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Abstract. We study those Banach spaces X for which SX does not
admit a finite ε-net consisting of elements of SX for any ε < 2. We give
characterisations of this class of spaces in terms of �1-type sequences
and in terms of the almost Daugavet property. The main result of the
paper is: a separable Banach space X is isomorphic to a space from this
class if and only if X contains an isomorphic copy of �1.

1. Introduction

For a Banach space X, R. Whitley [9] introduced the following parameter,
called thickness, which is essentially the inner measure of non-compactness
of the unit sphere SX :

T (X) = inf{ε > 0: there exists a finite ε-net for SX in SX},
or equivalently, T (X) is the infimum of those ε such that the unit sphere of
X can be covered by a finite number of balls with radius ε and centres in
SX . He showed in the infinite dimensional case that 1 ≤ T (X) ≤ 2, and in
particular that T (C(K)) = 1 if K has isolated points and T (C(K)) = 2 if
not.

In this paper we concentrate on the spaces with T (X) = 2. Our main
results are the following; BX denotes the closed unit ball of X.

Theorem 1.1. For a separable Banach space X the following conditions
are equivalent:

(a) T (X) = 2;
(b) there is a sequence (en) ⊂ BX such that for every x ∈ X

lim
n→∞ ‖x + en‖ = ‖x‖ + 1;

(c) there is a norming subspace Y ⊂ X∗ such that the equation

‖Id + T‖ = 1 + ‖T‖ (1.1)

holds true for every rank-one operator T : X → X of the form T =
y∗ ⊗ x, where x ∈ X and y∗ ∈ Y .
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Theorem 1.2. A separable Banach space X can be equivalently renormed
to have thickness T (X) = 2 if and only if X contains an isomorphic copy of
�1.

Recall that a subspace Y ⊂ X∗ is said to be norming (or 1-norming) if
for every x ∈ X

sup
y∗∈SY

|y∗(x)| = ‖x‖.

Y is norming if and only if SY is weak∗ dense in BX∗ .
Condition (b) of Theorem 1.1 links our investigations to the theory of

types [7]. Recall that a type on a separable Banach space X is a function
of the form

τ(x) = lim
n→∞ ‖x + en‖

for some bounded sequence (en). In [7] the notion of an �1-type is defined by
means of convolution of types; a special instance of this is a type generated
by a sequence (en) satisfying

τ(x) = lim
n→∞ ‖x + en‖ = ‖x‖ + 1. (1.2)

To simplify notation let us call a type like this a canonical �1-type and a
sequence (en) ⊂ BX satisfying (1.2) a canonical �1-type sequence.

Condition (c) links our investigations to the theory of Banach spaces with
the Daugavet property introduced in [5] and developed further for instance in
the papers [1] [2], [3], [6]; see also the survey [8]. We will say that a Banach
space X has the Daugavet property with respect to Y (X ∈ DPr(Y )) if the
Daugavet equation (1.1) holds true for every rank-one operator T : X → X
of the form T = y∗ ⊗ x, where x ∈ X and y∗ ∈ Y , and it has the almost
Daugavet property or is an almost Daugavet space if it has DPr(Y ) for some
norming subspace Y ⊂ X∗. This definition is a generalization (introduced
in [4]) of the by now well-known Daugavet property of [5], which is DPr(Y )
with Y = X∗.

In this language Theorem 1.2 says, by Theorem 1.1, that a separable
Banach space can be renormed to have the almost Daugavet property if and
only if it contains a copy of �1.

In Section 2 we present a characterisation of almost Daugavet spaces in
terms of �1-sequences of the dual. The proofs of Theorems 1.1 and 1.2 will
be given in Sections 3 and 4.

The following lemma is the main technical prerequisite that we use; it is
the analogue of [5, Lemma 2.2]. Up to part (v) it was proved in [4]; however,
(v) follows along the same lines. By a slice of BX we mean a set of the form

S(y∗, ε) = {x ∈ BX : y∗(x) ≥ 1 − ε}
for some y∗ ∈ SX∗ and some ε > 0, and a weak∗ slice S(y, ε) of the dual ball
BX∗ is a particular case of slice, generated by element y ∈ SX ⊂ X∗∗.

