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Abstract

A major characteristic of life sciences is the generation of vast amounts of raw
data produced by modern wet lab technologies. The data may come from
large-scale experiments where chemical compounds are tested on their ability
to act as possible agents against certain diseases. It can also originate in
the determination of the 3D structure of macromolecules, or from the genetic
code of a species. Evaluation and integration of that raw data is becoming
increasingly important. Currently, often only a fraction of the generated data
is integrated and evaluated.

The data integration problem is addressed in the first part of the work.
A data-warehouse is developed that integrates 3D information on proteins
with information about potential drugs, potential binding sites and advanced
3D binding site screening techniques. Furthermore, as similarity screening of
molecules and proteins can often only be carried out with limited accuracy
on a limited amount of data sets. A framework is presented that facilitates
the integration of data sources and methods with an emphasis on exact 3D
screening techniques.

The amount of searchable macromolecular structures, such as proteins and
RNAs is growing rapidly. However, there are only a few methods available
allowing for a rapid 3D screening of thousands of proteins, and only a handful of
methods can be used for aligning RNA structures. A novel method is presented
that uses n-grams and index structures in concert with a nomenclature that
reduces a biomolecule to a string. It can be shown that the method delivers
comparable or better results in comparison to leading methods in the field of
protein and RNA alignment. The method can be used in high throughput
experiments because of its precision and adjustable speed.

The last part of the work deals with interaction and signal transduction.
Expression levels correlate to the amount of signals that are transduced in a
biological network. Various concepts are evaluated that map expression levels
of genes on the apoptosis signal transduction network using Petri nets. Finally,
a software package is presented that is able to simulate Petri nets based on the
developed paradigm. The software can hide the complexity of the Petri net,
which allows non-computer experts to use the software efficiently.

Keywords: Drug similarity, substructure search, structural alignment, pro-
tein, RNA, hash-table, n-grams, dihedral angles, Petri net, microarray, apop-
tosis



Science must become art.

CARL VON CLAUSEWITZ



Publications

The majority of this thesis has been published in peer reviewed journals. Please
find the articles corresponding to the parts of this thesis below.

Bauer R. A., Giinther S., Heeger C., Jansen D., Thaben P. and Preissner
R. (2008). SuperSite: Dictionary of metabolite and drug binding sites
in proteins. Nucleic Acids Research, 37 (Database issue): D195-D200.
[Section 2.1]

Bauer R. A., Bourne P. E.; Formella A., Frommel C., Gille C., Goede
A., Guerler A., Hoppe A., Knapp E. W., Poschel T., Wittig B., Ziegler
V. and Preissner R. (2008). Superimpose: a 3D structural superposi-
tion server. Nucleic Acids Research, 36 (Web Server issue): W47-W54.
[Section 2.2]

Bauer R. A., Rother K., Bujncki J. M. and Preissner R. (2008). Suffix
techniques as a rapid method for RNA substructure search. Genome
Informatics, 20: 183-198. [Section 3.1]

Bauer R. A., Rother K., Moor P., Reinert K., Steinke T., Bujnicki J. M.,
Preissner R. (2009). Fast structural alignment of biomolecules using a
hash table, n-grams and string descriptors. Algorithms, 2(2), 692-709.
[Section 3.2]

Hildebrand P., Goede A., Gruening B., Michalsky E., Bauer R. A., Ismer
J., Preissner R. (2009). SuperLooper - A prediction server for the model-
ing of loops in globular and membrane proteins, Nucleic Acids Research,
37 (Web Server issue), (accepted). [Section 1.2.2]



Software

Most of the software packages developed in the course of this thesis are freely
available as open source.

e lrrr, http://lrrr.sf.net [Section 2.1]
e suiteRNA, http://suiterna.sf.net [Section 3.1]

e LaJolla, http://lajolla.sf.net [Section 3.2 and Section 3.3]

Online resources

The online resources are hosted at the Charité Computing Center, CBF. The
Structural Bioinformatics Group of the Charité updates and maintains the
data sources.

e SuperSite, http://bioinformatics.charite.de/supersite [Section 2.1]
e Superimposé, http://bioinformatics.charite.de/superimpose [Section 2.2]

e SuperRNAAlign, http://bioinformatics.charite.de/superrnaalign [Section
3.3]


http://lrrr.sf.net
http://suiterna.sf.net
http://lajolla.sf.net
http://bioinformatics.charite.de/supersite
http://bioinformatics.charite.de/superimpose
http://bioinformatics.charite.de/superrnaalign

Acknowledgements

The projects leading to this thesis were carried out at the Structural Bioinfor-
matics Group of the Department for Molecular Biology and Bioinformatics /
Physiology of the Charité Medical University, Berlin.

First and foremost, I thank Robert Preissner for giving me the opportunity
to work at the Structural Bioinformatics Group and to study at the gradu-
ate school, as well as for supervising this thesis. His kind patience, excellent
support and guidance along the way were invaluable for the success of this
project. Special thanks go to Martin Vingron for monitoring and supportively
advising my projects as member of my PhD committee and graduate school
and especially to Ralf Zimmer for refereeing this PhD thesis.

Without the scientific expertise and cooperation of Kristian Rother and
Stefan Giinther as well as Dorothee Biener and Max Liebl this work would not
have been possible.

I was privileged to be accepted as student of the international graduate
school “Genomics and Systems Biology of Molecular Networks — Berlin, Boston,
Kyoto”. T am really grateful for the support of the Principal Investigators who
organized and attended conferences, gave critical feedback and opened my
eyes to the stunning perspectives of our era: Oliver Ebenhch, Martin Fal-
cke, Hanspeter Herzel, Hermann-Georg Holzhiitter, Edda Klipp, Ernst-Walter
Knapp and Nikolaus Rajewsky. I especially want to thank my fellow students
of the graduate school for making this PhD journey such a great experience
both in terms of excellent scientific exchange as well as friendship.

Chapter 2 was additionally supported by Philip E. Bourne, Arno Formella,
Cornelius Frommel, Christoph Gille, Andrean Goede, Aysam Guerler, Ca-
rolin Heeger, Andreas Hoppe, Dominic Jansen, Thorsten Poschel, Paul Florian
Thaben, Burghardt Wittig and Valentin Ziegler. Chapter 3 was supported by
Peter Moor, Knut Reinert, Thomas Steinke and Janusz M. Bujnicki. Chapter
4 would not have been possible without the enthusiasm of Konstantin Pentchev
and Christian Scholz who successfully completed their bachelor and master’s
theses in the area. Invaluable advice regarding Petri net theory came from Ina
Koch. The net architecture would not have been possible in such great detail



10

without the excellent expertise of Jessica Ahmed, Julia Hossbach and Peter
Daniel. Additional support came from Robert Adams and Robert Lehmann.

The special guidance of Felix Biibl, Peter Hildebrand and Ulf Leser was
invaluable.

I thank all former and current members of the Structural Bioinformat-
ics Group for the excellent working atmosphere, for scientific discussions and
for many enjoyable after-work activities. Apart from the members already
mentioned I would like to thank: Mathias Dunkel, Joachim von Eichborn,
Melanie Fiillbeck, Ines Jéger, Elke Michalsky, Ulrike Schmidt and Swantje
Struck. I also thank the students with whom I had the opportunity to work:
Bjorn Griining, Nico Giittler and Marcus Schroeder. Very special thanks go to
Claude Couture, Franz Brendl, Peter Dulovits, Sebastian Heglmeier, Thomas
Meister, Rebecca Miller and Christian Suchy.

My deepest thanks go to my family, especially my parents Harry and Ilse,
my brother Severin and Cathrin for their true love, care and support.

Without them and the many people that I have not mentioned here by
name, this work would never have been possible.



Contents 11
Contents

Abstract 5

Acknowledgements 9

1 Introduction 13

1.1 A greater picture of systems biology . . . . . . .. ... ... .. 13

1.1.1 A declaration and a virtual human . . . . . . ... ... 13

1.1.2  Double helix — single sequence . . . . . . .. .. ... .. 13

1.1.3 From sequence to regulation . . . . . .. ... ... ... 15

1.1.4 Regulation and interaction in the cellular apparatus . . . 15

1.1.5  Personalized Medicine . . . ... ... ... ... .... 17

1.2 Looseends. . ... .. ... .. ... ... ... 18

1.2.1  An integration gap: elements, processes and methods . . 18

1.2.2  Biomolecules, string encoding and applications . . . . . . 19

1.2.3 Cellsignaling . . .. ... ... ... .. ... ..... 21

1.3 Objectives and overview . . . . . . . . . . ... ... ... .. 23

2 Integration of ligand characteristics 25

2.1 Data warehouse of metabolite and drug binding sites: SuperSite 25

2.1.1 Introduction . . . . . . . . ... ... 25

2.1.2 Database and tools . . . . . . . ... ... ... ... .. 27

2.1.3 Casestudies . . . . . . . . . ... 29

2.1.4 Conclusions . . . . . . . . ... .. 31

2.2 A metaserver for structural search: Superimposé . . . . . . . .. 33

2.2.1 Introduction . . . . . . . .. ... 33

2.2.2 Algorithms . . . . ... ... 35

2.2.3 Databases . . . . .. .. .. ... 39

2.2.4  Web server description . . . . . .. ..o 41

225 Casestudies . . . . . . . .. ... 42

2.2.6 Conclusions . . . . ... .. ... ... ... . 43



12 Contents

3 Biomolecular search, similarity and coding properties 47
3.1 RNA character encoding and suffix techniques . . . . . . . ... 47
3.1.1 Introduction . . . . . . . . .. ... 47

3.1.2 Methods . . . . . . . ... 50

3.1.3 Results. . . . . . . .. 54

3.1.4 Discussion . . . . . . . ... 62

3.1.5 Conclusions . . . . . .. . .. ... ... 63

3.2  Macromolecular similarity screening . . . . . . . .. ... .. .. 64
3.2.1 Introduction . . . . . . . . . . ... 64

3.2.2 Material and methods . . . . . ... ... ... ... 68

323 Results. . . . . . .. 73

3.2.4 Discussion . . . . . ... 78

3.2.50 Conclusions . . . . . . . . .. 81

3.3 A novel approach for the detection of structural features of RNA 83
3.3.1 Introduction . . . . . . . . ... .. &3

3.3.2 Material and methods . . . . .. . ... ... ... ... 85

333 Results. . . . . . . 86

3.3.4 Discussion . . . . . ... 90

3.3.0 Conclusions . . . . . . . . ... 92

4 Simulation of cellular reactions 93
4.1 Quantitative simulation of apoptosis using Petri nets . . . . . . 93
41.1 Introduction . . . . . . . . . ... ... ... 93

4.1.2  Petri nets in systems biology . . . . . . .. ... .. 94

4.1.3 Material and methods . . . . . .. . ... ... ... .. 96

414 Results. . . . . . . 99

4.1.5 Discussion and future directions . . . . . . . .. ... .. 101

416 Conclusions . . . . . . . . .. 104

4.2 Cell Sim — a Petri net based cell simulation software . . . . . . . 105
4.2.1 Introduction . . . . . . . . .. ... 105

4.2.2 Material and methods . . . . . .. ... ... ... ... 105

423 Results. . . . . . . .. 106

4.2.4 Discussion and conclusions . . . . . . .. ... ... ... 106

5 Discussion 111
6 Appendix 115
Ehrenwortliche Erklarung . . . . . . . . .o 000000 115
Zusammenfassung . . . . ... L. L 116
Curriculum Vitae . . . . . . . . . . 117
List of figures . . . . . . . . .. 118
List of tables . . . . . . . . . ... 122

Bibliography . . . . . . . ... 123



13

Chapter 1

Introduction

1.1 A greater picture of systems biology

1.1.1 A declaration and a virtual human

“Recent advances in systems biology indicate that the time is now ripe to
initiate a grand and challenging project to create a comprehensive, molecules-
based, multi-scale, computational model of the human (the virtual human)
body over the next thirty years, capable of simulating and predicting, with a
reasonable degree of accuracy, the consequences of most of the perturbations
that are relevant to health-care.” (The Tokyo Declaration, Future Challenges
for Systems Biology, Tokyo International Forum, Tokyo, February 4-6, 2008).

The Tokyo Declaration briefly summarized what systems biology should
be about: Building a complete model of a complex life form such as a human
being [Kitano, 2001, Kitano, 2002, Kell, 2007]. The objective is to understand
how things inside us really work. And even more important: To understand
the source of diseases and to find cures with minimal side effects and maximum
effect [Scheiber et al., 2009]. According to Hiroaki Kitano, the vision of the
virtual human is to be realized by around 2050 [News, 2008]. This thesis
attempts to bring together some small pieces of the puzzle as one of the many
steps required to make this vision happen.

1.1.2 Double helix — single sequence

The father of modern biology was Charles Darwin, who did not accept that
everything is created by a higher being (Figure 1.1). Darwin proposed that
life forms evolve passing on phenotypes and attributes to their descendants
[Bowler, 2009]. He came to his conclusions without exact knowledge of DNA
(deoxyribonucleic acid) or molecular biology [Berkman et al., 2008]. In the last
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Figure 1.1: A portrait of Charles Darwin by Julia Margaret Cameron. (Picture
source: Wikipedia, copyright expired)

century, this gap was filled with the discovery of the double helix, the principle
of semiconservative replication and the knowledge of the properties of nu-
cleotides [Watson and Crick, 1953]. The ability to sequence these nucleotides
with methods based on Sanger’s discovery [Sanger et al., 1977] ultimately led
to the publication of the first consensus sequence of the human genome [Mor-
gan, 2001, Venter et al., 2001]. This consensus sequence was only possible due
to advances in biotechnical sciences, as well as faster computational capabili-
ties. Now the focus of research has shifted again. The sequence of the human
genome has been deciphered, but not decoded, and many questions are left
open. Many questions concern the structure of proteins built from informa-
tion in DNA. Other open questions concern the regulatory mechanism of a life
form that is influenced by the interplay of proteins and DNA. During the last
50 years numerous breakthroughs in biotechnical sciences were made toward
determining the 3D structure of a biomolecule, such as RNA (ribonucleic acid)
and proteins. And still there is a huge gap between the number of proteins
known to exist and the number of 3D structures of proteins that are available.
For many important proteins, it is still not possible to determine their 3D
structures due to the limitations of the methods [Park et al., 2008]. More in-
terestingly, sequencing and determining 3D structures are generating terabytes
of data that have to be connected and evaluated. The evaluation can be e.g.
on sequential level or based on 3D structures. The core disciplines dealing with
the data are bioinformatics and systems biology. They are using the power of
computers to generate models and predictions based on a huge heterogeneous
amount of information. These predictions can be on small scale interactions of
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elements of a cell but also on a bigger scale like interactions between cells or or-
gans. The final goal is to have all information and interactions interconnected,
leading to the virtual human outlined in the Tokyo Declaration.

1.1.3 From sequence to regulation

In the late nineties of the twentieth century, expectations from the complete
consensus sequence of a human genome were huge (Figure 1.2). It was com-
monly thought that knowledge of the sequence would automatically lead to the
complete understanding of life. But this view had to be revised [Stein, 2008].
After the initial excitement it became clear that the genome is important, but
only explains a fraction of how life works. The finished sequence of a human
genome brought up more questions than it could answer.

The process of reading genes involves an intermediate step where DNA
is transcribed into RNA that is then translated into proteins. A complex
regulatory process is active in order to form different cells originating from one
single cell in multi-cellular organisms. Life is all about interacting elements and
not only about a one-dimensional DNA sequence. The initial enthusiasm about
the release of the consensus sequence of the human genome quickly turned into
realism and to novel questions and challenges that have to be addressed. A
new discipline that attempts to shed light on the regulatory mechanisms on
all levels of the cellular apparatus is systems biology.

1.1.4 Regulation and interaction in the cellular appara-
tus

Regulation and cellular response can be measured with a range of ever evolving
biotechnical methods [Yengi, 2005]. The purpose of these methods is e.g. to
figure out if elements of a cell are active in a certain context. Theoretically
it is possible to conclude the amount of protein produced from the amount
of transcribed RNA of a gene. Measuring RNA is simple and inexpensive
and can be done using technologies such as microarrays [Keller et al., 2008].
However, this indirect measurement is often inaccurate because not all RNA
is translated into protein. Measuring the amount of protein directly is more
precise and is done increasingly nowadays. The direct measurement is still
much more time-consuming and expensive [Cohen et al., 2008]. The compo-
sition of a cell in terms of RNA and protein differs greatly depending on the
tissue of origin [Noble, 2002]. Furthermore, pathologically altered cells such
as cancer cells have a different fingerprint in terms of RNA and protein. This
fingerprint can be used in diagnostic methods like methylation analysis leading
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to an early diagnosis of diseases such as cancer [Bonetta, 2008]. The response
of a cell towards a perturbation such as drugs (small compounds) is also im-
portant. Measuring the response to a certain treatment allows for conclusions
if the treatment is specific or unspecific for a certain cell type and disease.
An unspecific compound can have negative effects on a wide variety of cells,
causing adverse drug effects (ADRs) [Scheiber et al., 2009]. The final goal
is a working model of known responses and interactions where perturbations
can be predicted, leading to a better understanding of the cellular apparatus.
This can be used for the development of new drugs where simulated elimina-
tions of interacting elements allow for evaluation of cellular response [Butcher,
2005, Davidov et al., 2003].

1.1.5 Personalized Medicine

With the advent of cheaper sequencing technology an important shift in se-
quencing is currently taking place [Mardis, 2008]. The focus is shifting from
the investigation of consensus genomes of a species to the genome of an indi-
vidual or the genome of single pathological cells. In medical sciences the switch
to the genome and from this to the metabolism of an individual is commonly
referred to as Personalized Medicine. Personalized Medicine potentially allows
for a better treatment of individual patients, taking into account their indi-
vidual susceptibility to side effects of certain drugs based on their predicted
metabolism [Scheiber et al., 2009]. It will also allow determination of individ-
ual risk factors. This issue is currently debated controversially as commercial
enterprises first use this technology [Kaye, 2008]. The final goal is to com-
bine the knowledge of the regulation and its effects on individuals in order to
provide better directed treatment.

Systems biology is the discipline that emerged from the growing knowledge
about regulatory mechanisms of cells. Although there are various definitions
of the term, it becomes clear that the discipline has to deal especially with the
following fields in order to make the vision of the virtual human come true:

e The integration of vast amounts of heterogeneous data.

e The individual elements from drugs to macromolecules, as well as their
interactions.

e The simulation and evaluation on network level.
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1.2 Loose ends

The term loose ends originates in the old profession of rope making. An
important task for rope makers was to finish a rope by securely binding together
the (loose) ends. An imperfectly executed final step potentially leads to the
disintegration of the whole rope. This is also true for current research in the
field of life sciences where a number of loose ends exist that must be tied up.
This section is dedicated to the loose ends this thesis is attempting to bind
together.

