THICKNESS OF THE UNIT SPHERE, /,-TYPES, AND
THE ALMOST DAUGAVET PROPERTY
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ABSTRACT. We study those Banach spaces X for which Sx does not
admit a finite e-net consisting of elements of Sx for any € < 2. We give
characterisations of this class of spaces in terms of ¢;1-type sequences
and in terms of the almost Daugavet property. The main result of the
paper is: a separable Banach space X is isomorphic to a space from this
class if and only if X contains an isomorphic copy of ¢;.

1. INTRODUCTION

For a Banach space X, R. Whitley [9] introduced the following parameter,
called thickness, which is essentially the inner measure of non-compactness
of the unit sphere Sx:

T(X) = inf{e > 0: there exists a finite e-net for Sx in Sx},

or equivalently, T'(X) is the infimum of those & such that the unit sphere of
X can be covered by a finite number of balls with radius € and centres in
Sx. He showed in the infinite dimensional case that 1 < T'(X) < 2, and in
particular that T(C(K)) = 1 if K has isolated points and T'(C(K)) = 2 if
not.

In this paper we concentrate on the spaces with T'(X) = 2. Our main
results are the following; Bx denotes the closed unit ball of X.

Theorem 1.1. For a separable Banach space X the following conditions
are equivalent:

(a) T(X)=2;

(b) there is a sequence (e,) C Bx such that for every x € X

lim ||z + e, = [|z|| + 1;
n—oo

(c) there is a norming subspace Y C X* such that the equation
Id+T| =1+ |7 (1.1)

holds true for every rank-one operator T: X — X of the form T =
v Qx, wherex € X and y* €Y.
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Theorem 1.2. A separable Banach space X can be equivalently renormed
to have thickness T'(X) = 2 if and only if X contains an isomorphic copy of
4.

Recall that a subspace Y C X* is said to be norming (or 1-norming) if
for every x € X
sup [y ()| = ]|
y* €Sy
Y is norming if and only if Sy is weak™ dense in Bx=.
Condition (b) of Theorem 1.1 links our investigations to the theory of
types [7]. Recall that a type on a separable Banach space X is a function
of the form

(@) = lim |2+ e

for some bounded sequence (e,,). In [7] the notion of an ¢;-type is defined by
means of convolution of types; a special instance of this is a type generated
by a sequence (e,,) satisfying

T(z) = Jim. |z + enl|| = ||| + 1. (1.2)

To simplify notation let us call a type like this a canonical ¢1-type and a
sequence (e,) C Bx satisfying (1.2) a canonical {1-type sequence.

Condition (c) links our investigations to the theory of Banach spaces with
the Daugavet property introduced in [5] and developed further for instance in
the papers [1] [2], [3], [6]; see also the survey [8]. We will say that a Banach
space X has the Daugavet property with respect to' Y (X € DPr(Y)) if the
Daugavet equation (1.1) holds true for every rank-one operator T: X — X
of the form T = y* ® x, where x € X and y* € Y, and it has the almost
Daugavet property or is an almost Daugavet space if it has DPr(Y") for some
norming subspace Y C X*. This definition is a generalization (introduced
in [4]) of the by now well-known Daugavet property of [5], which is DPr(Y)
with Y = X*.

In this language Theorem 1.2 says, by Theorem 1.1, that a separable
Banach space can be renormed to have the almost Daugavet property if and
only if it contains a copy of /1.

In Section 2 we present a characterisation of almost Daugavet spaces in
terms of £1-sequences of the dual. The proofs of Theorems 1.1 and 1.2 will
be given in Sections 3 and 4.

The following lemma is the main technical prerequisite that we use; it is
the analogue of [5, Lemma 2.2]. Up to part (v) it was proved in [4]; however,
(v) follows along the same lines. By a slice of Bx we mean a set of the form

S(y*,e) ={r € Bx:y*(z) > 1—¢}

for some y* € Sx+ and some € > 0, and a weak* slice S(y, ) of the dual ball
Bx~ is a particular case of slice, generated by element y € Sx C X**.

Lemma 1.3. IfY is a norming subspace of X*, then the following assertions
are equivalent.