Lemma 1.3. If Y is a norming subspace of X∗, then the following assertions
are equivalent.

(i) X has the Daugavet property with respect to Y .
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(ii) For every x ∈ SX , for every ε > 0, and for every y∗ ∈ SY there is
some y ∈ S(y∗, ε) such that

‖x + y‖ ≥ 2 − ε. (1.3)

(iii) For every x ∈ SX , for every ε > 0, and for every y∗ ∈ SY there is
a slice S(y∗1 , ε1) ⊂ S(y∗, ε) with y∗1 ∈ SY such that (1.3) holds for
every y ∈ S(y∗, ε1).

(iv) For every x∗ ∈ SY , for every ε > 0, and for every weak∗ slice
S(x, ε) of the dual ball BX∗ there is some y∗ ∈ S(x, ε) such that
‖x∗ + y∗‖ ≥ 2 − ε.

(v) For every x∗ ∈ SY , for every ε > 0, and for every weak∗ slice S(x, ε)
of the dual ball BX∗ there is another weak∗ slice S(x1, ε1) ⊂ S(x, ε)
such that ‖x∗ + y∗‖ ≥ 2 − ε for every y∗ ∈ S(x1, ε1).

2. A characterisation of almost Daugavet spaces by means of

�1-sequences in the dual

For the sake of easy notation we introduce two definitions.

Definition 2.1. Let E be subspace of a Banach space F and ε > 0. An
element e ∈ BF is said to be (ε, 1)-orthogonal to E if for every x ∈ E and
t ∈ R

‖x + te‖ ≥ (1 − ε)(‖x‖ + |t|). (2.1)

Definition 2.2. Let E be a Banach space. A sequence {en}n∈N ⊂ BE \{0}
is said to be an asymptotic �1-sequence if there is a sequence of numbers
εn > 0 with

∏
n∈N

(1 − εn) > 0 such that en+1 is (εn, 1)-orthogonal to
Yn := lin{e1, . . . , en} for every n ∈ N.

Evidently every asymptotic �1-sequence is 1/
∏

n∈N
(1 − εn)-equivalent to

the unit vector basis in �1, and moreover every element of the unit sphere
of Em := lin{ek}∞k=m+1 is

(
1−∏n≥m(1− εn), 1

)
-orthogonal to Ym for every

m ∈ N.
The following lemma is completely analogous to [5, Lemma 2.8]; instead

of [5, Lemma 2.1] it uses (v) of Lemma 1.3. So we state it without proof.

Lemma 2.3. Let Y be a norming subspace of X∗, X ∈ DPr(Y ), and let
Y0 ⊂ Y be a finite-dimensional subspace. Then for every ε0 > 0 and every
weak∗ slice S(x0, ε0) of BX∗ there is another weak∗ slice S(x1, ε1) ⊂ S(x0, ε0)
of BX∗ such that every element e∗ ∈ S(x1, ε1) is (ε0, 1)-orthogonal to Y0. In
particular there is an element e∗1 ∈ S(x0, ε0)∩SY which is (ε0, 1)-orthogonal
to Y0.

We need one more definition.

Definition 2.4. A sequence {e∗n}n∈N ⊂ BX∗ is said to be double-norming
if lin{e∗k}∞k=n is norming for every n ∈ N.

Here is the main result of this section.

Theorem 2.5. A separable Banach space X is an almost Daugavet space if
and only if X∗ contains a double-norming asymptotic �1-sequence.
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Proof. First we prove the “if” part. Let {e∗n}n∈N ⊂ BX∗ be a double-norming
asymptotic �1-sequence, and let εn > 0 with

∏
n∈N

(1− εn) > 0 be such that
e∗n+1 is (εn, 1)-orthogonal to Yn := lin{e∗1, . . . , e∗n} for every n ∈ N. Let us
prove that X has the Daugavet property with respect to Y = lin{e∗n}n∈N

where the closure is meant in the norm topology. To do this let us apply
(iv) of Lemma 1.3.

