xrightarrow{\nu \times N} N \times N \xrightarrow{+} N$. From that and the equation $+(N, 0!)=N$ it follows, that the list length morphism ν is identical with the fast list length morphism, ${ }^{22}$ given as composition $L \xrightarrow{(L, 0!)} L \times N \xrightarrow{\nu^{\prime}} L$.
3.4 Lemma. Let the fold left morphism ${ }^{23}$ be the unique $L \times A^{E \times A} \times A \xrightarrow{\varphi} A$, such that the following diagram is commutative:

Then $\nu^{\prime}=L \times N \xrightarrow{\left(\pi_{L}, \overline{s \pi_{N}}, \pi_{N}\right)} L \times N^{N \times E} \times N \xrightarrow{\varphi} N$.
Furthermore, if L is the list object over N and $L \xrightarrow{\sigma} N$ is the sum morphism, ${ }^{24}$ defined by

then $\sigma=L \xrightarrow{(L, \mp!, 0)} L \times N^{N \times N} \times N \xrightarrow{\varphi} N$.
Proof. Straightforward diagram chasing.
3.5 Lemma on tail recursion over natural numbers. Let $(N \xrightarrow{s} N, 1 \xrightarrow{0} N)$ be the NNO. Let $A \xrightarrow{u} A$ and $A \xrightarrow{g} B$ be given. Then there is a unique morphism $N \times A \xrightarrow{f} B$, such that the diagram

commutes.
Proof. The situation is a special case of 3.1, using 1.4.

[^11]3.6 Example. Let the replicate morphism be the unique $N \times E \times L \xrightarrow{\vartheta^{\prime}} L$ such that

and $N \times E \xrightarrow{\vartheta} L=N \times E \xrightarrow{N \times E, e!)} N \times E \times L \xrightarrow{\vartheta^{\prime}} L$, where $N \times E \xrightarrow{\vartheta} L$ is the unique morphism ${ }^{25}$ with $\vartheta(s \times E)=c\left(\pi_{E}, \vartheta\right)$ and $\vartheta(0!, E)=e$! by 1.4. ${ }^{26}$
Proof. Straightforward.

4. Appendix: Standard abstract data types.

4.1 Example: Stacks. A stack S on E is given by the operations $1 \xrightarrow{\text { new }} S$, $S \times E \xrightarrow{\text { push }} S, S \xrightarrow{\text { top }} 1+E$ and $S \xrightarrow{\text { pop }} 1+S$ with the standard equations describing stacks.

Then, if \mathcal{E} has list objects, there are enough stacks.
Proof. For a stack over E choose the list object L over E, and set new $=1 \xrightarrow{e} L$, push $=E \times L \xrightarrow{c} L$, top $=L \xrightarrow{\kappa} 1+E$ and pop $=L \xrightarrow{\tau} 1+L$. The stack equations are given by 1.6.
4.2 Example: Queues. A queue Q on E is given by the operations $1 \xrightarrow{\text { new }} Q$, $Q \times E \xrightarrow{\text { add }} Q, Q \xrightarrow{\text { first }} 1+E, Q \xrightarrow{\text { last }} 1+E, Q \xrightarrow{\text { dequeue }} 1+Q$ and $Q \times Q \xrightarrow{\text { merge }} Q$ with some wellknown equations.

If \mathcal{E} has list objects, then there are enough queues.
Proof. Let Q be a list object L over E and new $=1 \xrightarrow{e} L$, add $=L \times E \xrightarrow{\alpha} L$, first $=L \xrightarrow{\kappa} 1+E$, last $=L \xrightarrow{\lambda} 1+L$, dequeue $=L \xrightarrow{\tau} 1+L$, merge $=L \times L \xrightarrow{\gamma} L$. The queue equations are given in 1.6, 2.6, 2.7 by means of the commutative diagram

$$
\begin{array}{ccc}
L \times L & \xrightarrow{\gamma} & L \\
\tau \times L \downarrow \\
\times L \cong L+L \times L & \xrightarrow{\left(\tau, \sigma_{L} \gamma\right)} & 1+L .
\end{array}
$$

4.3 Definition. For any object E in \mathcal{E}, an object T with a pair of morphisms ${ }^{27}$ $1 \xrightarrow{e} T$ and $T \times E \times T \xrightarrow{c} T$ is called a tree object over E, iff this situation is initial in the following sense: for all pairs of morphisms $1 \xrightarrow{x} X$ and $X \times F \times X \xrightarrow{f} X$ and all morphisms $E \xrightarrow{u} F$ there is a unique $T \xrightarrow{r} X$ such that the diagrams

commute.

[^12]4.4 Lemma. $T \xrightarrow{(e, c)} 1+T \times E \times T$ is an isomorphism.

Proof. By the same technique as in the proof of 1.5.
4.5 Lemma. Let the tree size morphism ${ }^{28}$ be the unique $L \xrightarrow{\zeta} N$, such that

commutes. Then these diagrams are pullbacks and $\zeta \varphi=\nu$, where ν is the list length and $\varphi: T \rightarrow L$ is the flatten morphism, ${ }^{29}$ given by

Proof. The first result is shown analogously to 1.8 , the second is given by the combination of the definitions of ζ, φ and ν with 2.3 and 2.5.