Ichbinatuf: nﬁalt-dm&b&mn lubzz
tnd toieck 3o flatBeond Budee-
cubmm 23mit hanf :Jber 305¢m -
mﬂ hatich diglit betrgen -

Figure 1.3: The text, written in an old German dialect, states that the rope
maker cheated his customers by exchanging the better and more expensive
hemp inside a rope with the cheaper flax (Picture source: Wikipedia, copyright
expired).

1.2.1 An integration gap: elements, processes and meth-
ods
Section 1.1 mentioned that the knowledge about many elements and processes

of life forms is growing quickly. However, the knowledge and the data is hetero-
geneous, making the integration of different data a difficult task. An example
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is the growing knowledge about macromolecular structures such as proteins.
Proteins interact with other proteins, or with small compounds. Many proteins
are badly characterized regarding their function, and some are even completely
uncharacterized. The determination of the function of a protein today includes
the combination of a range of information sources. The information sources
can be e.g. interaction partners, similarities to characterized proteins in struc-
ture and sequence as well as integration of drug and pathway data. This can
lead to proposals about wanted and unwanted effects of drugs and is highly
important [Editorial, 2009]. As this determination is often only possible using
complicated custom tools, it is not carried out regularly.

1.2.2 Biomolecules, string encoding and applications
Growing importance of RNA structure

Section 1.1.3 covers the issue that RNA is not solely a carrier of genetic infor-
mation. A growing number of research results reveal that RNA is important
in key processes of regulation and often not translated into proteins [Eddy,
2001, Storz, 2002, Capriotti and Marti-Renom, 2008]. It became clear that
RNA is involved in post transcriptional regulation (gene silencing) via mi-
croRNAs and small interfering RNAs (siRNA) [Lim et al., 2003, Ender et al.,
2008, Xiao and Rajewsky, 2009]. It was also revealed that the translational
apparatus is influenced by allosteric conformational changes in riboswitches
as well as frameshifts caused by pseudoknots and slippery sequences [Winkler
et al., 2002, Penchovsky and Breaker, 2005]. RNA is also involved in the chem-
ical modification of the ribosome [Bekaert et al., 2003] and is even a player in
the formation of peptides and, therefore, also important for the production of
proteins [Weinger et al., 2004, Nissen et al., 2000]. RNA is important in patho-
logical processes like cancer and retroviral infections such as AIDS [Medzhitov
and Littman, 2008]. RNA is also able to form complex 3D structures which are
mediated primarily by hydrogen bonds formed between base pairs as well as
base stacking because of its single stranded nature. The primary data source
for 3D structures of biomolecules is the PDB [Berman et al., 2007]. The num-
ber of RNA structures known and being deployed as 3D coordinates in the
PDB is growing rapidly. The 3D structure of biochemical elements such as
RNAs is often more conserved than its sequence; therefore the structural anal-
ysis of RNA becomes increasingly important. In the field of proteins exists a
variety of alignment and comparison techniques able to cover a wide range of
applications [Kolodny et al., 2005]. In contrast, the field of structural RNA
alignment is only now emerging [Dror et al., 2006, Ferre et al., 2007, Chang
et al., 2008].
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Opportunities arising from RNA structure string representations

Comparing structures and substructures computationally can be done in mul-
tiple ways. Using 3D coordinates of atoms is very precise, but also very restric-
tive and computationally intensive. In the field of proteins, many methods use
the secondary structure as guidance (e.g. [Guerler and Knapp, 2008]). Other
methods reduce the chain to elementary characters that can be compared us-
ing efficient string matching algorithms [Lo et al., 2007, Gusfield, 1997]. In the
field of RNA structural biology approaches are often applied where informa-
tion of the 3D structure is reduced. Popular methods use dihedral angles of a
nucleotide for this reduction (e.g. [Chang et al., 2008]). The RNA society itself
released a method that is able to translate an RNA chain into a string using
so-called suite codes that are based on nucleotide conformations [Richardson
et al., 2008]. Using these reduction methods, it becomes possible to query a
huge amount of macromolecules for similarities in a very precise fashion. But
in the field of RNA structural biology these fast approaches are not widely
used.

Knowledge based docking and protein-protein interaction prediction

A ligand (latin ligare - bind to) in the context of biochemistry is a molecule
that is able to form a complex with a biomolecule, the receptor. This binding
process (“docking”) is reversible and can cause a conformational change of the
receptor [Alberts et al., 2002, Lehninger et al., 2008]. A ligand is often a small
compound like a drug, peptide or a protein that interacts with another protein.
But a ligand can also be DNA bound to protein [Locasale et al., 2009]. The
similar property principle is applied to ligands as well as receptors [Barbosa
and Horvath, 2004]. A general approach is to search for compounds with a
similar structure to find compounds with similar properties. The approach can
be extended by looking at the similarity of the binding sites of proteins that
might reveal similar binding partners. Consensus exists that the structure of a
protein or even a small part of a protein can point towards a specific function.
In this regard, many classification databases such as SCOP have been devel-
oped [Andreeva et al., 2008]. An example is the Rossman fold that points to a
binding of nucleotides and derivates [Rao and Rossmann, 1973]. The Rossman
fold highlights that certain conservation among secondary structure elements
and residues is important even in the binding of smaller compounds like nu-
cleotides. These small compounds can potentially be drugs affecting a protein.
Knowing and predicting the binding partners of a protein can be beneficial,
as it may reveal desirable or undesirable effects (ADRs). In drug development
ADRs should be omitted wherever possible. In this regard, algorithms that
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mainly deal with information on an atomic and residual level have been de-
veloped [Shulman-Peleg et al., 2008, Yeturu and Chandra, 2008]. Recently, it
has also been shown that a certain known interacting protein patch has its
application in the domain of protein - protein docking [Giinther et al., 2007].

Figure 1.4: Superimposed vitamin B6 binding sites of two proteins (2ctz chain
A and 1cdk chain A). The global similarity of the two proteins is low accord-
ing to SSM [Krissinel and Henrick, 2004] (Q-score: 0.13, % sequence id: 9).
However, the local secondary structure of the binding site is highly similar in
both proteins.

1.2.3 Cell signaling
Introduction

Section 1.2.2 points out that life is about interaction and regulation. Interac-
tion and regulation occurs everywhere in the cell. There is a growing number of
software tools that are able to provide an overview of interactions, most promi-
nently Cytoscape [Yeung et al., 2008, Ruths et al., 2008]. Important databases
storing information about interactions on metabolic and signaling level are for
instance KEGG and Reactome [Okuda et al., 2008, Vastrik et al., 2007]. Often
a simple binary mechanism is anticipated — interaction is happening or not.
However, there is almost never a simple on / off switch in nature — it is more
about a certain amount of interaction taking place. In this regard, microarray
RNA sensing technology has become widely used to predict the amount of pro-
tein present in a cell — and in turn the amount of interaction taking place. This
is, however, an imprecise view in many cases, as not all RNA is translated into
protein. Therefore novel methods are increasingly used that directly measure
the amount of a specific protein and the interaction taking place. This finally
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leads to more and more complete and complex interaction networks [Yu et al.,
2008].

Methods

The usage of ordinary differential equations (ODEs) can model interaction be-
tween elements of a cell. The ODEs are parameterized according to a set of
experiments [Alon, 2006]. When not all interaction parameters are known the
view of protein interaction in so-called protein signaling and transduction net-
works is applicable. They take into account interactions between interaction
partners. Signaling commonly has a certain outcome such as “cell prolifera-
tion” or “cell death”. These signaling networks can be depicted by graphs and
frequently the formalism of so-called Petri nets is applied [Grunwald et al.,
2008, Heiner et al., 2004]. The methods to analyze a network are commonly
divided into static and dynamic properties. Currently, Petri nets are often
seen as a static analytical method [Papin et al., 2005] and are not quanti-
fied regarding the amount of interaction taking place [Grafahrend-Belau et al.,
2008, Chaouiya, 2007].

Pathological cells, perturbation and integration

An important aspect of regulation is how the expression on cellular level is
affected by diseases and perturbations of drugs. The NCI (National Cancer
Institute) hosts a large scale repository of about 60 cell lines. These cell lines
are constantly tested against chemical compounds to evaluate their potential
usability as cancer treatment. The NCI measures, for instance, the genetic
expression levels of those cells, with the potential to reveal the protein profile
of the cell [Ross et al., 2000]. The NCI thus seeks to shed light on the desired
and undesired effects of a compound on a cell, even if a compound affects
multiple targets [Crespo et al., 2008].

A formalism that is able to represent a signaling network, but that can also
be used to integrate a quantification of cellular reactions, would be useful in
this regard. The integration of interaction information and perturbation data
has the potential to reveal how certain compounds work and which proteins
are affected [Chu and Chen, 2008]. It may also be possible to model specific
cells or certain organisms and to predict their responses to stimuli and drugs.
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1.3 Objectives and overview

The main objectives of this work are:

e Provide solutions for the integration of methods and data (Section 2.1
and Section 2.2)

e Explore novel methods capable of comparing biomolecules and parts of
biomolecules in 3D using a string reduction approach (Section 3.1, Sec-
tion 3.2 and Section 3.3)

e Examine possibilities of using quantitative interaction data (e.g. mi-
croarrays) to simulate interactions important in the context of cancer
using a graph-based approach (Section 4.1 and Section 4.2)
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Chapter 1. Introduction
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Chapter 2

Integration of ligand
characteristics

2.1 A data warehouse of metabolite and drug
binding sites in proteins: SuperSite

The increasing structural information about target-bound compounds provides
a rich basis to study the binding mechanisms of metabolites and drugs. Super-
Site is a database, which combines the structural information with various tools
for the analysis of molecular recognition. The main data is made up of 8,000
metabolites including 1,300 drugs, bound to about 290,000 different receptor
binding sites. The analysis tools include features like the highlighting of evo-
lutionary conserved receptor residues, the marking of putative binding pockets
and the superposition of different binding sites of the same ligand. User-defined
compounds can be edited or uploaded and will be superimposed with the most
similar co-crystallized ligand. The user can examine all results online with the
molecule viewer Jmol. An implemented search algorithm allows the screening
of uploaded proteins, in order to detect potential drug binding sites, which are
similar to known binding pockets. The huge data set of target-bound com-
pounds in combination with the provided analysis tools allow to inspect the
characteristics of molecular recognition, especially for drug target interactions.
SuperSite is publicly available at: http://bioinformatics.charite.de/supersite.

2.1.1 Introduction

The Protein Data Bank [Berman et al., 2007] contains crystallographic infor-
mation about proteins, which are co-crystallized with thousands of metabolites
or drugs. The data is highly relevant not only for analyzing the recognition of


http://bioinformatics.charite.de/supersite

26 Chapter 2. Integration of ligand characteristics

individual compounds [Rasmussen et al., 2007], but also as a learning set for
molecular interaction models [Schormann et al., 2008]. In many cases, small
compounds bound to macromolecules are medically active and listed as ap-
proved drugs. The consideration of such co-crystallized structures can consid-
erably facilitate the process of drug development [Bayry et al., 2008]. Another
important aspect of molecular interaction is the specificity of a ligand. Many
compounds address several receptor proteins. Comparative analysis of the
target proteins can enable to draw conclusions about the molecular recogni-
tion between ligands and targets [Tikhonova et al., 2008]. One paradigm that
frequently reoccurs is the concept of structure activity relationship (SAR) —
either meaning, that similar ligands have a similar mode of action [Dunkel
et al., 2008], or that similar binding sites may share binding partners. This
paradigm has implications for finding novel leads, as well as the elucidation of
possible side effects [Minai et al., 2008]. SitesBase [Gold and Jackson, 2006]
is an excellent source, which utilizes this similarity concept, using an indexing
algorithm that allows for fast comparisons of similar binding sites. This en-
ables the researcher to quickly generate hypotheses about probabilities that a
certain binding site will be adopted by a ligand. For further investigations of
the interactions between small compounds and macromolecules, a variety of
additional sources are available. Concerning experimentally available binding
data like Kd, Ki and IC50 data, the Binding MOAD [Benson et al., 2008],
PDBbind [Wang et al., 2005] and the Binding Database [Chen et al., 2001] are
of special interest, since they allow conclusions about the binding affinity of the
compounds. Regarding the integration of secondary databases like SCOP [An-
dreeva et al., 2004], CATH [Greene et al., 2007] and Pfam [Laskowski et al.,
2005], there is a variety of excellent sources with a strong focus on macro-
molecules, like PDBsum [Laskowski, 2001}, RCSB PDB [Berman et al., 2007]
and IMB Jena Image Library [Reichert and Suhnel, 2002], while PROCOG-
NATE [Bashton et al., 2007] is especially tailored for elucidating enzymatic
activity. However, there is no single resource, which is centered on drug-like
compounds, while integrating all available structural information. Therefore,
SuperSite was created with three main design goals in mind:

e Rich integration of the PDB, including full-text search, complete 3D
information, and extraction of ligand-receptor relationships.

e Integration of secondary sources, to detect putative binding sites.

e Detection and visualization of compounds considered to be medically
active.

The aim of SuperSite therefore is to assist the structural biologist with
an online tool, which facilitates the inspection of known and putative binding
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sites regarding likely binding sites and conservation information. For drug-like
compounds, additionally superimposed binding sites of the same ligand are
provided, which allows for the detection of structurally conserved residues.

2.1.2 Database and tools
Primary database

SuperSite’s main data source is the PDB [Berman et al., 2000], currently con-
taining over 51,000 3D structures and providing well over 290,000 implicit
interactions of macromolecules and small compounds. The raw PDB is parsed
and translated automatically into a relational database schema that enables
SuperSite to further integrate secondary databases for information enrichment
(see subsequent subsection). To make the knowledge in the primary database
accessible, SuperSite is providing extensible means for querying. The main
text query possibilities include the search for PDB-ID, Het-ID, protein, li-
gand names and synonyms, as well as a full text search, which screens the
complete header of all PDB files for a given term. For instance, searching
for the term “insulin” reveals all insulin-related proteins so that they can be
used for further investigation. An important subgroup of the proteins in the
PDB are enzymes involved in many catalytic activities. To this end, SuperSite
provides an EC tree presentation [Barrett, 1996] which makes it possible to
browse the PDB via enzyme class/subclass and picking proteins of interest.
To investigate the similarity of certain proteins, the protein similarity cluster
information from the Cd-hit algorithm is integrated [Li et al., 2006]. This
information is provided for 95%, 90%, 70% and 50% similarity, based on the
sequence. A specialized search form not only allows the search for similar pro-
teins, but also allows for searching apo- and holo-states. This directly allows
for dealing with the question, how much the bound form of a protein differs
from the unbound form. When it comes to the field of small compounds in the
PDB, SuperSite is providing appliances for filtering physio-chemical features
like molecular weight, chemical formula or number of atoms. A built-in tool for
finding similar small ligands to a given one, is a fingerprint search, based on
MyChem fingerprints (http://mychem.sf.net). SuperSite also provides Mar-
vin as an online tool (http://chemaxon.com) which allows to draw or upload
a molecule, and screen it against all ligands contained in the PDB (sdf and
mol file formats are supported). User-defined compounds are visualized by a
superposition according to the most similar bound ligand.
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Secondary data sources

To assist the user in investigating potential binding partners and putative
binding pockets, SuperSite integrates secondary information from related data
sources. Analyses of functionally important sites suggest that the degree
of conservation within a protein family is a hint for potential binding sites
[Chakrabarti and Lanczycki, 2007]. To this end, SuperSite integrates infor-
mation from HSSP [Dodge et al., 1998], a data source, which contains infor-
mation about the degree of residue conservation within a family of proteins.
As additional source of information, de novo predictions of possible protein
binding pockets are provided that are calculated using LIGSITEcsc [Huang
and Schroeder, 2006]. This information is precalculated and also stored in the
database. HSSP and LIGSITEcsc provide exhaustive information about puta-
tive binding sites. Together with the possibility to elucidate related proteins,
this provides starting points for the detection of putative binding sites.

Drug site encyclopedia

A subset of all relations between proteins and small compounds, is the re-
lationship of proteins and drugs. This subset is of high importance when it
comes to a systematic investigation of the desired effects of drugs (on- and
off-target effects). Therefore, an important part of SuperSite is the Drug Site
Encyclopedia. As the term drug is not self-defining, the World Drug Index
(http://scientific.thomsonreuters.com), the Comprehensive Medical Chemistry
(CMC) Database (http://mdl.com), the NCI cancer compounds (http://dtp.
nci.nih.gov) and SuperDrug [Goede et al., 2005a] are compared to all ligands
of the PDB to determine the intersection set using standard fingerprints from
OpenBabel (http://openbabel.org). The screening was performed via a fin-
gerprint search (http://mychem.sf.net). Entities with a Tanimoto coefficient
of > 0.85 and an equal number of nonhydrogen atoms were considered as
drugs [Martin et al., 2002]. This screening yielded more than 1,300 medic-
inal compounds in the PDB. Within the Drug Site Encyclopedia, extended
instruments for exploring the relationship between drug and target are pro-
vided. One aspect is the possibility to investigate the superimposed binding
sites of the same ligand, showing residues that are conserved in a spatial region,
or frequently occur in a region characteristic for drug recognition. Addition-
ally, a point set match algorithm is provided, which uses known binding sites
(patches) of a ligand, to recognize similar patches on the surface of uploaded
structures, solved structures or models (algorithm to be published elsewhere).
SuperSite is also calculating Lipinski’s Rule Of Five [Lipinski et al., 2001],
reflecting the drug-likeness of uploaded or edited compounds.
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Visualization, browsing and availability

SuperSite can be used with a standard web browser with active Java 1.5+.
The molecular viewer Jmol (http://jmol.org) visualizes proteins, ligands and
interactively highlights all integrated data sources like HSSP or LIGSITEcsc.
SuperSite also allows for browsing between ligand and protein interactions and
vice versa. For instance, it is possible to query the protein “Insulin”, pick out
a ligand and jump to the next view providing all co-crystallized proteins. If
the ligand is contained in the Drug Site Encyclopedia, it is also possible to
investigate the superimposed binding sites. Links are provided to numerous
relevant sources, containing further specialized data sources (e.g. Proteopedia
[Hodis et al., 2008], RCSB [Berman et al., 2000], PDBSum [Laskowski, 2001]).
SuperSite is accessible free of charge for academic institutions. Flat files of the
database are available upon request.