Fix an x∗ ∈ SY , an ε > 0 and a weak∗ slice S(x, ε) of the dual ball
BX∗ . Denote in addition to Ym = lin{e∗1, . . . , e∗m}, Em := lin{e∗k}∞k=m+1.
Using the definition of Y select an m ∈ N and an x∗

m ∈ Ym such that
‖x∗ − x∗

m‖ < ε/2 and
∏

n≥m(1 − εn) > 1 − ε/2. Since Em is norming, there
is a y∗ ∈ S(x, ε) ∩ SEm. Taking into account that every element of the unit
sphere of Em is (ε/2, 1)-orthogonal to Ym we obtain

‖x∗ + y∗‖ ≥ ‖x∗
m + y∗‖ − ‖x∗ − x∗

m‖ ≥ 2 − ε.

For the “only if” part we proceed as follows. First we fix a sequence of
numbers εn > 0 with

∏
n∈N

(1−εn) > 0 and a dense sequence (xn) in SX . We
can choose these xn in such a way that each of them appears in the sequence
(xn) infinitely many times. Assume now that X ∈ DPr(Y ) with respect to
a norming subspace Y ⊂ X∗. Starting with Y0 = {0}, ε0 = 1 and applying
Lemma 2.3 step-by-step we can construct a sequence {e∗n}n∈N ⊂ SY in such
a way that each e∗n+1 belongs to S(xn, εn) and is (εn, 1)-orthogonal to Yn,
where Yn = lin{e∗1, . . . , e∗n} as before. This inductive construction ensures
that the e∗n, n ∈ N form an asymptotic �1-sequence. On the other hand this
sequence meets every slice S(xn, εn) infinitely many times, and this implies
by density of (xn) that (e∗n) is double-norming. �

In Corollary 3.4 we shall observe a somewhat more pleasing version of the
last result.

We conclude the section with two examples.

Proposition 2.6. �1 is an almost Daugavet space.

Proof. To prove this statement we will construct a double-norming asymp-
totic �1-sequence (fn) ⊂ �∞ = (�1)∗. At first consider a sequence (gn) ⊂ �∞
of elements gn = (gn,j)j∈N with all gn,j = ±1 satisfying the following inde-
pendence condition: for arbitrary finite collections αs = ±1, s = 1, . . . , n,
the set of those j that gs,j = αs for all s = 1, . . . , n is infinite (for instance,
put gs,j := rs(tj), where the rs are the Rademacher functions and (tj)j∈N is
a fixed sequence of irrationals that is dense in [0, 1]). These gn, n ∈ N form
an isometric �1-sequence, and moreover if one changes a finite number of
coordinates in each of the gn to some other ±1, the independence condition
will survive, so the modified sequence will still be an isometric �1-sequence.

Now let us define the vectors fn = (fn,j)j∈N, fn,j = ±1, in such a way that
for k = 1, 2, . . . and n = 2k + 1, 2k + 2, . . . , 2k+1 the vectors (fn,j)kj=1 ∈ �

(k)
∞

run over all extreme points of the unit ball of �
(k)
∞ , i.e., over all possible

k-tuples of ±1; for the remaining values of indices we put fn,j = gn,j. As
we have already remarked, the fn form an isometric �1-sequence. Moreover,
for every k ∈ N the restrictions of the fn to the first k coordinates form a
double-norming sequence over �

(k)
1 , so (fn)n∈N is a double-norming sequence

over �1. �
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Since �∞ is isomorphic to L∞[0, 1], which has the Daugavet property, �∞
can be equivalently renormed to possess the Daugavet property. Let us show
that in the original norm it is not even an almost Daugavet space.

Proposition 2.7. �∞ is not an almost Daugavet space.