(i) X has the Daugavet property with respect to'Y'.
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(ii) For every x € Sx, for every e > 0, and for every y* € Sy there is
some y € S(y*,¢e) such that

lz+yl 22— (1.3)

(iii) For every x € Sx, for every e > 0, and for every y* € Sy there is
a slice S(y7,e1) C S(y*,e) with yi € Sy such that (1.3) holds for
every y € S(y*,e1).

(iv) For every x* € Sy, for every e > 0, and for every weak® slice
S(z,e) of the dual ball Bx~ there is some y* € S(x,e) such that
la* gl > 2 .

(v) For every x* € Sy, for everye > 0, and for every weak* slice S(x,¢)
of the dual ball Bx~ there is another weak® slice S(x1,1) C S(z,¢)
such that ||x* + y*|| > 2 — ¢ for every y* € S(z1,¢€1).

2. A CHARACTERISATION OF ALMOST DAUGAVET SPACES BY MEANS OF
{1-SEQUENCES IN THE DUAL

For the sake of easy notation we introduce two definitions.

Definition 2.1. Let E be subspace of a Banach space ' and € > 0. An
element e € Bp is said to be (g, 1)-orthogonal to E if for every x € E and
teR

[ +tel| > (1 =) (ll=[| + [¢])- (2.1)

Definition 2.2. Let E be a Banach space. A sequence {ey }neny C Bg\ {0}
is said to be an asymptotic ¢1-sequence if there is a sequence of numbers
en > 0 with J] (1 —&,) > 0 such that e,,1 is (€n,1)-orthogonal to
Y, :=lin{ey,...,e,} for every n € N.

Evidently every asymptotic £1-sequence is 1/ ], cn(1 — €,)-equivalent to
the unit vector basis in ¢, and moreover every element of the unit sphere
of Ep, := lin{eg}72,. 1 is (1— [L>m(1—en), 1)-orthogonal to Yy, for every
m € N.

The following lemma is completely analogous to [5, Lemma 2.8]; instead
of [5, Lemma 2.1] it uses (v) of Lemma 1.3. So we state it without proof.

Lemma 2.3. Let Y be a norming subspace of X*, X € DPr(Y), and let
Yy C Y be a finite-dimensional subspace. Then for every eg > 0 and every
weak® slice S(xg,e9) of Bx~ there is another weak™ slice S(x1,e1) C S(zo,e0)
of Bx~ such that every element e* € S(x1,e1) is (g0, 1)-orthogonal to Yy. In
particular there is an element €5 € S(xo,e0) NSy which is (€, 1)-orthogonal
to Yy.

We need one more definition.

Definition 2.4. A sequence {e},}nen C Bx+ is said to be double-norming
if lin{e; }72,, is norming for every n € N.

Here is the main result of this section.

Theorem 2.5. A separable Banach space X is an almost Daugavet space if
and only if X* contains a double-norming asymptotic f1-sequence.
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Proof. First we prove the “if” part. Let {e} } ,en C Bx+ be a double-norming
asymptotic £1-sequence, and let €, > 0 with Hn eN(l —¢€p) > 0 be such that
ey 1 is (€p,1)-orthogonal to Y, := lin{e],..., ey} for every n € N. Let us
prove that X has the Daugavet property with respect to Y = lin{e },en
where the closure is meant in the norm topology. To do this let us apply
(iv) of Lemma 1.3.

Fix an z* € Sy, an ¢ > 0 and a weak® slice S(z,¢) of the dual ball
Bx~. Denote in addition to Y, = lin{e,... ey}, En = lin{ef}72, .
Using the definition of Y select an m € N and an zj, € Y;, such that
|lz* — a3, || <e/2 and [],,~,,,(1 —€,) > 1 —¢€/2. Since Ey, is norming, there
isay* € S(z,e)NSg,. Taking into account that every element of the unit
sphere of E,, is (¢/2,1)-orthogonal to Y, we obtain

% + ¥l = llag, + 57l = [l2" — 2] = 2 —e.