2.1.3 Case studies
Case study 1: PLP binding partners and spatial mining

Vitamin B6 (Het-ID: PLP) is a co-enzyme, mainly used in the amino acid
metabolism and widely present in the human body. Currently, SuperSite con-
tains information about 463 structures containing PLP, representing, a variety
of proteins (e.g. aminotransferases, glycogen phosphorylases). A visualization
of all binding sites at once can be achieved, by selecting ‘Drug Encyclopedia’ in
the main menu and then entering “PLP” as Het-ID. This view allows inspecting
common features, like spatial conservation of specific amino acid types. In the
case of PLP, it gets obvious, that, for instance, residue glycine is conserved at
a spatial position near the phosphate (Figure 2.1). This is even the case, when
the proteins are structurally dissimilar, a conclusion also discussed in [Kume
et al., 1991].

Case study 2: Determination of binding pockets

The elucidation of possible binding pockets and active sites of proteins without
co-crystallized compounds is a common task for structural biologists. Super-
Site provides two tools for the investigation into this topic: LIGSITEcsc —
providing precalculated binding pocket predictions and HSSP — providing in-
formation about sequence conservation. For instance, PDB-ID 1wdp refers to
the structure of the enzyme beta-amylase, solved without substrate. To eval-
uate if there is a possible binding pocket, the user can consult LIGSITEcsc
and HSSP interactively from SuperSite (Figure 2.2). The HSSP conserva-
tion shows a more conserved region around residue glutamine (residue number
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Figure 2.1: Superimposed binding sites of the ligand vitamin B6 (Het-ID: PLP)
from PDB-IDs: 1bjo, 1¢7n and 1dje. Although the proteins show an overall
dissimilar structure, residue glycine (red), lysine (blue) and histidine (green)
are clustering at specific spatial positions (other atoms of the binding sites
depicted in gray).

186). At the same position, LIGSITEcsc shows a relatively large predicted
binding pocket. There is another beta-amylase (PDB-ID: 1bly) similar in
overall structure to the apo form containing a ligand at the position proposed
by LIGSITEcsc and HSSP which shows the applicability of this method.

Case study 3: Detection of binding partners via similarity screening

SuperSite also offers a facility for the fast similarity screening of a compound,
against all ligands co-crystallized in the PDB. This enables to hypothesize
about possible binding partners for similar compounds. Methotrexate (Het-
ID: MTX) is a drug, which is used as anti-inflammatory agent/immunosup-
pressant and in high concentrations used as chemotherapeutical agent [Green
and Chamberlain, 2009]. Methotrexate inhibits the folic acid biosynthesis and
therefore slows the proliferation of cells. SuperSite enables the user to find
similar compounds in the PDB, by simply drawing, or by uploading a mol or
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Figure 2.2: An apo (PDB-ID: 1wdp, chain A) and holo form (PDB-ID: 1bly,
chain B) of beta-amylase. The predictions for the binding site pocket (green)
as well as the HSSP conservation (red conserved, white not conserved) support
the hypothesis of a binding site at this position. This claim can be proved by
the holo form (B) with alpha-D-glucose (blue), bound to the predicted pocket.

sdf file. After issuing the similarity search for Methotrexate, one of the best
hits not identical to Methotrexate, is folic acid (HET-ID: FOL) bound to a
dihydrofolate reductase (Figure 2.3). The query compound Methotrexate is
superimposed with folic acid, which is the known mode of action.

2.1.4 Conclusions

SuperSite is a novel database that offers 3D information about proteins and
about their bound compounds (ligands). SuperSite enables the user to inves-
tigate into the relationship of ligand and receptor in atomic detail, integrating
information sources about putative binding sites and conservation on residue
level. SuperSite is made with an emphasis on ligands that are drug-like and
therefore of special interest for medical research. To this end, SuperSite pro-
vides 3D superpositions of all binding sites of a certain ligand, which enable the
user to investigate into the spatial arrangement and properties of the binding
site. For further investigations, SuperSite allows to issue a similarity screening
against ligands bound to macromolecules as well as a screening of proteins
against known binding sites.
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Figure 2.3: A dihydrofolate reductase (PDB-ID: 1ra7) with folic acid (HET-ID:
FOL, red) bound. One of the highest ranking results from a ligand similarity
screening, using compound Methotrexate (Het ID: MTX, blue), suggests a
binding at that position.
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2.2 A metaserver for structural search: Super-
imposé

The Superimposé web server performs structural similarity searches with a
preference towards 3D structure based methods. Similarities can be detected
between small molecules (e.g. drugs), parts of large structures (e.g. binding
sites of proteins) and entire proteins. For this purpose, a number of algo-
rithms were implemented and various databases are provided. Superimposé
assists the user regarding the selection of a suitable combination of algo-
rithm and database. After the computation on the server infrastructure, a
visual assessment of the results is provided. The structure-based in silico
screening for similar drug-like compounds enables the detection of scaffold-
hoppers with putatively similar effects. The possibility to find similar binding
sites can be of special interest in the functional analysis of proteins. The
search for structurally similar proteins allows the detection of similar folds
with different backbone topology. The Superimposé-server is available at:
http://bioinformatics.charite.de/superimpose.

2.2.1 Introduction

As the size of biomolecules differs by orders of magnitude, the ways to compare
them and the metrics to measure what a good comparison actually is often
differ in the same respect. To cite Hugo Kubinyi: “Similarity lies in the eye
of the beholder” [Kubinyi, 1998a, Kubinyi, 1998b]. Therefore, a classification
of the alignment problem is required to determine the appropriate method
for the detection of the similarity. The definition of similarity in molecular
space always depends on the scientific question that is asked. This question
heavily influences the design of the algorithm and the definition of the scoring
function, which can be adjusted to fit the needs of each request. Unfortunately,
comparison algorithms are computationally expensive since the problems are
usually NP hard which means that the retrieval of a result is at least extremely
time consuming [Lathrop, 1994].

A number of algorithms as well as databases are free for non-commercial
use, but in many cases there is no dedicated web server that allows hassle free
use of an algorithm and a suitable database to answer a biological question.
For small molecules, data sources such as PubChem [Wheeler et al., 2008] and
Drugbank [Wishart et al., 2008] provide facilities for similarity searching.

In general, for small molecules their similarity is estimated on the basis
of their chemical topology. One method is to translate the chemical topology
into so called structural fingerprints. Structural fingerprints are bitvector rep-
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resentations of the small compound chemistry. To compare bitvectors of two
molecules metrical coefficients like the Tanimoto coefficent are applied. The
Tanimoto coefficient gives values between 1.0 (very similar) and 0.0 (dissimi-
lar). Another often used method is the representation of the molecule as string
pattern (SMILES). A simple string search can be used to determine if a certain
part of the molecule is present in another molecule or not. But a number of
features of small molecules cannot be reflected adequately by 2D representa-
tions [Whittle et al., 2003, Chen and Reynolds, 2002]. Recent findings suggest
that 3D similarity searches yield at least more varied results [Thimm et al.,
2004] than similarity comparisons via the usage of fingerprints or SMILES.
Especially to find scaffold hoppers, 3D algorithms clearly show an advantage.
For this reason Superimposé is dedicated, but not limited to the usage of 3D
algorithms.

There are a number of superposition servers, websites and projects in the
field of protein similarity. Often they are merely a companion for a specific
algorithm. For instance the website of TM-align [Zhang and Skolnick, 2005]
allows to compare protein structures but no search depending on a database.
Dedicated superposition servers for proteins include ( [Sumathi et al., 2006],
[Krissinel and Henrick, 2004], [Maiti et al., 2004], [Leslin et al., 2007] and
http://www.ncbi.nlm.nih.gov/Structure/VAST/). 3dSS [Sumathi et al., 2006]
has strengths by providing the ability to superimpose more than two proteins.
SSM [Krissinel and Henrick, 2004] is a very fast method that even allows
searches on a PDB scale level within minutes.

However, due to the fact that algorithms in this field are often domain spe-
cific and have their own definitions of good matches, the possibility to choose
among a set of algorithms would be beneficial. For a more comprehensive
overview about macromolecular superposition the reading of [Novotny et al.,
2004, Kolodny et al., 2005] is recommended

For the problem of identifying a similar surface in or on macromolecules
there is no website that features such a service for the public yet. Such a service
could help to elucidate similar functions of proteins based on shared binding
sites or surface patches. Recent findings even suggest that similarities based on
interaction patches of proteins can help to get hints about the docking modes
between proteins [Giinther et al., 2007].

For superposition tasks on Superimposé a three class division of problem
cases is defined for molecular similarity searches that branch to different sub-
tasks the user can solve with its help.

e Similarity Class 1: Small molecule level.

e Similarity Class 2: Macromolecule level based on substructures.
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e Similarity Class 3: Protein level.

Searches according to Class 1 and Class 3 aim at assigning as many atoms
as possible between both structures. For small molecules (compounds) this
often means that retrieved compounds are similar in mode of action and/or
are affecting similar targets [Barbosa and Horvath, 2004]. Class 2 algorithms
are assuming that the query structure is smaller than the macromolecule. A
typical scenario for Class 2 algorithms is the identification of similar binding
sites. Class 3 specially targets the comparison of entire proteins. The order
of amino acids in the peptide chain is valuable information in addition to the
3D-coordinates. In most cases of pairs of homologous proteins the correspond-
ing amino acids appear in the same order. This is because the order of amino
acids is preserved in evolution, unless it is disrupted by recombinatorial events
leading to circular permutation. However, the number of considered atoms is
often reduced by different levels: C-alpha, backbone. Algorithms operating on
the protein backbone or even on all-atom-level are often inefficient for protein
comparisons [Shakhnovich, 2006]. Established methods therefore often choose
hierarchical approaches by dividing the protein into structural elements [Kol-
beck et al., 2006].

The preparation of databases, the installation of programs for structure
comparison and the sorting and visual inspection of search results is often a
complex task with currently available tools. Superimposé facilitates database
searches by providing a uniform user interface for different programs, databases
and scoring functions. Several databases for small molecules are joined to one
comprehensive collection of 3D-structures. Users of Superimposé do not have
to solve technical problems and can concentrate on the biological problem.

2.2.2 Algorithms

This alphabetically ordered section gives practical descriptions of algorithms
deployed by Superimposé. If not stated otherwise Superimposé uses original
binaries with default parameters for the algorithms.

GangstalLite

GANGSTA [Kolbeck et al., 2006] is an algorithm for structural alignment of
proteins and similarity search. Gangstalite is a specially drafted fast version
for the Superimposé project. GANGSTA works in two stages: In the first
stage, a mapping on the secondary structure elements is generated using a
combinatorial approach that replaces the former genetic algorithm. In the
second stage, individual residue pairs are assigned to create a maximum contact
overlap.
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Gangstal.ite is designed to detect similarities between proteins without us-
ing sequential information. Therefore cases of fold similarity without sequential
similarity will be recognized. An example of circular permutation is presented
in the case studies.

NeedleHaystack

NeedleHaystack [Hoppe and Frommel, 2003] computes structural alignments
of molecules as superpositions of sets of single atoms in the 3D-space where
information on chemical connectivity and atom types is not necessarily con-
sidered. It is specially suited to scan a large molecule (target = haystack,
up to 100,000 atoms) for the occurrence of a given molecular motif (model =
needle) with a given tolerance level. It operates on the complete enumeration
of superpositions of atom triples in both model and target but radical pruning
reduces the running time to seconds for a typical problem size, the search for
a binding site in a protein surface. As NeedleHaystack is used for binding
site recognition the parameters -sk 0.25, -ad 1.35, -al 2, -to 60, -bd 1 are ap-
plied. Additionally, NeedleHaystack uses a weighting matrix that punishes
each missed superposition on atom level with the score 2.

A typical application for this algorithm is the search for similar binding
sites. This is illustrated in the case studies section.

PSM

PSM [Formella, 2005] is a program that finds and aligns a small search pattern
in a large search space, e.g., some sort of known substructure in a possibly large
protein. PSM is an efficient implementation of a sub graph matching algorithm
that uses certain domain specific heuristics. The atoms represent the vertices
of the distance graphs; their distances among each other represent the edges
of the graph. The lengths of the edges of the distance graph over the search
pattern are used to construct the distance graph over the search space where
only the edges that have similar lengths as the corresponding edges in the
search pattern are maintained.

With the help of a backtracking algorithm, PSM enumerates all possible
matches. Heuristics are used to order the vertices and edges during the search
in such a way that the algorithm discards non-profitable partial matches early.
The heuristics include, for instance, atom type, membership to a certain chem-
ical group of the atoms, frequency of edge distance in the graphs. PSM not
only finds the ideal alignment based on dRMS (distance root mean square),
but is able to compute the (locally) optimal alignment for average distance,
maximum distance or any other distance metrics. PSM uses the derivative
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free minimization algorithms taken from [Garcia and Rodriguez, 2002] to com-
pute the rigid motion transformation, including a small scaling factor. Due to
the fact that PSM is based on distance graphs, it can be easily extended to
work with deformable search patterns where hinges and torsions are allowed.
Furthermore, individual tolerances can be assigned to all edges and L-matches
(i.e., mirrored matches) can be found.

PSM is able to recognize similar surface patches / active sites.

Scorel

For the scoring of a partial superposition M (i.e., partial matching of atoms)
between the two input molecules, Scorel applies score of M (Definition 2.2.2),
based on the RMSD (Definition 2.2.1).

Definition 2.2.1

(2.1)

where d; is the Euclidian distance between N pairs of equivalent residues.
The RMSD is calculated in Angstrom.

Definition 2.2.2
score(M) = r - exp(-=RMSD(M)), (2.2)

where v is the proportion of superimposed non-hydrogen atoms of the smaller
molecule and RMSD(M) is the square root of the least possible mean squared
distance between atom pairs matched in M under all possible rigid motions of
the input molecules.

Therefore score € (0.0,1.0] acts as a geometric similarity measure between
two input molecules. If one molecule is identical to another molecule, then
there is a superposition M such that score(M) = 1.0. Scorel calculates an
optimal spatial superposition of two drug-sized molecules with respect to the
above score function subject to an additional constraint: For every atom a
matched in the superposition, there has to be an atom b bound to a such that
b is matched, too. This restriction of the search space allows using an optimal
branch-and-bound algorithm as described in [Thimm et al., 2004] without any
reduction of the input molecules. To speed up the algorithm, also lower bounds
for possible solutions along different paths in the search tree are calculated.
Promising paths can be searched first, leading to a more effective pruning. To
establish the lower bounds, techniques from [Kirchner, 2007] for calculating
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the optimum atom pairs given a fixed rigid motion of the input molecules are
used. In accord with the authors the parameters “0.7 0.65 0.0” are used to
enable Scorel being used in whole database screening applications.

Scorel is suitable for similarity screening in small molecule databases, il-
lustrated in the case studies section.

sd_best_compare

The algorithm sd_best_compare is based on a normalization of the atomic sets
according to their principal moments of inertia [Preissner et al., 1999]. This
first normalization is of course independent of transformations of the coordi-
nate system, and quite stable for small alterations of the atomic positions. It is
also unique except for four possible rotations. Therefore, the degree of freedom
is strongly reduced, and the assignment of pairs of related atoms is straight-
forward for identical or very similar sets. In a first step both atomic sets are
roughly orientated according to their size proportions. After superimposing the
centers of mass and alignment of the longest and smallest dimensions closest
atoms are assigned as pairs. This assignment is improved by numerous refine-
ment cycles. The algorithm was tailored for the search of similar atomic sets
in a large data base of patches (not necessarily bonded atoms) [Frommel et al.,
2003]; the aim of the algorithm is not to compare very different molecules but
to find similar molecules with different connection schema. To do this as fast
as possible the database should be prepared to minimize the effort of parsing
the data file [Preissner et al., 2001]. With the help of some adapted procedures
the method can also be used to compare entire proteins.

The algorithm was implemented to compare conformational databases of
low molecular weight structures that share similar scaffold [Thimm et al., 2004].

TM-align

TM-align [Zhang and Skolnick, 2005] uses a two step process that is made up
of an initial structural alignment based on an initial assignment of SSEs and
dynamic programming. This step is followed by a heuristic optimization. The
alignment as well as the heuristic optimization is based on TM-score. TM-
score is a variation of the Levitt-Gerstein weight factor that punished larger
distances relatively stronger than smaller distances and allows more sensitivity
concerning the global topology. The value of TM-score lies in (0,1]. In general,
a comparison of score < 0.2 indicates that there is no similarity between two
structures; generally, a TM-score > (0.5 indicates that structures share the same
fold, but the drop-off of the score indicating the twilight-zone of similarity has
to be considered individually.
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TM-align is an algorithm for protein structure alignment.

CE (Combinatorial Extension)

The algorithm CE [Shindyalov and Bourne, 1998] involves a combinatorial ex-
tension of an alignment path defined by aligned fragment pairs (AFP), which
represent possible alignment paths. Combinations of AFPs are selectively ex-
tended or discarded to yield an optimal alignment path. They are based on
local geometry, rather than global features such as orientation of secondary
structures and overall topology. The algorithm is fast and accurate in elucidat-
ing structural alignments and fast enough for database scanning and detailed
analyses of protein families.
CE builds an alignment between two protein structures.

2.2.3 Databases

This section provides information about the databases in alphabetical order.
Databases are updated on a monthly basis.

Astral 40

The Astral Compendium [Chandonia et al., 2004] provides several databases
and tools derived partly from the SCOP [Lo Conte et al., 2002] database and
based on PDB coordinate files. SCOP itself provides schemes of all proteins
available in the PDB according to their evolutionary and structural relation-
ships. Additionally, a grouping of proteins into species and a classification into
families and superfamilies, folds and classes is provided. ASTRAL 40 provides
this information filtered with 40% sequence identity in a PDB style format
that is deployed onto the Superimposé web server. Astral provides 9,500+
chains / domains and aims to represent the whole structural space of proteins.
A link to the PDBSum [Laskowski, 2007] is provided that enables the user to
examine the found proteins in great detail with the original paper.

Ligand Depot

The Ligand Depot [Feng et al., 2004] is a data warehouse that integrates
databases, services, tools and methods related to small molecules bound to
macromolecules. It provides chemical and structural information about small
molecules in entries of the Protein Data Bank. Currently, it contains informa-
tion about 80,000+ structures. All small structures of the Ligand Depot are
deployed on the Superimposé server and allow to search for the occurrence of
small molecules or analogues in the PDB.
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Open NCI Database

The release of the Open NCI Database [Voigt et al., 2001] includes 210,000+
compounds with 25 conformers on average. The Open NCI database contains
compounds that show a significant activity as therapeutic agent against dis-
eases like AIDS and cancer. A molecule that is highly similar to a compound
in the Open NCI might have similar medical activities. For further investiga-
tion a link to the Enhanced NCI Database Browser [Ihlenfeldt et al., 2002] is
provided.