Proof. Let us call a functional y∗ ∈ X∗ a Daugavet functional if

‖Id + y∗ ⊗ x‖ = 1 + ‖y∗ ⊗ x‖ for every x ∈ X.

Let X = �∞ and y∗ = (y∗n) ∈ �1 ⊂ (�∞)∗. If y∗ 
= 0, then it is not a
Daugavet functional. Indeed, assume ‖y∗‖ = 1. Pick an index r such that
y∗r = α 
= 0; let’s say r = 1 for simplicity. If α > 0, let x = −e1 and
ε = α/2. If y∗ were a Daugavet functional, then (see Lemma 1.3) for some
z = (zn) ∈ �∞, ‖z‖ = 1,

y∗(z) ≥ 1 − ε, ‖z + x‖ ≥ 2 − ε.

Hence, putting u = 1 − z1

1 − ε ≤ y∗(z) ≤ αz1 +
∞∑

n=2

|y∗n||zn| ≤
∞∑

n=1

|y∗n| − uα

so that u ≤ ε/α = 1/2 and z1 ≥ 1/2. On the other hand, ‖z + x‖ ≥ 2 − ε
implies that |z1 − 1| ≥ 2 − ε ≥ 3/2 which is impossible for 1/2 ≤ z1 ≤ 1.
The case α < 0 is treated in the same way.

Now, each y∗ ∈ (�∞)∗ can be decomposed as

y∗ = v∗ + w∗ ∈ �1 ⊕ (c0)⊥, ‖y∗‖ = ‖v∗‖ + ‖w∗‖.
Hence if y∗ is a Daugavet functional, so is v∗, which implies v∗ = 0 and
y∗ ∈ (c0)⊥. But (c0)⊥ is not norming, and neither is any of its subspaces.

Consequently, �∞ fails the almost Daugavet property. �

3. Proof of Theorem 1.1

We will accomplish the proof of Theorem 1.1 by means of the following
propositions.

The following fact applied for separable spaces is equivalent to implication
(c) ⇒ (a) of Theorem 1.1.

Proposition 3.1. Every almost Daugavet space X has thickness T (X) = 2.

Proof. Let Y ⊂ X∗ be a norming subspace with respect to which X ∈
DPr(Y ). According to the definition of T (X) we have to show that for every
ε0 > 0 there is no finite (2 − ε0)-net of SX consisting of elements of SX . In
other words we must demonstrate that for every collection {x1, . . . , xn} ⊂
SX there is a y0 ∈ SX with ‖xk−y0‖ > 2−ε0 for all k = 1, . . . , n. But this is
an evident corollary of Lemma 1.3(iii): starting with an arbitrary y∗0 ∈ SY ∗

and applying (iii) we can construct recursively elements y∗k ∈ SY ∗ and reals
εk ∈ (0, ε), k = 1, . . . , n, in such a way that S(y∗k, εk) ⊂ S(y∗k−1, εk−1) and

‖(−xk) + y‖ > 2 − ε0

for every y ∈ S(y∗k, εk). Since S(y∗n, εn) is the smallest of the slices con-
structed, every norm-one element of S(y∗n, εn) can be taken as the y0 we
need. �
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Let us now turn to the implication (a) ⇒ (b) of Theorem 1.1.

Proposition 3.2. If T (X) = 2 and X is separable, then X contains a
canonical �1-type sequence.

Proof. Fix a dense countable set A = {an: n ∈ N} ⊂ SX and a null-sequence
(εn) of positive reals. Since for every n ∈ N the n-point set {−a1, . . . ,−an}
is not a (2 − εn)-net of SX there is an en ∈ SX with ‖en − (−ak)‖ > 2 − εn

for all k = 1, . . . , n. The constructed sequence (en) satisfies for every k ∈ N

the condition
lim

n→∞ ‖ak + en‖ = ‖ak‖ + 1 = 2.

By the density of A in SX and a standard convexity argument (cf. e.g. [8,
page 78]) this yields that (en) is a canonical �1-type sequence. �

It remains to prove the implication (b) ⇒ (c) of Theorem 1.1.