For the “only if” part we proceed as follows. First we fix a sequence of
numbers €, > 0 with ][], .n(1—&,) > 0 and a dense sequence (z,,) in Sx. We
can choose these x,, in such a way that each of them appears in the sequence
(z,) infinitely many times. Assume now that X € DPr(Y’) with respect to
a norming subspace Y C X*. Starting with Yy = {0}, ¢g = 1 and applying
Lemma 2.3 step-by-step we can construct a sequence {e },en C Sy in such
a way that each e}, belongs to S(z,,e,) and is (e,,1)-orthogonal to Y,
where Y,, = lin{ej,..., e} } as before. This inductive construction ensures
that the e), n € N form an asymptotic ¢1-sequence. On the other hand this
sequence meets every slice S(zy,&,) infinitely many times, and this implies
by density of (x,) that (e) is double-norming. O

n

In Corollary 3.4 we shall observe a somewhat more pleasing version of the
last result.
We conclude the section with two examples.

Proposition 2.6. {1 is an almost Daugavet space.

Proof. To prove this statement we will construct a double-norming asymp-
totic £1-sequence (fy,) C loo = (¢1)*. At first consider a sequence (g,) C loo
of elements g, = (gn,j)jen with all g, ; = £1 satisfying the following inde-
pendence condition: for arbitrary finite collections oy = £1, s = 1,...,n,
the set of those j that gs ; = s for all s =1,...,n is infinite (for instance,
put gs ; := r5(t;), where the ry are the Rademacher functions and (¢;);cny is
a fixed sequence of irrationals that is dense in [0, 1]). These g,, n € N form
an isometric £1-sequence, and moreover if one changes a finite number of
coordinates in each of the g, to some other +1, the independence condition
will survive, so the modified sequence will still be an isometric ¢1-sequence.

Now let us define the vectors f,, = (fnj)jen, fn; = £1, in such a way that

for k=1,2,... and n = 2% + 1,26 +2,..., 251 the vectors (fo,;)5_; € (&)

run over all extreme points of the unit ball of &(fé), i.e., over all possible

k-tuples of £1; for the remaining values of indices we put f, ; = gn j. As
we have already remarked, the f,, form an isometric ¢1-sequence. Moreover,
for every k € N the restrictions of the f,, to the first £ coordinates form a
double-norming sequence over Egk), 0 (fn)nen is a double-norming sequence
over /4. O
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Since £+ is isomorphic to L [0, 1], which has the Daugavet property, ¢
can be equivalently renormed to possess the Daugavet property. Let us show
that in the original norm it is not even an almost Daugavet space.

Proposition 2.7. {, is not an almost Daugavet space.

Proof. Let us call a functional y* € X* a Daugavet functional if
IMd+y* @z =1+ |y" @ x| for every = € X.

Let X = lo and y* = (y);) € €1 C (boo)*. If y* # 0, then it is not a
Daugavet functional. Indeed, assume ||y*|| = 1. Pick an index r such that
yy = a # 0; let’s say r = 1 for simplicity. If @« > 0, let + = —e; and
e = a/2. If y* were a Daugavet functional, then (see Lemma 1.3) for some
2= (2n) € Lo, 2] = 1,

Yy (z)>1—¢, J|z+4z||>2—¢.

Hence, putting u =1 — 2;
o0 [e.e]
l—e<y'(z) Sam+ 3 il < Syl — ua
n=2 n=1

so that u < e/a =1/2 and z; > 1/2. On the other hand, ||z +z|| > 2 —¢
implies that |z; — 1] > 2 — ¢ > 3/2 which is impossible for 1/2 < z; < 1.
The case a < 0 is treated in the same way.

Now, each y* € ({s)* can be decomposed as

vy =vttwt e i@ (o), llytl = ot + el

Hence if y* is a Daugavet functional, so is v*, which implies v* = 0 and
y* € (co)t. But (cp)* is not norming, and neither is any of its subspaces.
Consequently, ¢, fails the almost Daugavet property. O

3. PROOF OF THEOREM 1.1

We will accomplish the proof of Theorem 1.1 by means of the following
propositions.

The following fact applied for separable spaces is equivalent to implication
(c) = (a) of Theorem 1.1.

Proposition 3.1. Every almost Daugavet space X has thickness T(X) = 2.