PDB (Culled)

The PDB [Berman et al., 2000] is an archive of experimentally-determined,
biological macromolecule 3-D structures and contains 48,500+ structures of
proteins. Because of the nature of the PDB as all purpose repository for
macromolecules it often contains duplicate structures and structures of a reso-
lution that are hardly suitable for searching. Another problem is the sheer size
of the PDB, what makes it impossible for many algorithms to perform com-
parisons between proteins (Class 3) and on substructures of proteins (Class
2). For both reasons a representative subset of the PDB is used. The sub-
set is calculated using the PISCES Server [Wang and Dunbrack, 2005]. The
used cut-off thresholds are: Sequence identity cut-off: 20%; Resolution cut-off:
1.8A; R-factor cut-off: 0.25. A link to the PDBSum is provided.

PDB Surfaces (Culled)

For the elucidation of similar parts on the surfaces of macromolecules it is
suitable to limit the search space to the water accessible surface. None of the
presented algorithms does this on its own, so a precomputing step is applied
for the PDB (Culled) Database described above. The algorithm calc-surface
[Tsai et al., 1999] is used to generate macromolecules with the water accessible
surface alone. A link to the PDBSum is provided.

Superdrug

The Superdrug [Goede et al., 2005b] database contains 2,500+ 3D-structures
of active ingredients of essential marketed drugs. To account for structural
flexibility they are represented on average by about 40 structural conform-
ers per drug generated by the program Catalyst (Accelrys Inc. http://www.
accelrys.com). Superdrug provides a link to the Superdrug website that en-
ables the user to investigate results in more detail like the ATC code (WHO
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Figure 2.4: Suitable combinations of databases with algorithms depending on
the class of the scientific problem.

classification of medical compounds according to their therapeutic application
and chemical scaffold).

2.2.4 'Web server description

For Superimposé it has been decided to provide a wizard style approach that
guides the user through the different possibilities on offer (Figure 2.4). A fixed
set of parameters for all algorithms is used that allow a generalized execution
of tasks. A typical search workflow begins with the selection of a task the
user wants to execute. This tasks maps to the three classes described in the
introduction. In a next step, the user can upload a file to act as model (or
patch in Class 2) for the search. Supported file formats are sdf, mol and pdb.
Conversions between different file formats are handled via OpenBabel [Guha
et al., 2006]. Subsequently, the user gets a selection of suitable databases and
algorithms for that task.

Computations can take longer times (24h) in case there are several users
employing the web service. Therefore, the user provides an email address,
where a report about finished jobs is directed to. This email contains a hy-
perlink to a webpage on the Superimposé server that presents all results for
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the search with possibilities to visually assess the results. A specially designed
visualization via Jmol as a Java Applet is provided. This allows the user to
execute custom scripts in the Jmol language for extensive visualization. The
second visualization possibility especially tailored for proteins is STRAP [Gille
and Frommel, 2001] which is implemented via Java Webstart and behaves like
a native application and not like a webpage as Jmol does. For both programs
the sole requirement is a Java JRE (http://java.com).

2.2.5 Case studies

The following case studies are organized per problem class and show typical
problems where Superimposé can be applied. All molecules and proteins that
are discussed within the case studies are available for download on the Super-
imposé web page (documentation).

Small structure similarity (Class 1)

Similar compounds are more or less likely to share properties such as ligand
specificity and binding strength. Thus, screening for similar compounds in
databases is a standard technique to generate new hypotheses for molecules
(shared activity). Therefore, Superimposé allows the user to search for sim-
ilarities against a variety of compound databases. In this case the ability
of Superimposé to successfully retrieve similar compounds to Chlorpromazine
(ATC: NO5AAO01) on the database Superdrug with the algorithm Scorel is
highlighted. Similarity is defined as the ability to find compounds in a related
ATC group. The results for the first 10 entries show that Superimposé is able
to find compounds that are apart from two compounds Methdilazine (ATC:
RO6AD04) and Pimethixene (ATC: R0O6AX23), all coming from the desired
ATC-code N (Nervous System). For the two compounds from ATC group
R (Respiratory System) this could point to unwanted side-effects of Chlor-
promazine. The fingerprint-based search on the website of Superdrug fails in
retrieving the compounds Trimipramine (ATC: NO6AA06) and Cyamemazine
(ATC: NO5AA06).

Compared with the results of the Superdrug website Superimposé is ad-
ditionally able to successfully retrieve compounds Trimipramine (ATC-code
NO6AA06) and Cyamemazine (ATC-code NO5AA06) which are left out by the
fingerprint search. The reason is that structural superposition is able to super-
impose scaffold hoppers, in this case a six- and seven membered ring structure
(Figure 2.5), which are dissimilar in the SuperDrug fingerprint search.
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Figure 2.5: Query compound Chlorpromazine (red) and search hit Trim-
ipramine (green).

Substructure search (Class 2)

Here, the ability of the NeedleHaystack algorithm together with the Culled-
PDB is shown to identify related proteins based on a patch from the catalytic
site. For the case study, a patch from the active site of protein Hydrolase
(PDB-code: 1pek) is used. This patch is successfully identified on a Subtil-
isin complex (PDB-code: 2sic) with related activity. NeedleHaystack retrieves
perfect matches e.g. in the active site of 2sic (Figure 2.6).

Protein similarity (Class 3)

For the problem of protein similarity /protein alignment a main case where
sequence-based methods often fail is for proteins that are similar in terms of
overall structure (fold) but not on sequence level. One example where espe-
cially the Gangstalite algorithm can find meaningful alignments is an Inte-
grin alpha-V (PDB-code: 1mlx). In combination with the Astral database
Gangstaliite successfully retrieves a WD40 domain of the Transcriptional Re-
pressor TUP1 (PDB-code: lerj) as one of the best scoring alignments (Figure
2.7). GangstaLite successfully aligns the proteins with half of the secondary
elements not in sequence direction.

2.2.6 Conclusions

Superimposé is created to deal with structural superpositions of molecules in
a widespread sense. The combination of databases and algorithms of different
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Figure 2.6: Superposition of the active site derived from protein Hydrolase
(PDB-code: 1pek / green atoms) that is successfully identified in protein Sub-
tilisin (PDB-code: 2sic / cpk colored ball-and-sticks in the middle).

fields provides amongst others the possibility to identify similar proteins, sim-
ilar medical active compounds and also binding-sites via similarities in sub-
structure search. The server will be useful for bioinformaticians specialized
on structures, macromolecular biologists and the systems biology community
by providing possibilities to identify similar patches (binding sites / surface
patches) in known proteins. By reducing the complexity of installing algo-
rithms, databases and finding suitable parameter sets Superimposé allows re-
searchers to instantly deal with the task without the administrative problems
around it.
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Figure 2.7: Results (left) and non-sequential structural alignment generated
by Gangstalite (right).
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Chapter 3

Biomolecular search, similarity
and coding properties

3.1 RNA character encoding and suffix tech-
niques

The RNA Ontology Consortium recently proposed a two-letter representation
of the RNA backbone conformation. In this study, the suite notation is com-
pared to a custom string representation that utilizes n — 0 pseudo torsion
angles. Both representations were used to assess similarity and self-similarity
in several RNA structure datasets. For the detection of similarities between
two RNA structures suffix techniques are utilized that allow for the detection
of substructure similarity within some degree of inexactness. The suite repre-
sentation as well as the pseudo torsion representation was tested on four di-
verse RNA datasets. The possibility to detect structural similarities on these
datasets allowed recovering many similar structural elements that have im-
plications for further understanding of the RNA apparatus in systems biol-
ogy. The software as well as the utilized datasets are freely available from
http://suiterna.sourceforge.net.

3.1.1 Introduction

String-based approaches to RNA structure analysis are widely used as long
as secondary structures are concerned. But, there have been few attempts
to express 3D features in a string notation. Recently, the RNA Ontology
Consortium [Leontis et al., 2006] proposed a string representation for the con-
formation of RNA backbones. This allows the use of classical string matching
methodology to compare structural features in turn. This work explores how
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suffix techniques can be used to find similar regions in RNA backbone strings.

RNA secondary structures are most commonly expressed in the dot-bracket
grammar, which contains all nested Watson-Crick and wobble base pairs. This
string notation is easy to handle, and therefore has been widely used to de-
scribe local motifs [Hofacker et al., 2004], for computational approaches com-
paring RNA sequences by tree grammars [Reeder et al., 2006], and for aligning
two or more sequences [Dowell and Eddy, 2006]. To distinguish subtle struc-
tural motifs, like the sarcin-ricin motif, RNAse P, pseudoknots, and tertiary
interactions, this notation is not enough. These features depend on specific
base pairing and stacking interactions, and a specific arrangement of the RNA
backbone.

The RNA Ontology Consortium has bundled efforts to describe RNA struc-
tures. It poses a platform where structural Bioinformaticians can exchange
ideas and discuss formal nomenclature. Systematic approaches to describe
RNA tertiary structure have been started from many sides: A typology of base
pairs as the basic unit of which RNA is built was defined [Yang et al., 2003].
This allowed to identify interchangeable pairs of base-base interactions (known
as the isostericity principle) [Lescoute et al., 2005]. Stacking is conceived as
a major stabilizing force, and two complementary typologies have been intro-
duced [Lescoute and Westhof, 2006]. To describe larger local structural units,
circular topologies, residues interconnected by backbone, base-pair or stacking
interactions, have been introduced. Assembly of these building blocks has been
successfully used in constructing tertiary structures, given that the topology
is known or well-predicted [Parisien and Major, 2008|.

Richardson et al. created a string representation of the RNA backbone
[Richardson et al., 2008], where the backbone conformation of ribose-to-ribose
“suite” units can be represented by two letters. To analyze the RNA backbone,
the most significant features are torsion angles. For each base, there are six
of them, one for each bond from one phosphodiester unit to the next. These
torsion angles show a characteristic distribution. More distinct clusters of the
torsions can be found if RNA ’suites’ — units from one ribose to another —
instead of the traditional phosphate-phosphate units are considered [Murray
et al., 2005]. Each suite consists of seven torsion angles, including both C4’-
C3” bonds. The torsion angles were clustered, each cluster being defined as
a hyperellipsoid in the 7D space formed by the seven torsions of one suite.
In total 46 distinct conformations of the backbone were identified. For each
cluster, a two-character code was assigned. The first character corresponds to
the first three torsion angles, and the second to the other four. Thus, it is
possible to write an entire RNA 3D structure as a 1D string representing the
backbone.
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The main disadvantage of the suite representation is that its scope is limited
to well-defined backbones. For a high quality dataset, it covers 90%-95% of the
residues in RNA structures. The other residues are disregarded either because
any of the backbone torsions are outside well-defined boundaries, or because
the suite is not close enough to any of the hyperellipsoids in 7D space. Most
of the unassigned residues are in flexible regions having a high temperature
factor, or they simply belong to clusters that are too sparsely populated to
form a separate cluster.

An alternative description of the RNA backbone is based on pseudo torsion
angles. For this, the RNA structure is reduced to C4’ and P atoms — similar
to the Ca trace of proteins. Between these atoms, two pseudo torsions n
and O are defined. Even though it is more coarse-grained, the n — 0 angles
encode important features such as the sugar pucker to a satisfying degree.
The Amigos program can be used to calculate pseudo torsions [Duarte and
Pyle, 1998]. The P and C4’ atoms are frequently used to construct initial
backbone trace in X-Ray crystallography. Recently, it was reported that using
P-C1’ pseudo torsions improves the assignment of the backbone and ribose to
electron density maps (K. Keating, personal communication), but it was not
explored how these pseudo torsions map to other structural features.

It is very tempting to utilize these backbone representations to compare lo-
cal structures of RNA to each other. There are only few instruments available
to compare RNA structures. Most of them are based on secondary structures,
and they use the dot-bracket grammar. Among them, RNAforester [Reeder
et al., 2006], Vienna [Hofacker, 2003] and ARTS [Dror et al., 2006] are the
most common. Recently a web server (SARSA) was released [Chang et al.,
2008] that uses a custom vector quantification to cluster the RNA bases into
23 distinct conformers that are translated into a string representation. SARSA
is subsequently applying traditional string alignments to find similar motifs.
SARSA is especially useful when applied to multiple alignments of RNA struc-
tures; however a search against a database of RNA structures is not supported.
The RNAFRABASE web site (http://rnafrabase.ibch.poznan.pl/) contains a
big number of loop fragments from RNA structures, but it is very limited in
both the kind of fragments contained, and possible search methodology.

Currently, there exists no method that allows fast queries for similar RNA
substructures against a database. Therefore, it was decided to use string rep-
resentations of the RNA backbone in order to take advantage of existing algo-
rithmic solutions for the efficient string search. Alternatively a pseudo torsion
representation of 1 — 0 angles is calculated. To cope with the problem of
thousands of motifs and thousands of RNA structures available a suffix tech-
nique [Giegerich and Kurtz, 1997] is used that holds all information in an index
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and can be crawled almost linearly.
The main objectives are in brief:

1. Verification of the applicability of the RNA Ontology Consortium suite
code, by examining the suites of differently structured RNA.

2. Presentation of a suffix method to compare RNAs to each other and
giving an overview which structures and substructures are similar.

3. Discussion of possible alternatives (regarding the structure - string cod-
ing, used search algorithms) and applications.

3.1.2 Methods

Suffix arrays are constructed from strings consisting of the RNA Ontology
Consortium suite codes for four different datasets: motifs from the SCOR
database, all tRNA structures, a high-resolution dataset, and the representa-
tive RNADBO5 set. Each of them was then queried for matching subsequences
in the suffix array to detect structural similarities. As an alternative approach,
strings representing 1 — 0 angles of the RNA backbone were constructed and
processed in the same way.

Datasets used

SCOR dataset Of foremost importance was to know, whether known RNA
motifs annotated in SCOR can be recovered by the suite representation. SCOR
is a database containing 15,945 structural, functional and tertiary interaction
motifs that have been annotated manually [Tamura et al., 2004]. A hierarchical
classification inspired by the SCOP database [Andreeva et al., 2008] has been
established, but the database lacks updates after 2004. Therefore, a reliable
automatic recognition of motifs could be useful. Currently, no such procedure
is available with the circular motif library of the MC-Sym program probably
coming closest [Parisien and Major, 2008]. For this analysis, all 4,501 structural
and 100 tertiary interaction motifs from SCOR (version 2.0.4) data were used.
Functional motifs annotate entire RNAs, and were excluded. The according
fragments of PDB structures had lengths between 2-11 suites for structural,
and 4-60 suites for tertiary interaction motifs. This set was termed “SCOR’.
Functional motifs are annotating entire RNAs, and are considered in the later
datasets.
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tRINA dataset An interesting aspect is whether structurally highly con-
served RNAs can be recognized by the suite representation as a positive control.
For this, the tRNA as one of the most conserved molecules in life was chosen.
Although tRNA sequences started diverging even before the genetic code itself
was fixed and their structures are highly modified by post-transcriptional ad-
ditions, all of them need to have a highly conserved tertiary structure in order
to work in the translation machinery. Thus, it is not surprising, that all ex-
ample tRNAs from the PDB look the same from afar — and it can be expected
that they should have very similar backbone conformation when represented
as suites. To examine whether this hypothesis holds, all tRNA structures from
the NDB database [Berman et al., 2002] were retrieved. The resulting tRNA
set consists of 102 tRNA structures from all kingdoms of life and is termed
“TRNA”.

RNADBO05 and HIRES sets Another objective was to check for simi-
larities among RNAs of different origin. This was done for two sets of RNA
structures. One was the dataset used by Richardson et al. (termed RNADBO5)
[Richardson et al., 2008]. The RNADBO5 set is a manually refined representa-
tive set of 173 RNA structures from both X-Ray and NMR experiments. The
second set (HIRES) consists of 74 high-resolution X-Ray structures. They were
filtered from the PDB by applying resolution <= 2.5 A and r-value <= 0.25
constraints. Structures with identical sequences, and sequences with less than
four bases were discarded.

Calculation of RNA backbone string representation

For each structure in each of these datasets, a string using the suite repre-
sentation, and another one based on the pseudo torsions was calculated. The
calculation is also applied to structures that are queried against one of these
datasets.

The method to calculate suites from a structure was re-implemented ac-
cording to the description in [Richardson et al., 2008]. The seven torsion angles
were calculated according to Figure 3.1 in 5’ to 3’ direction. They were then
assigned to one or none out of the 46 suite clusters. First they are grouped
according to their 6, 6 — 1, and y angles to limit the number of clusters to
be considered. Second, the 7D distances to the 7D hyperellipsoids for each
cluster were calculated. If the suite was inside a hyperellipsoid, its name was
assigned to the suite. The extent of these hyperellipsoids varies depending on
the cluster. Especially, some of the clusters were partially overlapping; in these
cases the closest hyperellipsoid center was used.
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suite code dihedrals 1b23

Figure 3.1: Definition of RNA suites. A suite stretches from one ribose unit
to the next, involving seven dihedral angles along the RNA backbone. Note
that the 6 angle is used by two adjacent suites. In the suite encoding, the first
three dihedral angles are represented by a number, the next four by a letter.
The example is taken from the tRNA structure with PDB-code 1b23.
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Even though it is recommended by Richardson et al. not to calculate suites
for residues with a high B-factor and with clashes, it was decided to include
them anyway. This was done for two reasons: First, to have a continuous
string representation for all RNA structures. This is particularly important
considering that 5-15% of the residues are not assignable to suites, and thus in
average only short fragments of structure would remain for calculation at all.

Second aspect was the number of errors that occur in a real-life dataset.
There were four kinds of errors: Missing atoms in the residue (resulting in a
'——" suite code), a single torsion angle outside boundaries defined in [Richard-
son et al., 2008] (so-called triaged residue, resulting in a ’tt’ suite code), an
outlier suite which is not close to any cluster (resulting in a ‘00’ suite code),
and a close outlier inside a 4D hyperellipsoid but outside in 7D space (resulting
in a’!l” suite code).

The second possibility to translate a 3D structure of an RNA into a se-
quence of characters is implemented by calculating the 7 — 0 pseudo torsion
angles from the backbone atoms of the same residues as the suites. For 1, these
were the C4’i-Pi4+1-C4’i4-1-Pi+2 dihedral, and for 6 the Pi-C4’i-Pi+1-C4’i+1
dihedral angles. Each of these angles was divided into 36 ten-degree bins, and
for each bin, an alphanumeric character was assigned. Thus, a single n — 0
tuple — conceptually corresponding to the RNA suite — was represented by two
characters as well. Only in the case when either of the atoms defining the
dihedral was missing, an '——" code was assigned in place of the n — 0 tuple.

