THICKNESS OF THE UNIT SPHERE, ℓ_{1}-TYPES, AND THE ALMOST DAUGAVET PROPERTY

VLADIMIR KADETS, VARVARA SHEPELSKA AND DIRK WERNER

Abstract

We study those Banach spaces X for which S_{X} does not admit a finite ε-net consisting of elements of S_{X} for any $\varepsilon<2$. We give characterisations of this class of spaces in terms of ℓ_{1}-type sequences and in terms of the almost Daugavet property. The main result of the paper is: a separable Banach space X is isomorphic to a space from this class if and only if X contains an isomorphic copy of ℓ_{1}.

1. Introduction

For a Banach space X, R. Whitley [9] introduced the following parameter, called thickness, which is essentially the inner measure of non-compactness of the unit sphere S_{X} :

$$
T(X)=\inf \left\{\varepsilon>0 \text { : there exists a finite } \varepsilon \text {-net for } S_{X} \text { in } S_{X}\right\},
$$

or equivalently, $T(X)$ is the infimum of those ε such that the unit sphere of X can be covered by a finite number of balls with radius ε and centres in S_{X}. He showed in the infinite dimensional case that $1 \leq T(X) \leq 2$, and in particular that $T(C(K))=1$ if K has isolated points and $T(C(K))=2$ if not.

In this paper we concentrate on the spaces with $T(X)=2$. Our main results are the following; B_{X} denotes the closed unit ball of X.

Theorem 1.1. For a separable Banach space X the following conditions are equivalent:
(a) $T(X)=2$;
(b) there is a sequence $\left(e_{n}\right) \subset B_{X}$ such that for every $x \in X$

$$
\lim _{n \rightarrow \infty}\left\|x+e_{n}\right\|=\|x\|+1 ;
$$

(c) there is a norming subspace $Y \subset X^{*}$ such that the equation

$$
\begin{equation*}
\|\operatorname{Id}+T\|=1+\|T\| \tag{1.1}
\end{equation*}
$$

holds true for every rank-one operator $T: X \rightarrow X$ of the form $T=$ $y^{*} \otimes x$, where $x \in X$ and $y^{*} \in Y$.

Date: November 18, 2008.
2000 Mathematics Subject Classification. Primary 46B04; secondary 46B03, 46B25.
Key words and phrases. Daugavet property, ℓ_{1}-subspace, types, thickness.
The first author was partially supported by a grant from the Alexander-von-Humboldt Foundation and by Junta de Andalucía grant P06-FQM-01438; the second author was partially supported by the N. I. Akhiezer foundation.

Theorem 1.2. A separable Banach space X can be equivalently renormed to have thickness $T(X)=2$ if and only if X contains an isomorphic copy of ℓ_{1}.

Recall that a subspace $Y \subset X^{*}$ is said to be norming (or 1-norming) if for every $x \in X$

$$
\sup _{y^{*} \in S_{Y}}\left|y^{*}(x)\right|=\|x\| .
$$

Y is norming if and only if S_{Y} is weak* dense in $B_{X^{*}}$.
Condition (b) of Theorem 1.1 links our investigations to the theory of types [7]. Recall that a type on a separable Banach space X is a function of the form

$$
\tau(x)=\lim _{n \rightarrow \infty}\left\|x+e_{n}\right\|
$$

for some bounded sequence $\left(e_{n}\right)$. In [7] the notion of an ℓ_{1}-type is defined by means of convolution of types; a special instance of this is a type generated by a sequence $\left(e_{n}\right)$ satisfying

$$
\begin{equation*}
\tau(x)=\lim _{n \rightarrow \infty}\left\|x+e_{n}\right\|=\|x\|+1 \tag{1.2}
\end{equation*}
$$

To simplify notation let us call a type like this a canonical ℓ_{1}-type and a sequence $\left(e_{n}\right) \subset B_{X}$ satisfying (1.2) a canonical ℓ_{1}-type sequence.