Proposition 3.3. A separable Banach space X containing a canonical �1-
type sequence is an almost Daugavet space.

Proof. We will use Theorem 2.5. Fix an increasing sequence of finite-dim-
ensional subspaces E1 ⊂ E2 ⊂ E3 ⊂ . . . whose union is dense in X. Also,
fix sequences εn ↘ 0 and δn > 0 such that for all n

∞∏
k=n

(1 − δk) ≥ 1 − εn. (3.1)

Passing to a subsequence if necessary we can find a canonical �1-type se-
quence (en) satisfying the following additional condition: For every x ∈
lin(En ∪ {e1, . . . , en}) and every α ∈ R we have

‖x + αen+1‖ ≥ (1 − δn)(‖x‖ + |α|). (3.2)

Then we have for every x ∈ En and every y =
∑M

k=n+1 akek by (3.1) and
(3.2)

‖x + y‖ ≥ (1 − εn)‖x‖ +
M∑

k=n+1

(1 − εk−1)|ak|. (3.3)

Fix a dense sequence (xn) in SX such that xn ∈ En and every element of
the range of the sequence is attained infinitely often, that is for each m ∈ N

the set {n: xn = xm} is infinite. Finally, fix an “independent” sequence
(gn) ⊂ �∞, gn,j = ±1, as in the proof of Proposition 2.6.

Now we are ready to construct a double-norming asymptotic �1-sequence
(f∗

n) ⊂ X∗. First we define f̃∗
n on Fn := lin{xn, en+1, en+2, . . . } by

f̃∗
n(xn) = 1 − εn, (3.4)

f̃∗
n(ek) = (1 − εk−1)gn,k (if k > n). (3.5)

By (3.3), ‖f̃∗
n‖ ≤ 1, and indeed ‖f̃∗

n‖ = 1 by (3.5). Define f∗
n ∈ X∗ to be a

Hahn-Banach extension of f̃∗
n. Condition (3.4) and the choice of (xn) ensure

that (f∗
n) is double-norming. Let us show that it is an isometric �1-basis.

Indeed, due to our definition of an “independent” sequence, for an arbitrary
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finite collection A = {a1, . . . , an} of non-zero coefficients the set JA of those
j > n that gs,j = sign as, s = 1, . . . , n, is infinite. So by (3.5)∥∥∥∥∥

n∑
s=1

asf
∗
s

∥∥∥∥∥ ≥ sup
j∈JA

(
n∑

s=1

asf
∗
s

)
ej = sup

j∈JA

(1 − εj−1)
n∑

s=1

|as| =
n∑

s=1

|as|.

�
Since we have constructed an isometric �1-basis in the last proof, we have

obtained the following version of Theorem 2.5.

Corollary 3.4. A separable Banach space X is an almost Daugavet space
if and only if X∗ contains a double-norming isometric �1-sequence.

4. Proof of Theorem 1.2

We start with two lemmas.

Lemma 4.1. Let X be a linear space, (en) ⊂ X, and let p be a seminorm
on X. Assume that (en) is an isometric �1-basis with respect to p, i.e.,
p(
∑n

k=1 akek) =
∑n

k=1 |ak| for all a1, a2, . . . ∈ R. Fix a free ultrafilter U on
N and define

pr(x) = U- lim
n

p(x + ren) − r

for x ∈ X and r > 0. Then:
(a) 0 ≤ pr(x) ≤ p(x) for all x ∈ X,
(b) pr(x) = p(x) for all x ∈ lin{e1, e2, . . . },
(c) the map x �→ pr(x) is convex for each r,
(d) the map r �→ pr(x) is convex for each x,
(e) pr(tx) = tpr/t(x) for each t > 0.

Proof. The only thing that is not obvious is that pr is positive; note that
(b) is a well-known property of the unit vector basis of �1. Now, given ε > 0
pick nε such that

p(x + renε) ≤ U- lim
n

p(x + ren) + ε.