Suffix tree and array implementation

The studies where performed using a suffix array. While even simple implemen-
tations of suffix trees fulfill the property to search for a given substring in O(m)
with m being the length of the input string it was decided to use the slightly
slower suffix array implementation because of a better memory footprint. An
algorithmic introduction to suffix trees and suffix arrays is given in [Gusfield,
1997]. The implementation used as suffix array can search in O(mlogn) with m
being the length of the search string, and n the number of strings in the index.
This performance is fast enough considering the absolute amount of structures
to index — even for all RNA structures in the PDB (currently 1500).

A suffix array works in principle in the following manner: To index a string
s with length m in the suffix array each substring from 0 — m is put into
an array. This array is then sorted alphabetically. After the sorted array is
established a substring of s can be retrieved by using binary search over the
index that fulfills the O(mlogn) property.

A conceptual disadvantage of the suffix techniques applied is that a sub-
string search can only be performed in an exact manner. To overcome this
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disadvantage the notion of n-grams is applied to perform an inexact search
and to get a scoring of one input structure against a whole database. This
similarity score (SCORE) is generated by searching all consecutive substrings
of length n (n-grams) of the input string against the database.

number_o f _matches_found
SCORE =

1
number_o f_matches_expected (3:1)

This allows for a ranking of the best matching entries in the database as well
for a nice way to generate an all-against-all ranking of entities in a database.
One drawback of this scoring scheme is that ubiquitous repeating substrings
(like "1alalala’) are found in nearly every entity in the database and therefore
add a huge bias to the calculation. To avoid that, a search of substrings with
repeating entities is excluded.

Apart from the theoretical runtimes given by O(x) the practical runtimes
for the n-gram search with the current Suffix Array implementation is below
5 seconds for an all against all search of the RNADBO5 set (257 entries) on a
commodity pc (dual core 2.2 GHz, 3 GB RAM).

3.1.3 Results

In this analysis, it was systematically looked for similar backbone conforma-
tions, and then checked whether they occur in RNAs that are somehow anno-
tated in a similar way. The suite strings and n — @ binning strings for 4,950
structures were calculated in all datasets. In Table 3.1, the distribution of
suite codes is shown.

As expected, the helical stem suite variants (1la, 1m, 1L, &a) are predomi-
nant. In the two representative datasets, the la suites account for up to 60%
of all suites, its three satellite clusters contain together another 5%. In SCOR
these numbers are very close to that, indicating that the 1a backbone confor-
mation is apt to form many of the motifs annotated there (verified by visual
inspection of the primary suite strings). In TRNA the number of 1la is lower
(45%). This is a common feature of the tRNA fold, as this observation is the
same for all tRNA suite strings. In turn, some of the other suites are more
highly represented. In particular, 1L, 1c, 1m, 2g, 4d, 6d, and 1t seem to play
an important structural role in tRNA.

The total number of all four kinds of invalid suites ("tt’, '00’,’!!", and '—-")
are 25.25% in the tRNA set, 12.00% in SCOR, and 14.60%/17.36% in the
RNADBO05 and HIRES datasets, respectively. At first, the latter seems sur-
prising, because one would expect fewer errors in high resolution structures.
The percentage is mainly caused by 3.4% residues with missing atoms. The
remaining 13.9% are caused by “triaged” dihedral angles, and by outlier suites
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5}
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5d  0.0009  0.0029 0.0019 0.0017 5j 0.0007  0.0020 0.0016 0.0014
5n  0.0012  0.0023 0.0010 0.0009 5p  0.0007  0.0008 0.0011 0.0009
5q  0.0004  0.0006 0.0005 0.0003 6d  0.0057  0.0020 0.0030 0.0045
6g  0.0001 0.0032 0.0033 0.0028 6j 0.0003  0.0008 0.0008 0.0006
6p  0.0003  0.0052 0.0044 0.0043 7a  0.0078  0.0076 0.0043 0.0014
7d  0.0042  0.0046 0.0027 0.0011 7p  0.0020 0.0029 0.0028 0.0034
7r  0.0012  0.0023 0.0017 0.0000 8d  0.0005  0.0026 0.0020 0.0000
9a  0.0019  0.0052 0.0042 0.0051 oo 0.1179  0.0766 0.0723 0.0590
tt 0.1120  0.0352 0.0543 0.0709

Table 3.1: Ratio of suite codes, as they occur in the four datasets examined
here. The table is filled with number of suites of a particular kind, divided by
the total number of suites (including outliers) for the corresponding dataset.
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for which no suitable cluster could be found. An interpretation of this is that
these are unusual backbone conformations which are only visible at a better
resolution — in low-resolution structures they probably get smoothed out by
the refinement process. In SCOR, the number of invalid suites is much lower.
It is clearly biased by the manual selection of motifs, which by definition must
occur in well-defined regions.

In the tRNA set, the high error rate was examined in more detail. It appears
that the three loop regions contain many conformations that do not fit in any
cluster (resulting in 'oo’ or ’tt’ suites in a row for some structures). This can
be a result of strong constraints in the structure during the refinement or by
interaction with other molecules. In the high resolution tRNA entry with PDB
id lehz, the rate of triaged and outlier suites is lower than in the RNADBO05
and HIRES sets and the clusters of outliers do not occur here. It is unclear
whether modified bases contribute to the problem, but in the examined high-
resolution structures this was no problem either. This observation indicates
that the lower resolution RNA structures are to be treated with caution.

Analysis of SCOR motifs

The 4,601 motifs from SCOR were divided into a 20% training set and a 80%
test set. The training motifs were stored in the suffix tree, and the test motifs
searched in it by all their subsequences of 12 characters.

One should assume that e.g. loops of a given type should have similar
backbone conformations. Therefore it was investigated into which motifs can
be identified this way, and whether they are distinct from other motifs. It was
counted how many motifs from the test set could be correctly identified based
on matches of their suite strings. In Figure 3.2, the sensitivity and specificity
of this analysis is given for each motif class separately.

It turns out, that the predictability of the SCOR motifs is low. While the
specificity is above 0.6 for almost all classes examined, and at 1.0 for many
of them, the sensitivity covers almost the entire range from zero to one. The
reason is a high number of false negatives in each class. To find out where
these come from, the suite strings of several classes were inspected in more
detail:

The 180 degree turn’ class consists of 24 motifs. 17 of them are just two
suites (three residues) long, all having the suite string ’4b6p’. The remaining
7 contain five suites, which are small variations of 'la3alg9ala’. These two
groups fully correspond to two homologous positions in different structures
of the 23S rRNA (1874-1876 for the first, and 1789-1794 for the second). A
similar effect can be observed for many other motifs like ’3 non-WC base pair’,
"About 90 Degree Turn With All Bases Simply Stacked’, and "Multiple Twist’.
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Recognition of SCOR motifs by substring matching
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Figure 3.2: SCOR motifs recognized by substring matching. The entire set of
SCOR motifs was divided into a 20% training set and an 80% test set. The
number of correctly matched substrings of length 12 (or the entire motif, if
it was shorter), the number of matches from different SCOR motifs, and the
total number of motif pairs compared were used to calculate the sensitivity
and specificity of the search.
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In other cases, like the 'Ustk stack swap’ motif, even more variations can be
found.

On the positive side, it has to be noted that the homologous motifs can be
recognized well from as few as 2-4 suites, and their structures are conserved.
As stated above, the manual selection of motifs probably facilitates this.

There were no examples found, where two non-homologous motifs belonging
to the same class can be identified on the bases of their suites alone. One of
the reasons for this observation is that the rules upon which SCOR motifs
have been annotated, are based on singular decisions made by experts. It
appears, that the base pairing/secondary structure scheme that is specific for
a particular motif class, does not impose a constraint on the backbone strong
enough to allow a prediction. On the other hand, this implies that in the RNA
backbone, an independent set of frequently occurring conformations could exist
that has not been described.

Similarities among tRNA

Next, a set of 102 tRNA structures with a well-defined backbone structures
was examined. Because all tRNA structures have a highly conserved tertiary
structure, one would expect this to be represented in the suite strings as well.

In the TRNA dataset, several suites are over-represented compared to the
RNADBO05 and HIRES sets (particularly ’6d’, '2g’, '7d’, ’1f’, "1¢’ and '1L).
These can be found in corresponding positions of most tRNAs. A couple of
D-loops from tRNA structures were locally aligned with the corresponding
suite strings in Figure 3.3. While each backbone follows the loop along the
same path, there are several small differences in the suite codes. These in-
clude local variants, often replacing one suite by one close in the 7D dihedral
space (e.g. the "1a’~'1L’ and "1m’—"1[” exchanges). The structures are also oc-
casionally interrupted by outlier suites. These outliers are visible, but hardly
distinguishable in the visualization. They do not alter the direction of the
backbone and by no means disrupt the loop structure. Rather, it seems that
many of them are results of improper refinement or low structure quality, as
high-resolution structures such as PDB-code 1ehz and PDB-code 1b23 are less
affected by this. One important conjecture of this is, that the suite codes are
a very detailed description of tRNA backbone structure. It is apparently not
suitable to describe a well-defined structure such as the D-loop in a general
and unambiguous way. For the same loop trace, many combinations of suites
are possible.

Another observation is that up to half of the D-loop suites are of the '1a’
type, which was described by [Richardson et al., 2008] as the conformer form-
ing ’A-form helices’. The D-loop contains a noncanonical base pair between
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48 49 50 51 52 53 54 55 56 57 58 59 60 61
1b23 6d la la 1lc la la la 1g la 1[ 44 1b 2a
lefwC tt 1z 1a 1la la la tt 1g la 1[ 4d 1b 2a
1gts 6d la la go la la la 1g la 1[ 4d 1t 2a
1qf6 tt 1a la 1lc¢ 1T 1z l1la 1g la 1[ 4d 1b 2a
go la la lc 1L 1la la 1g 1L 1m tt oo oo

Figure 3.3: The backbone of the dihydrouridine loops from the tRNA struc-
tures with PDB-codes: 1b23, lefwC, 1gts, 1qf6, and 1qrs superimposed by
their backbone atoms. The labels indicate the residue numbers. The suite
codes of the dihydrouridine loops are described in the table on the right. Out-
lier suites are underlined — valid, but singleton suite codes at a given position
are highlighted in bold case.

residues 54 and 58, and two adjacent GC base pairs (53-61 and 52-62). But
apart from that, many of the bases are involved in tertiary stacking (57, 58)
and base pairing (59, 60) interactions. In total, the D-loop stem is more than
a simple helix, showing that the abundant 1a suite can accommodate different
structural roles.

Although it was not attempted to align all structures explicitly, this seems
feasible from these observations, and can be expected to result in a consen-
sus alignment of suites. A more detailed analysis could be used to identify
individual conformations of tRNA at a high level of detail.

An all-against-all search of subsequences of all tRNA suite strings was
performed using the suffix array, and the n-gram algorithm, as described in
Section 3.1.2. In Table 3.2, the numbers of hits found for different word lengths
are given.

The tRNA dataset is different enough among itself, that in average only
69 other structures contain a sufficient number of matching n-grams. But, for
structures found, the number of words within one hit is high. With increasing
word length, the number of hit structures decreases continuously. This is ex-
pected as it gets increasingly difficult to find a longer word in the set of suite
strings, because each of the occasional variations will disrupt the search for a
local match. The number of words found within a structure drops correspond-
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TRNA RNADBO05 HIRES

n-gram length number hits score number hits score number hits score
4 6,824 5.4 27,978 6.1 10,543 3.7
6 6,732 13.0 22,543 10.6 10,111 7.1
8 6,386 19.1 17,674 14.9 8,917 10.9
10 5,381 24.5 13,657 16.6 6,497 16.5
12 3,812 38.1 10,436 20.4 4,823 20.8
14 2,817 60.9 6,504 30.7 3,321 34.3
16 1,990 96.0 3,554 45.2 2,683 46.8
18 1,542 140.3 2,376 62.0 2,001 59.2
20 1,306 175.4 1,443 86.7 1,283 86.2

Table 3.2: Results of the all-against-all search in the TRNA, RNADBO05, and
HIRES datasets using the n-gram approach. The column “total hits” indicates
how many exactly matching n-grams were found for the given word length.
“score” gives the average score for these hits. The score is calculated by the
sum of the inverse frequencies from Table 3.1 for the matching n-gram.

ingly at first, but starts to rise again at a word length of 16 (data not shown).
This observation can be explained by the fact that these hits are only occur-
ring in a few but highly similar tRNA structures, where little or no variation
occurs. It can be concluded that a word size of 12 or 14 is optimal to find
similarities within the set with as little background noise as possible, and at
the same time not restricting the search to almost-identical structures.

The outcome of the all-against-all search has been visualized in Figure 3.4
(TRNA depicted left). There, the normalized number of word hits for a given
pair of structures is plotted. This indicates that an overall level of similarity
exists between most pairs of tRNAs. The bright spots result from a group of
few highly similar tRNA structures (the ones still remaining with word size
20). The dark regions (the lines at 31, and several ones between 56 and 68)
are structures with very low similarity. The structures in this region (among
others, PDB-codes: 1yl4, 20w8, 2v46, 3tra) were examined more closely. Tt
turned out that these contain a much higher proportion (up to 40%) of outlier
and erroneous suite codes. Three of the examples are structures of tRNAs
bound to ribosomes, having resolutions of 3.7 A and higher. The fourth (PDB-
code: 3tra) is alone, but it also has been determined at an inferior resolution.
This clearly shows that the suite nomenclature is of very limited use for non-
high-resolution structures.
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50 Similarity of suites in set rnadb with query size 12

50 Similarity of suites in set hires with query size 12 —50
g

Figure 3.4: Scores of the all-against-all search in the a) TRNA (left), b)
RNADBO05 (middle), and ¢) HIRES (right) datasets. On each axis, the struc-
tures used are sorted according to their PDB-code. The color indicates the
score found for a particular structure-structure-pair. The scaling was chosen
such as that dark areas correspond to repeating '1a’ matches. The higher the
score, the more uncommon suites a particular hit contains. The results shown
here are for n-grams of length 12.

Similarities in the representative RNNA sets

To assess whether these observations are meaningful, both the 107 high - reso-
lution structures and the 254 structures from the RNADBO5 set were compared
to each other. The number of hits found is described in Table 3.2. The ac-
cording similarity maps are depicted in Figure 3.4.

At first, it is observed that some of the suite strings in the datasets were too
short to match anything (empty rows/columns and an interrupted diagonal in
the heat map). Also, both the HIRES and RNADBO05 datasets contained a
number of sequences with trivial structures, consisting of '1a’-repeats and not
much more. The scoring also depends on the length of the query string and
therefore the matrices must not necessarily be symmetric.

In Figure 3.4, it is clearly visible that the overall number of structures in
RNADBO05 and HIRES with detected similarities drops more sharply compared
to the TRNA set. In the same way, the total number of hits changes. Even
though the RNADBO5 set is larger, only few hit structures remain there at
word size 20 (also see Table 3.2). One reason for that is that the average size
of both reference datasets is smaller, as they contain many hairpin loops and
other short RNA.

In both reference sets, the number of A-form helical stems (repeating re-
gions consisting of ’1a’ suites) is higher, and they are practically excluded from
the evaluation by the scoring function. This leaves only a fraction of hits in
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the reference compared to the tRNA set. In tRNA not only a higher number of
hits exists, but they are also less random because they consist of less frequently
occurring suites. This shows that the similarity among tRNAs is non-random,
which can be taken as a proof of concept for the method.

One structure in the RNADBO5 set — rr0082H09, the 23S subunit of the ri-
bosome — was matched by almost any other from this database. The structural
variety in this single structure easily matches that of the remaining dataset
taken together, and any motif found somewhere else is probably found there
as well (see the white vertical line in Figure 3.4 at dataset RNADBO05).

Interestingly, when searching for a set of local RNA structures other than
helical stems with either of the methods, non-homologous hits are found. This
works for: a) an internal loop of the SRP and the ribosomal SSU, b) a biotin-
binding pseudoknot and the tRNA, and ¢) a tRNA and the E-loop from 5S-
RNA.

3.1.4 Discussion

Geometrically, the suite representation does not cover variations that could
occur in the bond lengths and flat angles of the RNA backbone. While bond
lengths have a very narrow distribution throughout all structure files, bond
angles show significant variation. This means that there is a degree of free-
dom that makes it impossible to rebuild RNA structures from a string, even
if the suite nomenclature would determine the dihedrals with perfect precision.

There are two obvious possibilities to resolve this:
1. Encode the flat angles in a similar way as the suites.

2. Encode base-base interactions in the string in order to constrain the
structure, and use a 3D modeling procedure subsequently.

The second method is assumed to be more promising, because it would
include those interactions that shape the function of RNA instead of restrict-
ing the structure of RNA to the backbone alone. Such a reconstruction of
structures from a descriptive grammar (not string-based) was demonstrated
already in [Parisien and Major, 2008]. Another implication of this approach
would be, that if an RNA has in some region no further constraints, it may be
structurally flexible. Therefore, the second approach would indirectly encode
the flexibility.

Having a rapid method for string-based motif recognition has a number of
potential applications. First, it could be used to systematically find frequently
occurring backbone motifs in RNA structures — as it has been demonstrated
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here. Further, it can be used to sample big numbers of backbone conforma-
tions in order to generate native-like RNA backbones which could be modeled
subsequently. Finally, it allows on-the-fly evaluation of RNA models which are
generated during manual structure modeling or automatic refinement. The
combination of this technique with more elaborate string representations would
impose further improvement. Therefore it can be assumed that it is possible
to accurately re-model the structure of RNA from a string representation by
including additional structural features like base pairs, base stacking, or even
tertiary interactions with energy minimization instead of extensive probing of
the local conformational space.

The 1 — 0 binning approach was shown to produce too many different lo-
cal conformations for an effective substring matching. One could argue that
by decreasing the number of bins, the matching could be improved. But, it
has been shown earlier, that the pseudo torsion angles contain specific regions
that are characteristic for some structural motifs [Duarte and Pyle, 1998]. De-
creasing the bin size would ignore these and therefore be hopelessly inaccurate.
Therefore, either explicit clusters in the pseudo torsion space would have to be
defined or string matching techniques allowing for more inexact matches than
the current suffix array would be necessary. A fuzzier search method could
improve the usefulness of the suite codes as well. In particular, this could
eliminate the adversary effects of the occasionally occurring erroneous or un-
defined suites. Practically, this could be implemented as a classical similarity
matrix between the suite codes, and for the beginning, its values could simply
be based on a normalized 7D distance between the 46 suite clusters. Given
the performance of the suffix array the analysis presented here could easily
be extended to the entire NDB [Berman et al., 2002]. Identifying structures
that should be expected to be similar (e.g. based on their function) is more
challenging, if one does not want to rely on sequence similarity alone.