Condition (c) links our investigations to the theory of Banach spaces with the Daugavet property introduced in [5] and developed further for instance in the papers [1] [2], [3], [6]; see also the survey [8]. We will say that a Banach space X has the Daugavet property with respect to $Y(X \in \operatorname{DPr}(Y))$ if the Daugavet equation (1.1) holds true for every rank-one operator $T: X \rightarrow X$ of the form $T=y^{*} \otimes x$, where $x \in X$ and $y^{*} \in Y$, and it has the almost Daugavet property or is an almost Daugavet space if it has $\operatorname{DPr}(Y)$ for some norming subspace $Y \subset X^{*}$. This definition is a generalization (introduced in [4]) of the by now well-known Daugavet property of [5], which is $\operatorname{DPr}(Y)$ with $Y=X^{*}$.
In this language Theorem 1.2 says, by Theorem 1.1, that a separable Banach space can be renormed to have the almost Daugavet property if and only if it contains a copy of ℓ_{1}.

In Section 2 we present a characterisation of almost Daugavet spaces in terms of ℓ_{1}-sequences of the dual. The proofs of Theorems 1.1 and 1.2 will be given in Sections 3 and 4 .

The following lemma is the main technical prerequisite that we use; it is the analogue of [5, Lemma 2.2]. Up to part (v) it was proved in [4]; however, (v) follows along the same lines. By a slice of B_{X} we mean a set of the form

$$
S\left(y^{*}, \varepsilon\right)=\left\{x \in B_{X}: y^{*}(x) \geq 1-\varepsilon\right\}
$$

for some $y^{*} \in S_{X^{*}}$ and some $\varepsilon>0$, and a weak ${ }^{*}$ slice $S(y, \varepsilon)$ of the dual ball $B_{X^{*}}$ is a particular case of slice, generated by element $y \in S_{X} \subset X^{* *}$.

Lemma 1.3. If Y is a norming subspace of X^{*}, then the following assertions are equivalent.
(i) X has the Daugavet property with respect to Y.
(ii) For every $x \in S_{X}$, for every $\varepsilon>0$, and for every $y^{*} \in S_{Y}$ there is some $y \in S\left(y^{*}, \varepsilon\right)$ such that

$$
\begin{equation*}
\|x+y\| \geq 2-\varepsilon . \tag{1.3}
\end{equation*}
$$

(iii) For every $x \in S_{X}$, for every $\varepsilon>0$, and for every $y^{*} \in S_{Y}$ there is a slice $S\left(y_{1}^{*}, \varepsilon_{1}\right) \subset S\left(y^{*}, \varepsilon\right)$ with $y_{1}^{*} \in S_{Y}$ such that (1.3) holds for every $y \in S\left(y^{*}, \varepsilon_{1}\right)$.
(iv) For every $x^{*} \in S_{Y}$, for every $\varepsilon>0$, and for every weak* slice $S(x, \varepsilon)$ of the dual ball $B_{X^{*}}$ there is some $y^{*} \in S(x, \varepsilon)$ such that $\left\|x^{*}+y^{*}\right\| \geq 2-\varepsilon$.
(v) For every $x^{*} \in S_{Y}$, for every $\varepsilon>0$, and for every weak* slice $S(x, \varepsilon)$ of the dual ball $B_{X^{*}}$ there is another weak* slice $S\left(x_{1}, \varepsilon_{1}\right) \subset S(x, \varepsilon)$ such that $\left\|x^{*}+y^{*}\right\| \geq 2-\varepsilon$ for every $y^{*} \in S\left(x_{1}, \varepsilon_{1}\right)$.

2. A characterisation of almost Daugavet spaces by means of ℓ_{1}-SEQUENCES IN THE DUAL

For the sake of easy notation we introduce two definitions.
Definition 2.1. Let E be subspace of a Banach space F and $\varepsilon>0$. An element $e \in B_{F}$ is said to be ($\varepsilon, 1$)-orthogonal to E if for every $x \in E$ and $t \in \mathbb{R}$

$$
\begin{equation*}
\|x+t e\| \geq(1-\varepsilon)(\|x\|+|t|) . \tag{2.1}
\end{equation*}
$$

Definition 2.2. Let E be a Banach space. A sequence $\left\{e_{n}\right\}_{n \in \mathbb{N}} \subset B_{E} \backslash\{0\}$ is said to be an asymptotic ℓ_{1}-sequence if there is a sequence of numbers $\varepsilon_{n}>0$ with $\prod_{n \in \mathbb{N}}\left(1-\varepsilon_{n}\right)>0$ such that e_{n+1} is $\left(\varepsilon_{n}, 1\right)$-orthogonal to $Y_{n}:=\operatorname{lin}\left\{e_{1}, \ldots, e_{n}\right\}$ for every $n \in \mathbb{N}$.