Proof. Let Y C X* be a norming subspace with respect to which X €
DPr(Y). According to the definition of T'(X') we have to show that for every
g0 > 0 there is no finite (2 — gg)-net of Sy consisting of elements of Sx. In
other words we must demonstrate that for every collection {xi,...,z,} C
Sx there is a yo € Sx with ||z —yo|| > 2—¢p forall k = 1,...,n. But thisis
an evident corollary of Lemma 1.3(iii): starting with an arbitrary yj € Sy«
and applying (iii) we can construct recursively elements y; € Sy~ and reals
er € (0,e), k=1,...,n, in such a way that S(y;,ex) C S(yj_;,€k—1) and

(=) +yll > 2 -0

for every y € S(yi,er). Since S(y;,ep) is the smallest of the slices con-
structed, every norm-one element of S(y},e,) can be taken as the yo we
need. U
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Let us now turn to the implication (a) = (b) of Theorem 1.1.

Proposition 3.2. If T(X) = 2 and X is separable, then X contains a
canonical £1-type sequence.

Proof. Fix a dense countable set A = {a,: n € N} C Sx and a null-sequence
(en) of positive reals. Since for every n € N the n-point set {—aq,...,—an}
is not a (2 — ey,)-net of Sx there is an e, € Sx with |le,, — (—ag)|| > 2 —¢e,
for all k =1,...,n. The constructed sequence (e, ) satisfies for every k € N
the condition

lim [|ag + ex]| = flax ]| +1 = 2.
n—oo

By the density of A in Sx and a standard convexity argument (cf. e.g. [8,
page 78]) this yields that (e,,) is a canonical ¢;-type sequence. O

It remains to prove the implication (b) = (c) of Theorem 1.1.

Proposition 3.3. A separable Banach space X containing a canonical £1-
type sequence is an almost Daugavet space.

Proof. We will use Theorem 2.5. Fix an increasing sequence of finite-dim-
ensional subspaces Ey C Ey C E3 C ... whose union is dense in X. Also,
fix sequences &, \, 0 and d,, > 0 such that for all n

o

(1—6,)>1—¢p. (3.1)
11

k=n
Passing to a subsequence if necessary we can find a canonical /1-type se-

quence (e,) satisfying the following additional condition: For every z €
lin(E, U{er,...,en}) and every a € R we have

[+ aeniall = (1 = n)([J]] + [r)- (3.2)

Then we have for every x € E, and every y = nyznﬂ arer by (3.1) and
(3.2)
M
lz +yll = (1= e)llall + Y (1= ex-)laxl- (3.3)
k=n+1

Fix a dense sequence (x,) in Sx such that z, € E, and every element of
the range of the sequence is attained infinitely often, that is for each m € N
the set {n: x, = xz,,} is infinite. Finally, fix an “independent” sequence
(gn) C loo, gn,j = %1, as in the proof of Proposition 2.6.

Now we are ready to construct a double-norming asymptotic ¢1-sequence
(f¥) € X*. First we define f* on F,, := lin{a,,, €p11,€nt2,... } by

f;(xn) = l—ey, (3.4)
filer) = (L—ext)gns  (ifk>n). (3.5)
By (3.3), |If;] <1, and indeed || f| = 1 by (3.5). Define f; € X* to be a
Hahn-Banach extension of f;. Condition (3.4) and the choice of (x,) ensure

that (f) is double-norming. Let us show that it is an isometric ¢;-basis.
Indeed, due to our definition of an “independent” sequence, for an arbitrary
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finite collection A = {ay,...,a,} of non-zero coefficients the set J4 of those
J > n that g ; = signas, s =1,...,n, is infinite. So by (3.5)

Zasf > sup (Zasf ) = s;lf(l_gj—l)Z‘as‘ = las|-
JEJA s=1 s=1

J€JaA

O

Since we have constructed an isometric ¢;-basis in the last proof, we have
obtained the following version of Theorem 2.5.

Corollary 3.4. A separable Banach space X is an almost Daugavet space
if and only if X* contains a double-norming isometric {1-sequence.