Then for each n 
= nε

p(x + ren) = p(x + renε + r(en − enε))
≥ 2r − p(x + renε)
≥ 2r − U- lim

n
p(x + ren) − ε;

hence 2U - limn p(x + ren) ≥ 2r − 2ε and pr ≥ 0. �
Lemma 4.2. Assume the conditions of Lemma 4.1. Then the function
r �→ pr(x) is decreasing for each x. The quantity

p̄(x) := lim
r→∞ pr(x) = inf

r
pr(x)

satisfies (a)–(c) of Lemma 4.1 and moreover

p̄(tx) = tp̄(x) for t > 0, x ∈ X. (4.1)

Proof. By Lemma 4.1(a) and (d), r �→ pr(x) is bounded and convex, hence
decreasing. Therefore, p̄ is well defined. Clearly, (4.1) follows from (e)
above. �
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Since for separable spaces the condition T (X) = 2 is equivalent to the
presence of a canonical �1-type sequence and a canonical �1-type sequence
evidently contains a subsequence equivalent to the canonical basis of �1, to
prove Theorem 1.2 it is sufficient to demonstrate the following:

Theorem 4.3. Let X be a Banach space containing a copy of �1. Then X
can be renormed to admit a canonical �1-type sequence. Moreover if (en) ⊂
X is an arbitrary sequence equivalent to the canonical basis of �1 in the
original norm, then one can construct an equivalent norm on X in such a
way that (en) is isometrically equivalent to the canonical basis of �1 and (en)
forms a canonical �1-type sequence in the new norm.

Proof. Let Y be a subspace of X isomorphic to �1, and let (en) be its canon-
ical basis. To begin with, we can renorm X in such a way that Y is isometric
to �1 and (en) is an isometric �1-basis.

Let P be the family of all seminorms p̃ on X that are dominated by the
norm of X and for which p̃(y) = ‖y‖ for y ∈ Y . By Zorn’s lemma, P contains
a minimal element, say p. We shall argue that

lim
n→∞ p(x + en) = p(x) + 1 ∀x ∈ X. (4.2)

To show this it is sufficient to prove that for every free ultrafilter U on N

U - lim
n

p(x + en) = p(x) + 1 ∀x ∈ X. (4.3)

To this end associate to p and U the functional p̄ from Lemma 4.2. Note
that 0 ≤ p̄ ≤ p, but p̄ need not be a seminorm. However,

q(x) =
p̄(x) + p̄(−x)

2
defines a seminorm, and q ≤ p. By Lemma 4.1(b) and by minimality of p
we get that

q(x) = p(x) ∀x ∈ X. (4.4)

Now, since p(x) ≥ p̄(x) and p(x) = p(−x) ≥ p̄(−x), (4.4) implies that p(x) =
p̄(x). Finally, by Lemma 4.1(a) and the definition of p̄ we have p(x) = pr(x)
for all r > 0; in particular p(x) = p1(x), which is our claim (4.3).

To complete the proof of the theorem, consider

|||x||| := p(x) + ‖[x]‖X/Y ;

this is the equivalent norm that we need. Indeed, clearly |||x||| ≤ 2‖x‖. On
the other hand, |||x||| ≥ 1

3‖x‖. To see this assume ‖x‖ = 1. If ‖[x]‖X/Y ≥ 1
3 ,

there is nothing to prove. If not, pick y ∈ Y such that ‖x − y‖ < 1
3 . Then

p(y) = ‖y‖ > 2
3 , and

|||x||| ≥ p(x) ≥ p(y) − p(x − y) >
2
3
− ‖x − y‖ >

1
3
.

Therefore, ‖ . ‖ and ||| . ||| are equivalent norms, and

lim
n→∞ |||x+ en||| = lim

n→∞ p(x+ en)+ ‖[x]‖X/Y = p(x)+1+ ‖[x]‖X/Y = |||x|||+1

shows that (en) is a canonical �1-type sequence for the new norm. �
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