Evidently every asymptotic ℓ_{1}-sequence is $1 / \prod_{n \in \mathbb{N}}\left(1-\varepsilon_{n}\right)$-equivalent to the unit vector basis in ℓ_{1}, and moreover every element of the unit sphere of $E_{m}:=\operatorname{lin}\left\{e_{k}\right\}_{k=m+1}^{\infty}$ is $\left(1-\prod_{n \geq m}\left(1-\varepsilon_{n}\right), 1\right)$-orthogonal to Y_{m} for every $m \in \mathbb{N}$.

The following lemma is completely analogous to [5, Lemma 2.8]; instead of [5, Lemma 2.1] it uses (v) of Lemma 1.3. So we state it without proof.
Lemma 2.3. Let Y be a norming subspace of $X^{*}, X \in \operatorname{DPr}(Y)$, and let $Y_{0} \subset Y$ be a finite-dimensional subspace. Then for every $\varepsilon_{0}>0$ and every weak* slice $S\left(x_{0}, \varepsilon_{0}\right)$ of $B_{X^{*}}$ there is another weak ${ }^{*}$ slice $S\left(x_{1}, \varepsilon_{1}\right) \subset S\left(x_{0}, \varepsilon_{0}\right)$ of $B_{X^{*}}$ such that every element $e^{*} \in S\left(x_{1}, \varepsilon_{1}\right)$ is $\left(\varepsilon_{0}, 1\right)$-orthogonal to Y_{0}. In particular there is an element $e_{1}^{*} \in S\left(x_{0}, \varepsilon_{0}\right) \cap S_{Y}$ which is $\left(\varepsilon_{0}, 1\right)$-orthogonal to Y_{0}.

We need one more definition.
Definition 2.4. A sequence $\left\{e_{n}^{*}\right\}_{n \in \mathbb{N}} \subset B_{X^{*}}$ is said to be double-norming if $\operatorname{lin}\left\{e_{k}^{*}\right\}_{k=n}^{\infty}$ is norming for every $n \in \mathbb{N}$.

Here is the main result of this section.
Theorem 2.5. A separable Banach space X is an almost Daugavet space if and only if X^{*} contains a double-norming asymptotic ℓ_{1}-sequence.

Proof. First we prove the "if" part. Let $\left\{e_{n}^{*}\right\}_{n \in \mathbb{N}} \subset B_{X^{*}}$ be a double-norming asymptotic ℓ_{1}-sequence, and let $\varepsilon_{n}>0$ with $\prod_{n \in \mathbb{N}}\left(1-\varepsilon_{n}\right)>0$ be such that e_{n+1}^{*} is ($\varepsilon_{n}, 1$)-orthogonal to $Y_{n}:=\operatorname{lin}\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$ for every $n \in \mathbb{N}$. Let us prove that X has the Daugavet property with respect to $Y=\overline{\operatorname{lin}}\left\{e_{n}^{*}\right\}_{n \in \mathbb{N}}$ where the closure is meant in the norm topology. To do this let us apply (iv) of Lemma 1.3.

Fix an $x^{*} \in S_{Y}$, an $\varepsilon>0$ and a weak ${ }^{*}$ slice $S(x, \varepsilon)$ of the dual ball $B_{X^{*}}$. Denote in addition to $Y_{m}=\operatorname{lin}\left\{e_{1}^{*}, \ldots, e_{m}^{*}\right\}, E_{m}:=\operatorname{lin}\left\{e_{k}^{*}\right\}_{k=m+1}^{\infty}$. Using the definition of Y select an $m \in \mathbb{N}$ and an $x_{m}^{*} \in Y_{m}$ such that $\left\|x^{*}-x_{m}^{*}\right\|<\varepsilon / 2$ and $\prod_{n \geq m}\left(1-\varepsilon_{n}\right)>1-\varepsilon / 2$. Since E_{m} is norming, there is a $y^{*} \in S(x, \varepsilon) \cap S_{E_{m}}$. Taking into account that every element of the unit sphere of E_{m} is $(\varepsilon / 2,1)$-orthogonal to Y_{m} we obtain

$$
\left\|x^{*}+y^{*}\right\| \geq\left\|x_{m}^{*}+y^{*}\right\|-\left\|x^{*}-x_{m}^{*}\right\| \geq 2-\varepsilon .
$$