4. PROOF OF THEOREM 1.2
We start with two lemmas.

Lemma 4.1. Let X be a linear space, (e,) C X, and let p be a seminorm
on X. Assume that (e,) is an isometric ¢1-basis with respect to p, i.e.,
p(>p_qaker) = Y p_y lak| for all ai,aq,... € R. Fiz a free ultrafilter U on
N and define
pr(z) =U- liTanp(x +ren) =1

forx e X and r > 0. Then:

(2) 0<p.(z) < pla) for all z € X,

(b) pr(x) = p(x) for all x € lin{ey,ea,...},

(c) the map x — pp(x) is convex for each r,

(d) the map r — p,(x) is convez for each x,

(e) pr(tx) = tp,)(x) for each t > 0.

Proof. The only thing that is not obvious is that p, is positive; note that
(b) is a well-known property of the unit vector basis of ¢1. Now, given ¢ > 0
pick n. such that

p(z+rey.) <U-limp(z +rey,) + €.
n
Then for each n # n.
p(x+ren) = pl@+ren, +r(en —en))

> 2r—p(x+rey,)
> 2r —U-limp(z +rey) — &
n
hence 2U- lim, p(x + re,) > 2r — 2 and p, > 0. O

Lemma 4.2. Assume the conditions of Lemma 4.1. Then the function
r +— pr(x) is decreasing for each x. The quantity

p(z) := lim p,(z) = infp,(x)
satisfies (a)—(c) of Lemma 4.1 and moreover
p(tz) = tp(x) fort >0, z € X. (4.1)

Proof. By Lemma 4.1(a) and (d), r — p,(x) is bounded and convex, hence
decreasing. Therefore, p is well defined. Clearly, (4.1) follows from (e)
above. U
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Since for separable spaces the condition T'(X) = 2 is equivalent to the
presence of a canonical /1-type sequence and a canonical ¢1-type sequence
evidently contains a subsequence equivalent to the canonical basis of /1, to
prove Theorem 1.2 it is sufficient to demonstrate the following;:

Theorem 4.3. Let X be a Banach space containing a copy of 1. Then X
can be renormed to admit a canonical {1-type sequence. Moreover if (e,) C
X is an arbitrary sequence equivalent to the canonical basis of {1 in the
original norm, then one can construct an equivalent norm on X in such a
way that (ey,) is isometrically equivalent to the canonical basis of {1 and (ey,)
forms a canonical {1-type sequence in the new norm.

Proof. Let Y be a subspace of X isomorphic to ¢1, and let (e,) be its canon-
ical basis. To begin with, we can renorm X in such a way that Y is isometric
to ¢1 and (e,,) is an isometric ¢;-basis.

Let P be the family of all seminorms p on X that are dominated by the
norm of X and for which p(y) = |ly|| for y € Y. By Zorn’s lemma, P contains
a minimal element, say p. We shall argue that

lim p(z+e,) =px)+1 VrelX. (4.2)
n—oo
To show this it is sufficient to prove that for every free ultrafilter &/ on N
U-limp(z +e,) =p(z) +1 Ve € X. (4.3)
n

To this end associate to p and U the functional p from Lemma 4.2. Note
that 0 < p < p, but p need not be a seminorm. However,

p(x) + p(—x)
Q(x) = f

defines a seminorm, and ¢ < p. By Lemma 4.1(b) and by minimality of p
we get that

~

qlx) =plz) VreX. (

4
Now, since p(x) > p(z) and p(z) = p(—x) > p(—=x), (4.4) implies that p(z)
p(x). Finally, by Lemma 4. 1( ) and the definition of p we have p(x) = p,(
for all > 0; in particular p(x) = pi(x), which is our claim (4.3).

To complete the proof of the theorem, consider

llll:= p(2) + 2]l x/v

this is the equivalent norm that we need. Indeed, clearly ||z < 2||z|. On
the other hand, ||z|| > %Hx” To see this assume ||z|| = 1. If [|[z][|x/y > 5

)
)

there is nothing to prove. If not, pick y € Y such that ||z — y| < % Then
p(y) = llyll > 3. and

2 1
lzll = p(z) = p(y) =p(z =) > 3 = oyl > 3.
Therefore, || . || and || . || are equivalent norms, and
lim |z +en[| = lm p(z+en) + 2]l x/y = p(e) + 1+ [2]lx/y = ]l +1
n—oo n—oo

shows that (e,,) is a canonical ¢;-type sequence for the new norm. (]
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