3.1.5 Conclusions

The first approach that uses an indexing technique to scan the structural space
of RNA was presented. The indexing was implemented using suite codes and
an 17 — 0 binning approach and tested on four distinct datasets. It could be
shown that this approach can be used to rapidly identify similar substructures.
This has applications not only for querying the RNA space but also for the
modeling of RNAs by rapidly predicting possible conformations and in turn on-
the-fly evaluation of proposed RNA models regarding structural and functional
similarities. All datasets as well as the source code is freely available from
http://suiterna.sourceforge.net.
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3.2 Macromolecular similarity screening

This part presents a generalized approach for the fast structural alignment of
thousands of macromolecular structures. The method uses string representa-
tions of a macromolecular structure and a hash table that stores n-grams of
a certain size for searching. To this end, macromolecular structure-to-string
translators were implemented for protein and RNA structures. A query against
the index is performed in two hierarchical steps to unite speed and precision.
In the first step the query structure is translated into n-grams, and all tar-
get structures containing these n-grams are retrieved from the hash table. In
the second step all corresponding n-grams of the query and each target struc-
ture are subsequently aligned, and after each alignment a score is calculated
based on the matching n-grams of query and target. The extendable frame-
work enables the user to query and structurally align thousands of protein and
RNA structures on a commodity machine and is available as open source from
http://lajolla.sf.net.

3.2.1 Introduction
Macromolecules and their function

The function of macromolecules is determined by their three-dimensional (3D)
structure. This 3D structure allows for a specific binding of small compounds
like drugs, metabolites, or other macromolecules such as RNA and proteins.
This binding process is crucial for cell signaling and of great interest for un-
derstanding the cellular apparatus and the development of new treatments for
diseases. Determining the structure of a macromolecule (protein, RNA) and
thus the coordinates of the residues in atomic detail was and still is a signifi-
cant procedure. The first structures, hemoglobin and myoglobin, were deter-
mined 1958 by Kendrew et al. [Kendrew et al., 1958]. Since then progress has
been made towards a faster determination of macromolecular structures. How-
ever, for many macromolecules it is still impossible to determine the complete
structure [Scheerer et al., 2008]. The principal repository for the coordinates
of macromolecular structures is the wwPDB archive [Berman et al., 2007].
As of November 2008 the wwPDB stores well over 50,000 structures consist-
ing of roughly 1,500 RNA structures including protein - RNA complexes and
48,000 proteins. In recent years various structural genomics initiatives were
started that aimed towards a fast, high-density determination of thousands
of macro-molecular structures [Service, 2008, Levitt, 2007]. These initiatives
led to around 1500 structures with unknown functions. The annotation of
macromolecules can be carried out on different levels, however, the manual
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annotation of those structures is often not feasible despite best efforts [Rother
et al., 2005, Andreeva et al., 2008]. The fastest way to determine the function
is to use the sequence of its building blocks (the primary structure) alone,
and search this sequence against a database of annotated structures where
the function can be subsequently inferred. This approach generally works well
when the sequences are highly similar but sometimes fails [He et al., 2008].
A more accurate way to annotate is to use 3D information. Many methods
try to identify secondary structure elements and align them with each other.
These approaches are often sequence-independent and therefore not subject to
failure because of relative sequence similarity [Cheek et al., 2004, Shindyalov
and Bourne, 1998]. A general fact for both protein and RNA structural align-
ment is that there often cannot be a single best solution to align two or more
structures. The best solution is always the best given a certain man-made
optimization criteria, nicely explained by [Sippl and Wiederstein, 2008].

Protein function and similarity

The importance of structural alignments of protein structures is based on the
fact that structural motifs (folds) contained in the structure reveal impor-
tant biochemical functions [Andreeva et al., 2008]. For instance the so-called
"Rossman fold” is a strong indication for the binding of nucleotide deriva-
tives [Rao and Rossmann, 1973]. For performance reasons, many computa-
tional algorithms work on the sequence level, while also taking into account
the 3D secondary structure as guidance [Shindyalov and Bourne, 1998, Zhang
and Skolnick, 2005]. In many scenarios this approach proves to be fast and
accurate enough. However, given the already mentioned fact that a similar
sequence does not necessarily mean a structural similarity there are a growing
number of approaches that use pure 3D information to overcome this dis-
advantage [Guerler and Knapp, 2008, Ilyin et al., 2004]. In this regard the
authors want to especially stress the SSM project, which is the first soft-
ware fast enough to search the whole PDB within minutes with a high ac-
curacy based on an abstraction of the 3D structure [Krissinel and Henrick,
2004]. Wikipedia currently lists more than 50 different approaches for pro-
tein alignment (http://en.wikipedia.org/wiki/Structural_alignment_software).
A detailed comparison of algorithms and approaches in the field is presented
by [Kolodny et al., 2005, Novotny et al., 2004]. The approach presented can
be adjusted regarding speed and precision / coverage. A schema frequently
used to express the backbone of a protein or RNA is to use torsion angles
between a well-defined set of atoms. The torsion angles between consecutive
amino acids became famous when Ramachandran et al. published the analysis
of the ¢ (phi) and ¢ (psi) torsion angles (Definition 3.2.2) of protein chains in
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1963 [Ramachandran et al., 1963]. Ramachandran showed that the usage of
¢ and 1 angles allows for a clear separation of secondary structure elements
(Figure 3.5). This in turn allows us to judge whether amino acids belong to
a certain class of secondary structure elements like a-helices or p-sheets. This
notion was frequently applied in the abstraction and search of similar protein
structures and is often used together with techniques such as suffix trees and
suffix arrays (among others [Guyon et al., 2004, Taubig et al., 2006, Friedberg
et al., 2007, Lo et al., 2007, Gao and Zaki, 2008]). An interesting approach in
the field of protein-protein interaction is proposed by Giinther et al. where
known motifs of interacting domains are used to predict potential interactions
of novel proteins [Glinther et al., 2007].
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Figure 3.5: The Ramachandran (¢ — 1 torsion angle) plot of a Thymidylate
Synthase (PDB-ID: 1AXW). The cluster in the upper left corresponds to f3-
sheets, the cluster in the middle left corresponds to a-helices, and the small
cluster in the middle right represents left handed helices. The main clusters
(B,H,L) are used to translate a protein structure into a string.
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RNA function and similarity

In recent years, RNA gained attention due to the discovery of their heavy
involvement in the regulatory apparatus of the cell [Laederach, 2007]. Apart
from the fact that a relatively small amount of RNA structures are contained
in the wwPDB they are nevertheless of growing importance [Tamura et al.,
2004, Abraham et al., 2008]. As this field is relatively young, there are only a
few structural RNA alignment methods available [Guyon et al., 2004, Chang
et al., 2008, Capriotti and Marti-Renom, 2008], but interest in the structure
of RNA is rapidly growing. It has to be noted that there is currently no
methodology available that allows for the querying of an RNA motif against
all RNA structures in real time, as it is provided by SSM for the world of
proteins. A schema to express the backbone of an RNA is the usage of 7
(eta) and O (theta) pseudo torsion angles (Definition 3.2.1) - representing each
nucleotide in a chain by two angles. In a thorough analysis of this pseudo
torsion representation, eight main classes of conformations have been identi-
fied, and this information could be exploited to highlight important features
of the RNA structures [Wadley et al., 2007]. A more detailed approach was
taken by Richardson et al. where a set of 46 nucleotide conformations is
determined based on the seven torsion angles present in a ribose-to-ribose
(suite) unit [Richardson et al., 2008]. This representation implicitly includes
the pucker of the ribose, and it is detailed enough to track down the con-
formations in local motifs such as GNRA tetraloops. To do this, however,
it is necessary to have well-resolved RNA structures available. Both of these
high level abstractions are limited to the RNA backbone, and their accuracy is
not sufficient to reconstruct an RNA structure from the string representation
alone. Nevertheless, adding information such as canonical and noncanonical
base pairs, as well as base stacking provides sufficient input to assemble RNA
tertiary structures from such a combined descriptor alone. Recent progress
in the field of RNA structure prediction demonstrates the feasibility of this
approach [Parisien and Major, 2008], except that the attempt to write the
structural descriptor as a string has not been made. The RNA Ontology Con-
sortium is currently standardizing the component descriptors of RNA chains
in order to facilitate further work on the subject [Leontis et al., 2006].

Scope

The aim of this work is to propose a novel approach for the fast hierarchical
search of similarities in thousands of macromolecular structures. The method
is based on a fast index structure, derived from the field of classical string
alignment [Gusfield, 1997]. But unlike classical sequence-based search meth-
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ods, the strings can represent structural features of the 3D structure and are
sequence independent. Thus, this approach has the potential to be as fast as
sequence-based approaches with the precision of structural alignment meth-
ods. The authors want to stress the term “fast,” as many approaches currently
work in a one-against-one mode. The proposed method, materialized in the
framework LaJolla, is easily extendable with new chain-to-string translators.
The aim of this publication is to present this approach and the software pack-
age as a potentially useful tool for many domains. The in-depth validation
for individual domains such as protein and RNA similarity, protein-protein
interaction and protein-small compound docking is subject to publications in
journals of the corresponding communities.

3.2.2 Material and methods
In a nutshell

The proposed approach performs a search for local structural motifs in a set
of 3D structures of macromolecules. The basic ideas for this approach orig-
inate in [Bauer et al., 2008], where different possibilities to represent RNA
structures as a reduced alphabet and the possibility of storing and querying
that alphabet in suffix-based indices were analyzed. The paper clearly shows
that the proposed methodology of suite codes [Richardson et al., 2008] is too
narrow for an RNA search. To tackle this drawback the notion of n-grams was
used. However, n-grams can be used more easily in hash tables than in the
originally implemented suffix-based structures. It was also if interest in how
the sophisticated suite methodology compares to a simple 1) — 0 torsion angle
discretization. A novel development that enhances the practical application is
that LaJolla performs a final 3D superposition to remove statistical artifacts
that have no real 3D significance. During the development, it turned out that
the approach is not only useful for RNA structures but also for proteins using
the respective transformers (for instance ¢ —).

String representation of linear polymers

This approach is based on the simple observation that macromolecular struc-
tures share a common property: They are made up of chains formed by molec-
ular building blocks, and possess a linear molecular backbone with repeating
units. This property allows for the application of abstractions that are able
to translate these macromolecules into a one-dimensional (1D) linear repre-
sentation (Figure 3.6). This in turn allows for the use of efficient algorithms
deriving from the field of string matching and text mining [Gusfield, 1997].
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Figure 3.6: An informal diagram showing the steps issued for the initial gen-
eration of the hash table used as index structure for the structural alignment.

From torsion angles to a string

A simple translation procedure from a 3D structure to a 1D string is to use
the sequence of nucleic acids or amino acids. However, as already stated in the
introduction, a high similarity in sequence does not imply that the structures
are similar. To overcome this, the default procedure uses torsion angles be-
tween defined atoms. In the case of RNA structures, the translator maps the
residues to 1 — O pseudo torsion angles (Definition 3.2.1). In case of proteins
¢ — 1 torsion angles are used (Definition 3.2.2).

Definition 3.2.1 Given three consecutive nucleotides N1, N2, N3 of a nucleic
acid chain. Let 1 be the torsion angle defined by atoms (Nlca, N2p) and
(N2¢cy, N3p). Let 0 be the torsion angle defined by atoms (N2p, N2ca) and
(N3p, N3cy ).

Definition 3.2.2 Given three consecutive amino acids A1, A2, A3 of a polypep-
tide chain let ¢ be the torsion angle defined by atoms (Alc, A2y) and (A2ca,
A2c). Let U be the torsion angle defined by atoms (A2n,A2ca) and (A2c,
A3n).

Once a sequence of torsion angles is generated it can be translated into a
sequence of characters using any function. In the case of proteins as well as for
RNAs the main clusters of the dihedral angle plots are translated into distinct
characters (see also Figure 3.5).
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The result of that translation step is a string where single characters repre-
sent the torsion angles of the chain residues and therefore the macromolecule as
a whole. Traditional string matching algorithms can subsequently be applied,
enabling the user to index and to search for macromolecular structures.

An n-gram based index structure for fast searches

A hash table is a data structure that stores key - value pairs. A value can
be a character, a string or an arbitrary object. The key is generated by a
mathematical function (hashing function) that translates the value into the key.
This key in turn allows us to retrieve the value from a hash table in an average
run time of O(1) [Dietzfelbinger et al., 1988]. There are two characteristics of
hash tables that have major influence on the run time. First, not all hashing
functions necessarily yield unique results, subsequently, collisions have to be
resolved by chaining values or by other approaches. Second, to obtain the
average run time of O(1) an average load factor has to be kept, and a so-called
rehashing has to be issued if the load factor goes below a certain threshold.
A good general introduction to the field is given by [Cormen et al., 2003].
To conclude, a hash table allows for a fast determination if certain strings are
contained in the index. However, storing the complete sequence of a chain (e.g.
discrete n — O values) as value in the hash table does not make much sense
because it would only allow searches for exact matches of whole structures
that virtually never occur. To overcome this disadvantage it is useful to store
so called n-grams (also: g-grams) of a sequence in the hash table [Burkhardt
et al., 1999]. An n-gram is a string of length n. All n-grams of a string m
are all sub-strings of length n of m. For example all 2-grams of the string
ALICE are AL, LI, IC and CE. N-grams are widely used as a statistical tool
to define the relatedness of two strings. Google’s “Did you mean: ...” feature
is a classic example of that. But n-grams can also be used as method for fuzzy
string alignment. If the string ALICE is searched in the string ALITE using
2-grams, then two 2-grams are found, two missed, and an alignment can be
proposed by this approach.

Generating and searching the index

For searching, a hash table is generated from all n-grams of all target struc-
tures, in which n-grams generated from the query structure are searched. Gen-
erating the n-gram based index is a straightforward process (Figure 3.6). All
target structures (chains) have to be translated subsequently to strings using a
structure-to-string translator. The n-grams of each target structure are stored
in the hash table. It has to be noted that the positions of the n-grams of query
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and target are stored as well, making it feasible to perform a 3D alignment
for scoring and refinement. Searching a structure (query) in the index involves
the transformation of the query chain into a string and the computation of
each n-gram (Figure 3.7). The search results in a certain amount of target
structures that have n-grams in common with the query. As these results may
be statistical artifacts, a second hierarchical refinement step is applied. In this
refinement step, the corresponding n-grams are subsequently aligned and thus
anchors of query and target are determined. With that allocation, a superpo-
sition of query and target is performed [Kabsch, 1976]. The scoring is carried
out by calculating the RMSD (Definition 2.2.1) and a qualitative score, TM-
score, as defined in [Zhang and Skolnick, 2007] (Definition 3.2.3). The RMSD
alone is not suitable as it does not allow conclusions to be drawn about the
number of residues that have been aligned successfully.

Definition 3.2.3

Laligned 1
TM — score = 5 (3.2)
LTarget —
i=1 1 + dz'
1.24 %/LTayget—l\S—l.B

where Lrorger and Lajgnea are the lengths of the target and aligned structure
respectively. d; is the Euclidian distance between the ith pair of residues.

An advantage of the presented approach is that the strings (n-grams) that
are being indexed and in turn searched using the hash table can be generated
by an arbitrary approach. From the perspective of software engineering it is
easily possible to exchange the discussed approach of protein ¢ — 1 torsion with
the Protein Blocks Method [Tyagi et al., 2008] mentioned in the introduction.
For RNA structures it would be easily possible to replace the n — 0 torsion
angles approach with the notion of suite codes proposed by Richardson et
al. [Richardson et al., 2008], or any other representation.

The principal parameters that have an impact on performance and accuracy
are the size (n) of the indexed n-grams and complexity of the string a struc-
ture to string translator produces. In an extreme case a structure to string
translator would produce always the same letter for each angle combination
meaning each n-gram of the query will be compared to the each n-gram of the
target. A clever translator reduces this by only comparing beta-sheets and
helices or even combinations using a longer n-gram size reducing the search
time dramatically.
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3D to 1D translation

Input: - resulting in x
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query structure.

Preparation of query structure
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Result is an array with

Search each n-gram | | possible target
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Raw search in index Scoring

Figure 3.7: An informal diagram showing the steps performed when a query
structure is searched against a set of target structures in an index.

Datasets used

The datasets can be downloaded from the project homepage at http://lajolla.
sf.net.

tRNA dataset For the analysis of the RNA alignment capabilities of La-
Jolla, all molecular structures containing a tRNA were retrieved from the NDB
database. The dataset was filtered manually, to identify the polymer chains,
to identify the functional state of the molecules, and exclude structural frag-
ments. The resulting dataset contains 101 nucleic acid chains, all of which
have been resolved by X-Ray crystallography.

Protein benchmarking Two datasets for benchmarking LaJolla in the do-
main of proteins were used. The first Dataset termed CATH_1258 is derived
from the CATH [Cuff et al., 2009]. The S35 subset of CATH version 3.2.0
(CathDomainPdb.S35) was used. From this subset the first entry of each
structure at “H” level was chosen. Entries that are singletons regarding their
parent topology level were subsequently removed resulting in 1,258 entries.
Thus, each of these 1258 structures is classified by CATH and has at least one
entry that is classified in the same class - architecture - topology combination.
For the evaluation of the performance 100 structures were randomly picked
from the S35 subset of CATH termed CATH_100.


http://lajolla.sf.net
http://lajolla.sf.net

3.2. Macromolecular similarity screening 73

3.2.3 Results

The following results were performed with the default settings of LaJolla ver-
sion 2.0. Results below a TM-score of 0.2 are neglected. The standard transla-
tors were used, for proteins BetterOptimizedPhiPsiTranslator, for RNA struc-
tures OptimizedStructure ToEtaThetaCharacterTransformer. For comparison
to the state of the art CE (version 2004/10/07) [Shindyalov and Bourne, 1998|
and TM-align (64bit version 2005/06/01) [Zhang and Skolnick, 2005] were
chosen.

Performance

As the CATH_1258 dataset was executed on a distributed environment it is
not possible to take these runtimes. To this end, the CATH_100 dataset was
used and executed in an all against all manner for LaJolla (n-gram sizes 10,
15, 20, 25, 30), CE and TM-align (Figure 3.8). The tests were executed on
standard hardware with an Operton 2.2 GHz with only one CPU enabled. The
histogram points out that LaJolla is fast when using larger n-gram sizes. CE
is the slowest method.