For the "only if" part we proceed as follows. First we fix a sequence of numbers $\varepsilon_{n}>0$ with $\prod_{n \in \mathbb{N}}\left(1-\varepsilon_{n}\right)>0$ and a dense sequence $\left(x_{n}\right)$ in S_{X}. We can choose these x_{n} in such a way that each of them appears in the sequence $\left(x_{n}\right)$ infinitely many times. Assume now that $X \in \operatorname{DPr}(Y)$ with respect to a norming subspace $Y \subset X^{*}$. Starting with $Y_{0}=\{0\}, \varepsilon_{0}=1$ and applying Lemma 2.3 step-by-step we can construct a sequence $\left\{e_{n}^{*}\right\}_{n \in \mathbb{N}} \subset S_{Y}$ in such a way that each e_{n+1}^{*} belongs to $S\left(x_{n}, \varepsilon_{n}\right)$ and is $\left(\varepsilon_{n}, 1\right)$-orthogonal to Y_{n}, where $Y_{n}=\operatorname{lin}\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$ as before. This inductive construction ensures that the $e_{n}^{*}, n \in \mathbb{N}$ form an asymptotic ℓ_{1}-sequence. On the other hand this sequence meets every slice $S\left(x_{n}, \varepsilon_{n}\right)$ infinitely many times, and this implies by density of $\left(x_{n}\right)$ that $\left(e_{n}^{*}\right)$ is double-norming.

In Corollary 3.4 we shall observe a somewhat more pleasing version of the last result.

We conclude the section with two examples.
Proposition 2.6. ℓ_{1} is an almost Daugavet space.
Proof. To prove this statement we will construct a double-norming asymptotic ℓ_{1}-sequence $\left(f_{n}\right) \subset \ell_{\infty}=\left(\ell_{1}\right)^{*}$. At first consider a sequence $\left(g_{n}\right) \subset \ell_{\infty}$ of elements $g_{n}=\left(g_{n, j}\right)_{j \in \mathbb{N}}$ with all $g_{n, j}= \pm 1$ satisfying the following independence condition: for arbitrary finite collections $\alpha_{s}= \pm 1, s=1, \ldots, n$, the set of those j that $g_{s, j}=\alpha_{s}$ for all $s=1, \ldots, n$ is infinite (for instance, put $g_{s, j}:=r_{s}\left(t_{j}\right)$, where the r_{s} are the Rademacher functions and $\left(t_{j}\right)_{j \in \mathbb{N}}$ is a fixed sequence of irrationals that is dense in $[0,1])$. These $g_{n}, n \in \mathbb{N}$ form an isometric ℓ_{1}-sequence, and moreover if one changes a finite number of coordinates in each of the g_{n} to some other ± 1, the independence condition will survive, so the modified sequence will still be an isometric ℓ_{1}-sequence.

Now let us define the vectors $f_{n}=\left(f_{n, j}\right)_{j \in \mathbb{N}}, f_{n, j}= \pm 1$, in such a way that for $k=1,2, \ldots$ and $n=2^{k}+1,2^{k}+2, \ldots, 2^{k+1}$ the vectors $\left(f_{n, j}\right)_{j=1}^{k} \in \ell_{\infty}^{(k)}$ run over all extreme points of the unit ball of $\ell_{\infty}^{(k)}$, i.e., over all possible k-tuples of ± 1; for the remaining values of indices we put $f_{n, j}=g_{n, j}$. As we have already remarked, the f_{n} form an isometric ℓ_{1}-sequence. Moreover, for every $k \in \mathbb{N}$ the restrictions of the f_{n} to the first k coordinates form a double-norming sequence over $\ell_{1}^{(k)}$, so $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a double-norming sequence over ℓ_{1}.

Since ℓ_{∞} is isomorphic to $L_{\infty}[0,1]$, which has the Daugavet property, ℓ_{∞} can be equivalently renormed to possess the Daugavet property. Let us show that in the original norm it is not even an almost Daugavet space.