References

[B] E. T. P. Burton, Verification and Transformation of Simple Recursive Programs - An Algebraic Approach, Mathematical Structures for Software Engineering (B. Neumann, D. Simpson, G. Slater, eds.), Clarendon Press, Oxford, 1991, pp. 17-43.
[F] P. Freyd, Aspects of topoi, Bull. Austral. Math. Soc. 7 (1972), 1-76.
[J] P. T. Johnstone, Topos Theory, London, 1977.
[CTCP] D. Pitt, S. Abramsky, A. Poigné and D. Rydeheard (eds.), Category Theory and Computer Programming, LNCS 240 (Tutorial and Workshop, Guildford, U.K., September 1985), Berlin-Heidelberg-New York, 1986.
[P] A. Poigné, Elements of Categorical Reasoning, [CTCP], 16-42.
[R] D. E. Rydeheard, Functors and Natural Transformations, [CTCP], 43-50; Adjunctions, [CTCP], 51-57.

Institut für Informatik, Freie Universität Berlin, Takustr. 9, D-14195 Berlin
E-mail address: maurer@inf.fu-berlin.de

[^13]
[^0]: 1991 Mathematics Subject Classification. 03D75, 18A40, 18B25.
 1987 CR Classification Scheme. D.3.3, E.1, F.3.
 Key words and phrases. topos, list, recursion, algorithm, tree.

[^1]: ${ }^{1}$ lists of elements of type E, the empty list and the construction morphism, [] and :
 2 "initial states of X " and "actions of F on X "
 3 "changes of base"

[^2]: ${ }^{4}$ a list is empty or consists of head and tail

[^3]: ${ }^{5} \mathrm{hd}(\mathrm{x}: \mathrm{xs})=\mathrm{x}, \mathrm{tl}(\mathrm{x}: \mathrm{xs})=\mathrm{xs}$

[^4]: ${ }^{6} \#[]=0, \#(x: x s)=1+\# x s$

[^5]: ${ }^{7}$ [] $\mathrm{x}=[\mathrm{x}]$
 ${ }^{8}$ elements can be considered as lists of length 1

[^6]: ${ }^{9}$ element[]x = False, element(x:xs)x = True, element(x:xs)y = element xs y
 ${ }^{10}[]++y s=y s,(x: x s)++y s=x:(x s++y s)$
 ${ }^{11} \mathrm{x}: \mathrm{xs}=[\mathrm{x}]++\mathrm{xs}$

[^7]: ${ }^{12}$ append []$y=[y]$, append $(x: x s) y=x: a p p e n d ~ x s ~ y ~$
 ${ }^{13}$ append $\mathrm{xs} \mathrm{y}=\mathrm{xs}++[\mathrm{y}]$
 ${ }^{14} \mathrm{xs}++($ append $y s \mathrm{y})=\operatorname{append}(\mathrm{xs}++\mathrm{ys}) \mathrm{y}$
 ${ }^{15}$ (append xs y)++ys = xs++(y:ys)
 ${ }^{16}$ last $[\mathrm{x}]=\mathrm{x}$, last(x:xs) = last xs

[^8]: ${ }^{17}$ rev [] $=[], \operatorname{rev}(x: x s)=$ append(rev $\left.x s\right) x$
 ${ }^{18}$ rev(xs++ys) $=(r e v ~ y s)++(r e v ~ x s)$
 ${ }^{19} \mathrm{rev}($ append xs x) $=\mathrm{x}: \mathrm{rev} \mathrm{xs}$

[^9]: ${ }^{20}$ last(rev(x:xs)) $=x, h d(r e v ~ x s)=$ last $x s$

[^10]: ${ }^{21}$ if rev'xs $=r{ }^{\prime} \mathrm{xs}[]$ where $r^{\prime}[] y s=y s, r^{\prime}(x: x s) y s=r{ }^{\prime} x s(x: y s)$, then rev' $=$ rev

[^11]: ${ }^{22}$ if length $x s=1$ xs 0 where $1(x: x s) n=1 \mathrm{xs}$ sn, then length $=\#$
 ${ }^{23}$ foldl u a []$=a$, foldl u a(x:xs) $=$ foldl $u(u$ a $x) x s$
 ${ }^{24} \operatorname{sum}[]=0, \operatorname{sum}(\mathrm{n}: \mathrm{ns})=n+$ sum ns

[^12]: ${ }^{25}$ rep $0 \mathrm{x}=[], \operatorname{rep}(\mathrm{n}+1) \mathrm{x}=\mathrm{x}$:rep n x
 ${ }^{26}$ if $\mathrm{r} \mathrm{n} x=\mathrm{r} \mathrm{n}_{\mathrm{n}} \mathrm{x}$ [] where $\mathrm{r}^{\prime} 0 \mathrm{O} \mathrm{xs}=\mathrm{xs}, \mathrm{r}^{\prime}(\mathrm{n}+1) \mathrm{x} \mathrm{xs}=\mathrm{r}^{\prime} \mathrm{n} \mathrm{x}(\mathrm{x}: \mathrm{xs})$, then $\mathrm{r}=\mathrm{rep}$
 ${ }^{27}$ the constructors s. t. Tree* $=$ Empty \mid Node (Tree*)*(Tree*)

[^13]: ${ }^{28}$ size Empty $=0$, size (Node 1 x r) = size l+size $r+1$
 ${ }^{29}$ flatten Empty $=[]$, flatten (Node $\left.1 \times r\right)=(f l a t t e n ~ l)++(x: f l a t t e n ~ r)$