5000

100

N w I
=] =] =)
=] =] =]
o 5] 5]

Performance in seconds on dataset CATH
=
o
=]
o

L 30 L) 25 L) 20 L 15 L 10 CE TM-align
Algorithm Name

Figure 3.8: Runtimes of the algorithms LalJolla (LJ) (n-gram size
10,15,20,25,30), CE and TM-align when performing an all against all com-
parison of 100 structures (dataset CATH_100).
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RNA retrieval

A multiple structural alignment of 101 tRNA chains was performed using the
1 — O angle representation implemented in LaJolla. The tRNA molecule was
chosen for this task, as it possesses a highly conserved tertiary structure that
is straightforward to recognize and to validate. Despite that, it contains many
local structural variations, and changes its conformation depending on its func-
tional state (see [Giegé, 2008] for a review). Finally, a high number of struc-
tures of different quality are available for this family of RNA. The all-against-all
search in LaJolla resulted in 1012 = 10201 queries that were performed with
an n-gram size of 10. The run resulted in 10195 local alignments returned
by the program. To validate the results, it was checked how well the query
and target structures are superimposed by the method. By manual inspection
it was determined that finding at least 30 residues close to each other, or a
TM-score higher than 0.25, were sufficient criteria to tell apart correct global
superpositions and mere local similarities. Using these criteria, 9,237 (90.5%)
superpositions were done successfully. The full list of examined RNA chains
and average RMSD, TM-score, and number of aligned residues are given in
Tables 3.3 and 3.4. Inspecting the results in detail, it was found that for
the RNA chains 2nre/F and 1j2b/C+D more than 60% of the superpositions
failed. In both cases, the RNAs are forced by a base modifying enzyme into
an unusual conformation (pseudouridine synthase and archaeosine transglyco-
sylase, respectively). In the case of 1j2b, an entire arm of the tRNA changes
its conformation (called lambda-form tRNA). Other functional states of the
matched tRNA molecules shows little influence on the number of hits. By
far the most abundant state available is tRNA bound to aaRS proteins (56
chains), and it has on average 91.8 correct hits found by LaJolla. The next
most frequent group are ribosomes (26 chains), with 96.3 correct hits in aver-
age. In total, there are on average 91.5 correct hits per chain. The number of
alignments found may result from similarities of the functional states, but it
was not possible to confirm this as significant - for this, one would expect e.g.
tRNA in complex with aaRS to prefer each other in the hit list, and ribosome
complexes among each other etc. This was, however, not observed. A bad
resolution seems to rather improve the alignability of a structure, as observed
on the ribosomes. A simple explanation for this is that the tRNA in many of
the ribosomal structures has been constructed by molecular recognition tech-
niques using a standard template - and intricate local variations not detectable
in the structures. As a result, it can be stated that, using the default n — 6
translator, it is possible to align badly-resolved structures correctly - a feature
not attainable by the suite code translator. On the positive side, inspection of
the local alignments showed that they are not altogether local. LaJolla finds
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a series of matching n-grams throughout a pair of structures. Thus, the struc-
tural alignments are not based on a local similar substructure common to both
molecules, but rather a consensus of many small similarities that add together
to the final alignment. Only in the incorrect hits was the alignment confined
to some part of the structure.

For analyzing the sensitivity of the tRNA structural alignment, 60 RNA
structures annotated in the SCOR database, including 13 tRNAs (taken from
[Capriotti and Marti-Renom, 2008|) were compared. It was calculated, how
many times the highest scoring structure retrieved by LaJolla has the same
class in the functional annotation’ category. For tRNA, this was the case for
100% of the entries regardless of n-gram size. This shows that tRNA structures
being that similar to each other that even a moderately accurate superposition
it sufficient to distinguish them from other types of RNA. When considering
the accuracy of other functional classes, the retrieval gets much less accurate,
with only 53% correctly assigned functional categories (when considering the
best of the top five TM-scores, this number rises to 69%). One of the reasons
for the observed wrong assignments is that part of the 47 non-tRNA structures
express considerable structural variety despite their small size. This sensitivity
can be improved by applying a TM-score cutoff, but this may lead to misleading
figures because then the tRNA structures will be heavily overrepresented in the
data. This points to limits of the SCOR dataset, and suggests that a manual
functional annotation of those parts of the PDB not covered by SCOR would
be helpful.

Protein retrieval

To evaluate the capabilities of LaJolla in the field of protein retrieval the CATH
protein classification was used as standard of truth and compared the results
to two other popular algorithms in the field: CE [Shindyalov and Bourne,
1998] and TM-align [Zhang and Skolnick, 2005]. CATH allows us to validate
if the results produced by a method are “true” in terms of a similar classifi-
cation. To this end, the topology level of CATH was chosen. The reduced
dataset CATH_1258 ensures that there is at least one other protein on the
same topology level. The graphs in Figure 3.9 show how well the classification
works in regard to the coverage at a certain scoring cutoff. To assess correct
hits, it was counted if the result with the best score was true (TOP 1) and
also if a correct result was among the ten best hits (TOP 10). The results
show that CE, despite its age, still is a very good method with good overall
results. It ranks best when it comes to TOP 1 hits and second when it comes
to TOP 10 hits. If one takes into account when the coverage line crosses the
percentage of correct TOP1 and TOP 10 hits CE also ranks first. TM-align is
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PDB-ID chain resol. type complex with hits RMSD TM-score % aligned
1b23 R 2.60 tRNA_Cys Ef-Tu 87 1.75 0.38 36.24
1c0a B 2.40 tRNA_Asp AspRS 98 1.71 0.48 44.85
lefw C 3.00 tRNA_Asp AspRS 92 1.76 0.48 44.95
lefw D 3.00 tRNA_Asp AspRS 95 1.73 0.48 44.29
lehz A 1.93 tRNA_Phe uncomplexed 98 1.70 0.52 49.18
leiy C 3.30 tRNA_Phe PheRS 65 1.89 0.33 33.23
leuq B 3.10 tRNA_GIn GInRS 98 1.71 0.52 46.91
leuy B 2.60 tRNA_GIn GInRS 98 1.67 0.52 47.00
lexd B 2.70 tRNA_GIn GInRS 99 1.75 0.51 47.07
1f7u B 2.20 tRNA_Arg ArgRS 98 1.75 0.43 40.52
1f7v B 2.90 tRNA_Arg ArgRS 98 1.74 0.44 40.66
1ffy T 2.20 tRNA_Ile IleRS 96 1.69 0.48 44.37
1g59 B 2.40 tRNA_Glu GIluRS 89 1.62 0.49 44.88
1g59 D 2.40 tRNA_Glu GIluRS 88 1.65 0.49 44.54
1gts B 2.80 tRNA_GIn GInRS 95 1.70 0.48 44.53
1h3e B 2.90 tRNA_Tyr TyrRS 97 1.77 0.45 42.83
1h4s T 2.85 tRNA_Pro ProRS 91 1.68 0.45 38.62
1il2 C 2.60 tRNA_Asp AspRS 90 1.84 0.45 44.02
1il2 D 2.60 tRNA_Asp AspRS 96 1.72 0.47 42.05
1jlu B 1.95 tRNA_Tyr TyrRS 99 1.63 0.50 45.30
1j2b C 3.30 tRNA_Val archaeosine transglycosylase 38 1.79 0.34 32.84
1j2b D 3.30 tRNA_Val archaeosine transglycosylase 31 1.80 0.35 32.43
In77 C 2.40 tRNA_Glu GIluRS 94 1.62 0.49 44.59
In77 D 2.40 tRNA_Glu GIluRS 91 1.68 0.50 46.08
In78 C 2.10 tRNA_Glu GIluRS 93 1.62 0.50 45.50
1n78 D 2.10 tRNA_Glu GluRS 91 1.69 0.50 46.42
lob2 B 3.35 tRNA_Phe Ef-Tu 97 1.85 0.43 42.31
lpns V 8.70 tRNA_Phe 70S ribosome 98 1.71 0.53 49.57
1pns W 8.70 tRNA_Phe 70S ribosome 99 1.70 0.50 46.53
1qf6 B 2.90 tRNA_Thr ThrRS 96 1.71 0.45 41.68
1qrs B 2.60 tRNA_GIn GInRS 94 1.69 0.49 45.49
1grt B 2.70 tRNA_GIn GInRS 94 1.70 0.48 44.62
1gru B 3.00 tRNA_GIn GInRS 94 1.69 0.49 44.97
1qtq B 2.25 tRNA_GIn GInRS 98 1.68 0.49 44.82
1qu2 T 2.20 tRNA_Ile IleRS 96 1.69 0.48 44.37
1qu3 T 2.90 tRNA_Ile IleRS 98 1.68 0.49 44.93
1wz2 C 3.21 tRNA_Leu LeuRS 97 1.75 0.43 40.84
1lwz2 D 3.21 tRNA_Leu LeuRS 97 1.74 0.46 43.21
1yl4 B 5.50 tRNA_Phe 70S ribosome 98 1.83 0.50 48.26
1lyl4 C 5.50 tRNA_Phe 70S ribosome 99 1.75 0.50 47.07
lzjw B 2.50 tRNA_Glu GIluRS 98 1.68 0.50 45.61
2ake B 3.10 tRNA_Trp TrpRS 96 1.67 0.44 40.14
2azx C 2.80 tRNA_Trp TrpRS 100 1.72 0.50 45.71
2azx D 2.80 tRNA_Trp TrpRS 100 1.73 0.48 44.01
2b64 V 5.90 tRNA_Phe 70S ribosome 98 1.76 0.47 45.16
2b64 W 5.90 tRNA_Phe 70S ribosome 98 1.82 0.52 49.75
2b9m V 6.76 tRNA_Phe 70S ribosome 98 1.77 0.47 44.88
2b9m W 6.76 tRNA_Phe 70S ribosome 99 1.83 0.48 46.98
2b9% V 6.46 tRNA_Phe 70S ribosome 100 1.78 0.46 44.43
2b%o W 6.46 tRNA_Phe 70S ribosome 98 1.79 0.51 49.07
2bte B 2.90 tRNA_Leu LeuRS 86 1.88 0.42 40.93
2bte E 2.90 tRNA_Leu LeuRS 81 1.84 0.41 40.17

Table 3.3: tRNA search result table (part 1).
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PDB-ID chain resol. type complex with hits RMSD TM-score % aligned
2byt B 3.30 tRNA_Leu LeuRS 72 1.85 0.41 40.15
2byt E 3.30 tRNA_Leu LeuRS 71 1.85 0.42 40.36
2csx C 2.70 tRNA_Met MetRS 95 1.68 0.47 44.03
2csx D 2.70 tRNA_Met MetRS 95 1.66 0.47 43.39
2ct8 C 2.70 tRNA_Met MetRS 99 1.69 0.47 43.53
2ct8 D 2.70 tRNA_Met MetRS 97 1.70 0.43 40.05
2¢cv0 C 2.40 tRNA_Glu GIuRS 93 1.62 0.49 44.53
2cvl C 2.41 tRNA_Glu GIuRS 93 1.64 0.50 45.99
2cvl D 2.41 tRNA_Glu GIuRS 91 1.70 0.50 46.78
2cv2 C 2.69 tRNA_Glu GIuRS 92 1.65 0.51 46.75
2cv2 D 2.69 tRNA_Glu GIuRS 91 1.69 0.50 46.31
2d6f E 3.15 tRNA_Gln GluRS 97 1.80 0.43 40.94
2d6f F 3.15 tRNA_Gln GluRS 98 1.87 0.41 40.11
2der C 3.10 tRNA_Glu mnma thiolase 98 1.74 0.48 44.98
2der D 3.10 tRNA_Glu mnma thiolase 96 1.70 0.50 44.92
2det C 3.40 tRNA_Glu mnmbs2U-methyltransferase 94 1.72 0.45 40.28
2deu C 3.40 tRNA_Glu mnmbs2U-methyltransferase 90 1.73 0.43 40.93
2deu D 3.40 tRNA_Glu mnmbs2U-methyltransferase 89 1.73 0.44 41.02
2dr2 B 3.00 tRNA_Trp TrpRS 100 1.68 0.43 39.79
2du3 D 2.60 tRNA_Cys o-phosphoserylRS 95 1.76 0.45 41.51
2du4 C 2.80 tRNA_Cys o-phosphoserylRS 95 1.78 0.46 42.32
2du5 D 3.20 tRNA_opal o-phosphoserylRS 93 1.88 0.41 39.22
2du6 D 3.30 tRNA_Amber o-phosphoserylRS 96 1.89 0.40 38.27
2dxi C 2.20 tRNA_Glu GIuRS 92 1.62 0.49 44.98
2dxi D 2.20 tRNA_Glu GIuRS 88 1.63 0.49 44.78
2fk6 R 2.90 tRNA_Thr RNase Z 85 1.57 0.52 36.29
2hgi C 5.00 tRNA_fMet 70S ribosome 99 1.69 0.52 48.56
2hgi D 5.00 tRNA_Phe 70S ribosome 86 1.90 0.42 41.56
2hgp B 5.50 tRNA_Phe 70S ribosome 90 1.91 0.44 43.47
2hgp C 5.50 tRNA_Phe 70S ribosome 98 1.77 0.49 46.43
2hgp D 5.50 tRNA_Phe 70S ribosome 90 1.84 0.42 41.07
2hgr C 4.51 tRNA_fMet 70S ribosome 100 1.68 0.51 47.38
2hgr D 4.51 tRNA_Phe 70S ribosome 93 1.89 0.43 42.78
2iy5 T 3.10 tRNA_Phe PheRS 51 1.95 0.33 33.58
2j00 W 2.80 tRNA_Phe 70S ribosome 97 1.76 0.44 42.02
2j02 V 2.80 tRNA_fMet 70S ribosome 98 1.69 0.49 46.10
2j02 W 2.80 tRNA_Phe 70S ribosome 97 1.80 0.46 44.09
2nre F 4.00 tRNA_Leu pseudouridine synthase 32 1.56 0.46 33.68
20w8 0 3.71 tRNA_Phe 70S ribosome 93 1.89 0.42 41.68
20w8 z 3.71 tRNA_Phe 70S ribosome 90 1.82 0.45 43.30
2gnh 2 3.83 tRNA_Phe 70S ribosome 93 1.84 0.43 41.65
2qnh z 3.83 tRNA_fMet 70S ribosome 100 1.74 0.51 48.56
2tra A 3.00 tRNA_Asp uncomplexed 98 1.72 0.44 40.72
2v0g B 3.50 tRNA_Leu LeuRS 69 1.86 0.42 40.74
2v0g F 3.50 tRNA_Leu LeuRS 69 1.85 0.42 40.22
2v46 W 3.80 tRNA_fMet 70S ribosome 98 1.80 0.46 44.24
2v48 W 3.80 tRNA_fMet 70S ribosome 96 1.86 0.46 44.87
3tra A 3.00 tRNA_Asp uncomplexed 93 1.75 0.45 41.92
4tna A 2.50 tRNA_Phe uncomplexed 100 1.70 0.52 49.00

Table 3.4: tRNA search result table (part 2).
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faster than CE, and has the best characteristics regarding the TOP 10 hits in
the field when considering a TM-score between 0.0 and 0.5. LaJolla’s coverage
and sensitivity can be adjusted using the n-gram size. The TOP 1 hits with
n-gram length 10 are equally good as the results produced by TM-align. The
results of LalJolla show that a certain amount of chain gets lost when using
longer n-gram sizes as they cannot be indexed. As LalJolla was used with
standard parameters results below a TM-score of 0.2 were neglected what also
contributes to this. However, as the performance graph shows (3.8), this is a
tradeoff between speed and coverage / precision. The performance is higher
compared to CE and TM-align in all n-gram sizes except 10 where TM-align
is faster.

3.2.4 Discussion
General aspects

The aims of this approach as defined in the introduction were the proposi-
tion of a generalized methodology that can be extended and customized by
the user for different macromolecules and applications. In the results section
it was shown that the performance and precision / coverage of the approach
is comparable to common methods available freely today. The trade-off be-
tween performance and precision / coverage can be adjusted using the n-gram
length. The described chain to string translators are independent from an
initial precomputation of the secondary structure elements. With the dataset
CATH_1258 derived from the 35% filtered CATH it becomes clear, that the
approach works well when the sequence of the proteins is not entirely similar.
Moreover, because this approach is implemented as open source in the frame-
work LaJolla, it can be easily extended with novel translators that abstract
the macromolecular structure in different ways such as suite codes or protein
building blocks. It has to be pointed out that the results presented for both
proteins and RNA were achieved by the backbone information alone. It is safe
to assume that on both sides the accuracy of the approach could be improved
by including sequence-specific information. In the case of RNA, this could be
for instance the isostericity matrices of Leontis and Westhof [Stombaugh et al.,
2009]. The principal performance bottleneck is the refinement step where the
biomolecules have to be read from the hard disk and superimposed in 3D. Al-
most 80% of the time currently used for search are input / output operations.
It is possible to tackle this problem from many sides. The implementation of a
caching infrastructure that stores frequently used structures in memory so that
subsequent hard disk reads are redirected to memory would be the first logical
step. Another possibility is to store specially prepared files that only contain
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Figure 3.9: Evaluation of the coverage and precision of LaJolla (n-gram size
10, 20, 25, 30), CE and TM-align in a classification scenario. The red line
indicates the percentage of the coverage of distinct topologies at a certain
score cutoff. The black line represents the percentage of correct hits with the
best score (TOP 1), the dashed black line represents the percentage of correct
assignments with a true result being among the ten best hits (TOP 10).
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Figure 3.10: A multiple alignment of all available Thymidylate Synthases using
2tsc chain B as pivot structure.

atoms used for 3D refinement, which would reduce the file size that has to
be read. Defining a threshold of how many matching n-grams between query
and target at least have to be found to carry out the expensive 3D alignment
has the potential to eliminate impossible alignments beforehand. Although
the method was not planned to be used as tool for multiple alignment it can
be used for this purpose, by the simple fact that the query structure is never
translated / rotated. Subsequently, all target structures are superimposed in
a multiple alignment fashion (Figure 3.10).

RNA specific aspects

The sensitivity of tRNA structural alignments is satisfactory (90.5%). In most
cases, where the alignment fails, this is due to drastic structural differences,
for instance in the case of lambda-tRNA, where an entire arm of the tertiary
structure is displaced by an enzyme. A careful refinement of the parameters
(n-gram size, TM-score threshold for alignment) could gain a few percent and
superimpose a few additional examples successfully. More worthwhile to try
is to run the algorithm on a vast set of RNA structures elucidating how well
smaller and bigger types of RNA can be recovered. Such a study should answer
how accurate the function of RNA can be recognized in general. A prerequisite
for this is a careful and complete functional characterization of RNA structures
that does not exist at present. Further, it could be examined whether choosing
a different string representation (e.g. Richardson’s suite codes) could accelerate
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the alignment process. But in order to not losing too much sensitivity, the
n-gram search would need to account for partial similarity instead of using
dissimilarity of two characters as an absolute exclusion criterion. For such
and related studies, the tRNA dataset presented here provides a reasonable
benchmark that could be used to compare structural search and alignment

methods for RNA.