Proposition 2.7. ℓ_{∞} is not an almost Daugavet space.
Proof. Let us call a functional $y^{*} \in X^{*}$ a Daugavet functional if

$$
\left\|\operatorname{Id}+y^{*} \otimes x\right\|=1+\left\|y^{*} \otimes x\right\| \quad \text { for every } x \in X
$$

Let $X=\ell_{\infty}$ and $y^{*}=\left(y_{n}^{*}\right) \in \ell_{1} \subset\left(\ell_{\infty}\right)^{*}$. If $y^{*} \neq 0$, then it is not a Daugavet functional. Indeed, assume $\left\|y^{*}\right\|=1$. Pick an index r such that $y_{r}^{*}=\alpha \neq 0$; let's say $r=1$ for simplicity. If $\alpha>0$, let $x=-e_{1}$ and $\varepsilon=\alpha / 2$. If y^{*} were a Daugavet functional, then (see Lemma 1.3) for some $z=\left(z_{n}\right) \in \ell_{\infty},\|z\|=1$,

$$
y^{*}(z) \geq 1-\varepsilon, \quad\|z+x\| \geq 2-\varepsilon .
$$

Hence, putting $u=1-z_{1}$

$$
1-\varepsilon \leq y^{*}(z) \leq \alpha z_{1}+\sum_{n=2}^{\infty}\left|y_{n}^{*} \|\left|z_{n}\right| \leq \sum_{n=1}^{\infty}\right| y_{n}^{*} \mid-u \alpha
$$

so that $u \leq \varepsilon / \alpha=1 / 2$ and $z_{1} \geq 1 / 2$. On the other hand, $\|z+x\| \geq 2-\varepsilon$ implies that $\left|z_{1}-1\right| \geq 2-\varepsilon \geq 3 / 2$ which is impossible for $1 / 2 \leq z_{1} \leq 1$. The case $\alpha<0$ is treated in the same way.

Now, each $y^{*} \in\left(\ell_{\infty}\right)^{*}$ can be decomposed as

$$
y^{*}=v^{*}+w^{*} \in \ell_{1} \oplus\left(c_{0}\right)^{\perp}, \quad\left\|y^{*}\right\|=\left\|v^{*}\right\|+\left\|w^{*}\right\| .
$$

Hence if y^{*} is a Daugavet functional, so is v^{*}, which implies $v^{*}=0$ and $y^{*} \in\left(c_{0}\right)^{\perp}$. But $\left(c_{0}\right)^{\perp}$ is not norming, and neither is any of its subspaces.

Consequently, ℓ_{∞} fails the almost Daugavet property.

3. Proof of Theorem 1.1

We will accomplish the proof of Theorem 1.1 by means of the following propositions.

The following fact applied for separable spaces is equivalent to implication (c) \Rightarrow (a) of Theorem 1.1.

Proposition 3.1. Every almost Daugavet space X has thickness $T(X)=2$.
Proof. Let $Y \subset X^{*}$ be a norming subspace with respect to which $X \in$ $\mathrm{D} \operatorname{Pr}(Y)$. According to the definition of $T(X)$ we have to show that for every $\varepsilon_{0}>0$ there is no finite $\left(2-\varepsilon_{0}\right)$-net of S_{X} consisting of elements of S_{X}. In other words we must demonstrate that for every collection $\left\{x_{1}, \ldots, x_{n}\right\} \subset$ S_{X} there is a $y_{0} \in S_{X}$ with $\left\|x_{k}-y_{0}\right\|>2-\varepsilon_{0}$ for all $k=1, \ldots, n$. But this is an evident corollary of Lemma 1.3(iii): starting with an arbitrary $y_{0}^{*} \in S_{Y^{*}}$ and applying (iii) we can construct recursively elements $y_{k}^{*} \in S_{Y^{*}}$ and reals $\varepsilon_{k} \in(0, \varepsilon), k=1, \ldots, n$, in such a way that $S\left(y_{k}^{*}, \varepsilon_{k}\right) \subset S\left(y_{k-1}^{*}, \varepsilon_{k-1}\right)$ and

$$
\left\|\left(-x_{k}\right)+y\right\|>2-\varepsilon_{0}
$$

for every $y \in S\left(y_{k}^{*}, \varepsilon_{k}\right)$. Since $S\left(y_{n}^{*}, \varepsilon_{n}\right)$ is the smallest of the slices constructed, every norm-one element of $S\left(y_{n}^{*}, \varepsilon_{n}\right)$ can be taken as the y_{0} we need.

Let us now turn to the implication $(\mathrm{a}) \Rightarrow(\mathrm{b})$ of Theorem 1.1.
Proposition 3.2. If $T(X)=2$ and X is separable, then X contains a canonical ℓ_{1}-type sequence.

Proof. Fix a dense countable set $A=\left\{a_{n}: n \in \mathbb{N}\right\} \subset S_{X}$ and a null-sequence $\left(\varepsilon_{n}\right)$ of positive reals. Since for every $n \in \mathbb{N}$ the n-point set $\left\{-a_{1}, \ldots,-a_{n}\right\}$ is not a $\left(2-\varepsilon_{n}\right)$-net of S_{X} there is an $e_{n} \in S_{X}$ with $\left\|e_{n}-\left(-a_{k}\right)\right\|>2-\varepsilon_{n}$ for all $k=1, \ldots, n$. The constructed sequence $\left(e_{n}\right)$ satisfies for every $k \in \mathbb{N}$ the condition

$$
\lim _{n \rightarrow \infty}\left\|a_{k}+e_{n}\right\|=\left\|a_{k}\right\|+1=2
$$

By the density of A in S_{X} and a standard convexity argument (cf. e.g. [8, page 78]) this yields that $\left(e_{n}\right)$ is a canonical ℓ_{1}-type sequence.

It remains to prove the implication $(\mathrm{b}) \Rightarrow(\mathrm{c})$ of Theorem 1.1.
Proposition 3.3. A separable Banach space X containing a canonical ℓ_{1} type sequence is an almost Daugavet space.

Proof. We will use Theorem 2.5. Fix an increasing sequence of finite-dimensional subspaces $E_{1} \subset E_{2} \subset E_{3} \subset \ldots$ whose union is dense in X. Also, fix sequences $\varepsilon_{n} \searrow 0$ and $\delta_{n}>0$ such that for all n

$$
\begin{equation*}
\prod_{k=n}^{\infty}\left(1-\delta_{k}\right) \geq 1-\varepsilon_{n} \tag{3.1}
\end{equation*}
$$

Passing to a subsequence if necessary we can find a canonical ℓ_{1}-type sequence $\left(e_{n}\right)$ satisfying the following additional condition: For every $x \in$ $\operatorname{lin}\left(E_{n} \cup\left\{e_{1}, \ldots, e_{n}\right\}\right)$ and every $\alpha \in \mathbb{R}$ we have

$$
\begin{equation*}
\left\|x+\alpha e_{n+1}\right\| \geq\left(1-\delta_{n}\right)(\|x\|+|\alpha|) \tag{3.2}
\end{equation*}
$$

Then we have for every $x \in E_{n}$ and every $y=\sum_{k=n+1}^{M} a_{k} e_{k}$ by (3.1) and (3.2)

$$
\begin{equation*}
\|x+y\| \geq\left(1-\varepsilon_{n}\right)\|x\|+\sum_{k=n+1}^{M}\left(1-\varepsilon_{k-1}\right)\left|a_{k}\right| \tag{3.3}
\end{equation*}
$$

Fix a dense sequence $\left(x_{n}\right)$ in S_{X} such that $x_{n} \in E_{n}$ and every element of the range of the sequence is attained infinitely often, that is for each $m \in \mathbb{N}$ the set $\left\{n: x_{n}=x_{m}\right\}$ is infinite. Finally, fix an "independent" sequence $\left(g_{n}\right) \subset \ell_{\infty}, g_{n, j}= \pm 1$, as in the proof of Proposition 2.6.

Now we are ready to construct a double-norming asymptotic ℓ_{1}-sequence $\left(f_{n}^{*}\right) \subset X^{*}$. First we define \tilde{f}_{n}^{*} on $F_{n}:=\operatorname{lin}\left\{x_{n}, e_{n+1}, e_{n+2}, \ldots\right\}$ by

$$
\begin{align*}
\tilde{f}_{n}^{*}\left(x_{n}\right) & =1-\varepsilon_{n} \tag{3.4}\\
\tilde{f}_{n}^{*}\left(e_{k}\right) & =\left(1-\varepsilon_{k-1}\right) g_{n, k} \quad(\text { if } k>n) \tag{3.5}
\end{align*}
$$