Protein specific aspects

Using the CATH as standard of truth is generally disputed. TM-align and
other algorithms [Zhang and Skolnick, 2005, Pandit and Skolnick, 2008] that are
originating from the field of protein structure prediction try to score a method
based on the coverage of the sequence. This omits the problem that man
made classification schemes such as CATH may contain wrong classifications.
However, as LaJolla works completely sequence independent it is not easy to
translate the meaning of the results. The CATH classification approach was
used as used by other contributions [Novotny et al., 2004]. As the results of
LaJolla are compared to CE and TM-align this gives a good general view of
the capabilities, strengths and weaknesses of the algorithms as possibly wrong
classifications are a problem for all algorithms. This methodology also allows
the user to judge how to treat results with a certain score. Another general
problem is that TM-align and CE do not write out protein structure positions
on hard-disk by default. As LaJolla by default always writes superpositions
to the hard-disk this is a clear disadvantage for LaJolla and turning off that
feature would increase the performance. Still, LaJolla ranks almost always
best in terms of performance even with this disadvantage. This suggests that
LaJolla is especially useful when it comes to high throughput experiments,
where thousands of proteins should be classified and a certain loss of coverage
is regrettable.

3.2.5 Conclusions

A generalized approach for the fast search and structural alignment of arbitrary
macromolecules is presented. The notion of using an index and performing
one-against-all searches is a novelty in the world of RNA. This paper showed
that the approach yields structural alignments that agree with biological re-
ality using simple ¢ — ¢ / n — 0 translators. The described approach has an
adjustable coverage and precision based on the desired speed using the n-gram
size as parameter. This method will be an important aid in the high through-
put functional annotation of proteins and RNA, and will make it feasible to
search and test new hypotheses about protein and RNA function in a fast
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manner. The method has obvious applications to the field of knowledge-based
docking of small compounds or even proteins. The implementation of this ap-
proach, LalJolla, is easy to extend using custom translators (eg. pure amino
acid or nucleic acid sequence-based translators). The authors gladly welcome
any recommendations and critiques from the community. LalJolla (including
platform-independent binary packages, general development resources, mailing
lists) is freely available from: http://lajolla.sf.net.
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3.3 A novel approach for the detection of struc-
tural features of RNA

With the world of RNA becoming more and more important, the structural
features of RNA are moving into the spotlight. The structural features of
RNA long received only minor attention in comparison to the structural fea-
tures of proteins. However, the rate of RNA structures being deposited into
public structure archives has steadily increased to about 600 RNA structures
and 1,300 protein-RNA complexes in the first quarter 2009. The evaluation
of this structural space cannot be done manually, but must be carried out
using computational methods. In the world of proteins, structural alignment
has been state of the art since the late 1990s and a broad range of methods
exist. Structural alignment of RNA is relatively new and only a few methods
are available. In the following, a novel method, LaJolla2RNA, is presented.
LaJolla2RNA is a novel method for aligning RNA molecules based on their
n — 0 angles. It is demonstrated that the described method provides a bet-
ter overall precision and coverage in functional classification tasks compared
to leading methods. LaJolla2RNA also successfully computes valid results
when using known, difficult RNA alignment examples discussed in the liter-
ature. The method is capable of performing multiple alignments and is able
to align large structures such as ribosomes. LaJolla2RNA (including plat-
form independent binary package) is available as open source software from
http://lajolla.sf.net. For instant access to LaJolla2RNA, a web-interface is
available at http://bioinformatics.charite.de/superrnaalign.

3.3.1 Introduction

The last decade saw a growing number of research results revealing that RNA
is important in key processes inside a cell and is often not translated into pro-
teins [Eddy, 2001, Storz, 2002, Laederach, 2007, Capriotti and Marti-Renom,
2008]. It became clear that RNA is involved in post transcriptional regulation
(gene silencing) via microRNAs and small interfering RNAs (siRNA) [Lim
et al., 2003, Ender et al., 2008, Xiao and Rajewsky, 2009]. It was also re-
vealed that the translational apparatus is influenced by allosteric conforma-
tional changes in riboswitches as well as frameshifts by pseudoknots and slip-
pery sequences [Winkler et al., 2002, Penchovsky and Breaker, 2005]. RNA
is furthermore involved in the chemical modification of the ribosome [Bekaert
et al., 2003] and is even a player in the formation of peptides, and there-
fore also important for the production of proteins [Weinger et al., 2004, Nissen
et al., 2000]. RNA is also important in pathological processes like cancer and
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retroviral infections such as AIDS [Medzhitov and Littman, 2008]. RNA is
able to form complex 3D structures which are mediated primarily by hydrogen
bonds formed between base pairs as well as base stacking because of its single
stranded nature. The primary datasource for 3D structures of biomolecules is
the PDB [Berman et al., 2007] and the number of RNA structures known and
being deployed as 3D coordinates in the PDB has grown quickly in the last
few years. The 3D structure of biochemical elements such as RNAs is often
more conserved than its sequence, therefore the structural analysis of RNA be-
comes increasingly important. Another important fact is that RNA structures
contain pseudo nucleotides which render it impossible to create an alignment
based on the pure nucleotide sequence. In the field of proteins there are a
variety of alignment and comparison techniques [Kolodny et al., 2005] able to
cover a wide range of applications. In contrast, the field of RNA alignment
is only now emerging, with important players being ARTS [Dror et al., 2006],
DIAL [Ferre et al., 2007], SARSA [Chang et al., 2008] and SARA [Capriotti
and Marti-Renom, 2008]. In the world of proteins as well in the world of
RNA there exist dictionaries with classifications of structures [Andreeva et al.,
2004, Greene et al., 2007, Tamura et al., 2004]. These structural classifications
can be useful when similarities between macromolecules are detected and, thus,
a possibly unknown function can be inferred. In the following, a novel method
is proposed: LaJolla2RNA. LaJolla2RNA is a fast and robust method for the
alignment of many RNA structures. An important fact of LaJolla2RNA is
that it is an open source project and designed from scratch to be modular and
test-driven. This means that main parts of the framework, including e.g. the
scoring function can be easily changed and monitored regarding their impact.
This modular approach is, on one hand, useful when the user needs custom
improvements (different scoring etc), on the other hand, LaJolla2RNA can be
of interest when used in educational scenarios where students can try their own
extensions to get an idea of common problems of structural alignment. For
the evaluation of the method the following approach was chosen: First, the
general capabilities LaJolla2RNA are examined in a functional classification
scenario based on the SCOR classification (Section 3.3.3). The second part
uses known difficult examples and evaluates how well LaJolla2RNA is able to
solve them (Section 3.3.3). In both parts datasets and examples discussed in
the literature were used to maintain a maximum of comparability to previous
research.
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3.3.2 Material and methods
Material

For a general overview how LaJolla2RNA performs in a functional classification
scenario, two datasets of [Capriotti and Marti-Renom, 2008] are used. For a
more fine-grained view all individual examples from [Ferreé et al., 2007, Chang
et al., 2008, Capriotti and Marti-Renom, 2008] are applied.

trna All molecular structures containing a tRNA were retrieved from the
wwPDB database [Berman et al., 2007]. The dataset was filtered manually to
identify the polymer chains, to identify the functional state of the molecules
and exclude structural fragments. The resulting dataset contains 101 nucleic
acid chains, all of which have been resolved by X-Ray crystallography.

NR-95 The NR-95 dataset from [Capriotti and Marti-Renom, 2008] is a
reduced representation of the structural universe as of November 2006. The
reduction was carried out by removing RNAs with a sequence similarity of
more 95%, removing structures larger than 320 nucleotides and smaller than
20 nucleotides and omitting RNA structures with only P trace atoms. The
NR95 set contains 277 chains.

NR-95 SCOR The NR-95 SCOR from [Capriotti and Marti-Renom, 2008]
is a subset of structures in the NR-95 set that were in the same SCOR [Tamura
et al., 2004] class of functional annotations. This set contains 60 structures
and 18 SCOR functional classes.

Difficult Examples The examples are made up of 7 pairwise superpositions
(global, semiglobal, local) and 2 multiple alignments (tRNA and pseudoknots).
Example 1 is from [Ferre et al., 2007] example 2 from [Capriotti and Marti-
Renom, 2008] and the remaining examples are taken from [Chang et al., 2008].

laszR 2csx (Note: Original 4trn replaced by 2csx)

Sarcin/ricin domain 28S rRNAand a 5S Ribosomal RNA (1q96A, 1un6E)
Pairwise global (1u8d, 1y26)

Pairwise global (1u8d, 1y26X:25-72)

Pairwise semiglobal (1hr2, 1j5a)

Pairwise local (1u8dA, 1y26X:39-45)

Pseudoknots (112x:A, 2a43:A)

tRNA (1h4sT, 1aszR:620-660, 1i12C, 2csxC, levvA,1j2bC)
Pseudoknots (112xA, 2ap5A, 1kpyA, 2ap0A, lygdA)

© XN O W
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Method

A general introduction to the LaJolla framework is given in Section 3.2. The
basis for LaJolla2RNA is the usage of transformers that translate a chain into
a sequence of characters. In the case of LaJolla2RNA these characters are
generated by calculating the n — @ pseudo-angles and translating them into
characters by a discrete function. The translator OptimizedStructureToFEta-
ThetaCharacterTransformer, applied throughout this work, uses 4 discrete
characters. The resulting string is subsequently chopped into n-grams of a
certain size. The n-grams are in turn stored in a hash-table as keys. The
corresponding values are the name of the PDB file and the position where this
n-gram occurs in the PDB file. The hash-table approach has been chosen be-
cause it is a fast method to query many structures simultaneously. However,
LaJolla2RNA can be used in pairwise alignments as well. If a structure (the
query) is searched against one or more indexed (target) structures, the first
step is to translate the query into a string. Each individual n-gram of the
query string is searched in the hash-table, and a superposition based on the
two matching n-grams is carried out [Kabsch, 1976]. After the superposition
is finished a score based on the TM-score is calculated [Zhang and Skolnick,
2007]. The TM-score is taking into account the RMSD as well as the num-
ber of aligned residues. The scoring is carried out using the smaller of the
two superimposed structures as query structure for the score by default. The
best match of each pair is subsequently written out as superposition. La-
Jolla2RNA is based on the modular framework LaJolla. Therefore, all parts of
LaJolla2RNA, e.g. scoring functions and structure to string translators, can
be easily adjusted to fit the user’s needs.

3.3.3 Results
The greater picture

The first objective of our research was to investigate the influence of n-gram
size on the scoring function. To this end, the tRNA dataset, the complete
NR-95 dataset and the SCOR subset of NR-95 were used. The structures of
each dataset were aligned against each other in the same dataset. The tRNA
dataset is somewhat special, as it is known beforehand that all structures have
a similar shape overall. This allows to draw conclusions about how the n-gram
size affects the results in recognizing similar structures. The NR-95 and the
NR-95 SCOR consist of a variety of structures of all sizes.

Figure 3.11 shows that the highly similar structures of tRNA are recovered
with an average TM-score of 0.45 and n-gram sizes of 5 and 10. However, using
n-gram sizes 15 and 20, the average score and thus the alignment quality of the
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tRNA dataset declines to a TM-score of 0.37. The NR-95 and NR-95 SCOR
datasets, on the other hand, behave quite similar regarding their TM-score at
different n-gram sizes. The average TM-score improves when the n-gram size is
increased. As a certain amount of structures are smaller than the n-gram size
it is obvious that some structures cannot be found with large n-gram sizes. To
investigate into this, the number of recovered tRNA structures using different
n-gram sizes is shown. The tRNA dataset is useful for this, as it is known that
each alignment is valid beforehand, a fact not known for the NR-95 and the
NR-95 SCOR datasets. Figure 3.12 shows that with n-gram sizes 5, 10 and 15
almost all tRNA structures are found, whereas, with n-gram size 20, only 75
% of tRNA structures are found. At the same time (as shown in Figure 3.11),
the TM-score of the tRNA structures using n-gram size 20 was significantly
lower than using n-gram size 5, 10 or 15.

Influence of n-gram size on average TM-Score
0.5 T T T T

Em tRNA
Em NR95
B NR95-SCOR

0.4

<TM-SCORE=>
=4
w

o
v

0.1

0.0

10 15
n-gram size

Figure 3.11: Average TM-score of all against all searches with datasets tRNA,
NR-95 and NR-95 SCOR using different n-gram sizes.

To investigate how well LaJolla2RNA is able to cope with a classification
task, the NR-95 SCOR dataset was used. This dataset contains only struc-
tures that are annotated using the SCOR functional classification. Therefore
meaningful results can be detected by comparing if the results retrieved by
LaJolla2RNA have the same SCOR classification as the query structure. All
structures were aligned against all structures and it was checked whether the
best hit (TOP 1) was a true positive or if a true positive was among the best
five hits (TOP 5). Figure 3.13 shows the results using n-gram size 10 against
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Recovery of tRNA structures
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Figure 3.12: Recovery of structures in the tRNA dataset using different n-gram
sizes.

the coverage and different scoring cutoffs. As the same dataset, proposed
by [Capriotti and Marti-Renom, 2008] is used, the results can be compared di-
rectly to the method SARA. LaJolla2RNA shows a better characteristic consid-
ering the coverage of SCOR functional classes over almost the entire spectrum.
At the intersection between coverage and TOP 1 results, LaJolla2RNA is al-
most 10% better than SARA. However, it must be noted that LaJolla2RNA
does miss some structures (maximum coverage is 95%) with n-gram size 10
that are recovered by SARA.

Assessment with difficult examples

The overall picture as presented in Figure 3.13 shows that the approach is
able to cope with leading methods in functional classification tasks. How-
ever, this does not necessarily mean that the approach solves difficult RNA
alignment problems. Each of the former contributions to the field of RNA
alignment therefore shows at least one example where one algorithm is better
than another. All examples were collected from [Ferre et al., 2007, Chang et al.,
2008, Capriotti and Marti-Renom, 2008] in dataset difficult_examples (see Sec-
tion 3.3.2) and checked whether LaJolla2RNA was able to compute the correct
solution. The conclusion is that LaJolla2RNA successfully solves all alignment
examples where two structures are aligned against each other. LaJolla2RNA
solves them with standard parameters and n-gram size 5. However, the two
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Assignment of SCOR functional classes with SARA
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Assignment of SCOR functional classes with n-gram size 10
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Figure 3.13: Evaluation of the coverage and precision of SARA [Capriotti and

Marti-Renom, 2008] (top) and LaJolla2RNA, n-gram size 10 (bottom) in a

classification scenario. The red line indicates the percentage of the coverage
of distinct SCOR functional classes at a certain score cutoff. The black line
represents the percentage of correct hits with the best score (TOP 1), the
dashed black line represents the percentage of correct assignments with a true

result being among the five best hits (TOP 5).
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multiple alignment examples can only be solved when a good pivot structure
is chosen. When a pivot structure is chosen that is dissimilar, compared to
the rest of the ensemble, the multiple alignment does not work well. Using the
most similar structure in the ensemble LaJolla2RNA also solves all multiple
alignment tasks successfully.

In addition, LaJolla2RNA is also able to superimpose large structures and
is able to generate multiple alignments of a vast amount of structures. To this
end, two ribosomes are aligned (Figure 3.14) as well as all structures in the
dataset tRNA (Figure 3.15).

Figure 3.14: Example of LaJolla2RNA aligning two large ribosomes (red: 1ffk,
green: 2v47).

3.3.4 Discussion

In a functional classification scenario, LaJolla2RNA outperforms SARA in
both TOP1 and TOPS5 hits given a certain coverage. The difficult pairwise
alignment examples presented by three other methods are also solved success-
fully by LaJolla2RNA. This is encouraging, as each of the examples has been
proposed by the original method to show its superior qualities in comparison to
another method. LaJolla2RNA solves all alignment tasks using standard pa-
rameters. However, regarding the multiple alignment, there is one drawback.
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Figure 3.15: A multiple alignment of all structures in the dataset trna using
1b23 as pivot structure.

LaJolla2RNA in the current configuration only generates multiple alignments
based on a pivot structure. If the most dissimilar structure in an ensemble
is chosen, there is a good chance that the multiple alignment will not work
for all aligned structures. This can be solved in the future by an exhaustive
procedure where subsequently all structures are chosen as pivot structures and
only the best result is kept. This is, however, not implemented in the current
version. It is also a matter of opinion whether it makes sense to use the TM-
score for RNA structures as the TM-score was originally developed for protein
alignments. Our experiments suggest that TM-score is a good choice, but it
becomes clear that the full range of the score (0,1] is not utilized. For instance
a score above 0.45 only rarely occurs, even when the structures are very simi-
lar, as demonstrated in the trna dataset. This can potentially be corrected by
adjusting the parameters of the equation. Depending on the intended use, the
n-gram size is very important. When the n-gram size is too big, smaller struc-
tures cannot be found, simply because they are not stored in the hash-table of
the algorithm. Simply using small n-grams is not a solution, because smaller
n-gram sizes make the procedure slower and also introduce false positives to
the results.
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3.3.5 Conclusions

LaJolla2RNA has been shown to deliver good results in functional classification
tasks. It also delivers good results when assessing the method using difficult
examples in pairwise as well as multiple alignments. As the framework is
available as open source, each aspect discussed can be adjusted according to
the user’s needs. LaJolla2RNA can also be of special interest in a teaching
environment. LaJolla2RNA (including platform independent binary package)
is available as open source from http://lajolla.sf.net. For instant access to
LaJolla2RNA a web-interface is available at http://bioinformatics.charite.de/
superrnaalign.
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Chapter 4

Simulation of cellular reactions

4.1 Quantitative simulation of apoptosis using
Petri nets

This section is driven by the fact that the genetic and regulatory mechanisms
of apoptosis (the programmed cell death) are key players in several diseases.
In the following, a concept for quantitative simulation of apoptosis using Petri
nets is evaluated. The term “quantitative” is defined by the usage of microarray
or proteomics data for the signal transduction of the net. The simulations
presented in Section 4.1.4 were carried out by Christian Scholz as part of his
master’s thesis [Scholz, 2008].

4.1.1 Introduction

Life is about interaction and regulation which can be modeled by biological
networks. This modeling can be carried out on different levels, e.g. metabolic
pathways or signal transduction networks. Metabolic networks describe the
flo