By (3.3), $\left\|\tilde{f}_{n}^{*}\right\| \leq 1$, and indeed $\left\|\tilde{f}_{n}^{*}\right\|=1$ by (3.5). Define $f_{n}^{*} \in X^{*}$ to be a Hahn-Banach extension of \tilde{f}_{n}^{*}. Condition (3.4) and the choice of $\left(x_{n}\right)$ ensure that $\left(f_{n}^{*}\right)$ is double-norming. Let us show that it is an isometric ℓ_{1}-basis. Indeed, due to our definition of an "independent" sequence, for an arbitrary
finite collection $A=\left\{a_{1}, \ldots, a_{n}\right\}$ of non-zero coefficients the set J_{A} of those $j>n$ that $g_{s, j}=\operatorname{sign} a_{s}, s=1, \ldots, n$, is infinite. So by (3.5)

$$
\left\|\sum_{s=1}^{n} a_{s} f_{s}^{*}\right\| \geq \sup _{j \in J_{A}}\left(\sum_{s=1}^{n} a_{s} f_{s}^{*}\right) e_{j}=\sup _{j \in J_{A}}\left(1-\varepsilon_{j-1}\right) \sum_{s=1}^{n}\left|a_{s}\right|=\sum_{s=1}^{n}\left|a_{s}\right|
$$

Since we have constructed an isometric ℓ_{1}-basis in the last proof, we have obtained the following version of Theorem 2.5.

Corollary 3.4. A separable Banach space X is an almost Daugavet space if and only if X^{*} contains a double-norming isometric ℓ_{1}-sequence.

4. Proof of Theorem 1.2

We start with two lemmas.
Lemma 4.1. Let X be a linear space, $\left(e_{n}\right) \subset X$, and let p be a seminorm on X. Assume that $\left(e_{n}\right)$ is an isometric ℓ_{1}-basis with respect to p, i.e., $p\left(\sum_{k=1}^{n} a_{k} e_{k}\right)=\sum_{k=1}^{n}\left|a_{k}\right|$ for all $a_{1}, a_{2}, \ldots \in \mathbb{R}$. Fix a free ultrafilter \mathcal{U} on \mathbb{N} and define

$$
p_{r}(x)=\mathcal{U}-\lim _{n} p\left(x+r e_{n}\right)-r
$$

for $x \in X$ and $r>0$. Then:
(a) $0 \leq p_{r}(x) \leq p(x)$ for all $x \in X$,
(b) $p_{r}(x)=p(x)$ for all $x \in \operatorname{lin}\left\{e_{1}, e_{2}, \ldots\right\}$,
(c) the map $x \mapsto p_{r}(x)$ is convex for each r,
(d) the map $r \mapsto p_{r}(x)$ is convex for each x,
(e) $p_{r}(t x)=t p_{r / t}(x)$ for each $t>0$.

Proof. The only thing that is not obvious is that p_{r} is positive; note that (b) is a well-known property of the unit vector basis of ℓ_{1}. Now, given $\varepsilon>0$ pick n_{ε} such that

$$
p\left(x+r e_{n_{\varepsilon}}\right) \leq \mathcal{U}-\lim _{n} p\left(x+r e_{n}\right)+\varepsilon
$$

Then for each $n \neq n_{\varepsilon}$

$$
\begin{aligned}
p\left(x+r e_{n}\right) & =p\left(x+r e_{n_{\varepsilon}}+r\left(e_{n}-e_{n_{\varepsilon}}\right)\right) \\
& \geq 2 r-p\left(x+r e_{n_{\varepsilon}}\right) \\
& \geq 2 r-\mathcal{U}-\lim _{n} p\left(x+r e_{n}\right)-\varepsilon
\end{aligned}
$$

hence $2 \mathcal{U}-\lim _{n} p\left(x+r e_{n}\right) \geq 2 r-2 \varepsilon$ and $p_{r} \geq 0$.
Lemma 4.2. Assume the conditions of Lemma 4.1. Then the function $r \mapsto p_{r}(x)$ is decreasing for each x. The quantity

$$
\bar{p}(x):=\lim _{r \rightarrow \infty} p_{r}(x)=\inf _{r} p_{r}(x)
$$

satisfies (a)-(c) of Lemma 4.1 and moreover

$$
\begin{equation*}
\bar{p}(t x)=t \bar{p}(x) \quad \text { for } t>0, x \in X \tag{4.1}
\end{equation*}
$$

Proof. By Lemma 4.1(a) and (d), $r \mapsto p_{r}(x)$ is bounded and convex, hence decreasing. Therefore, \bar{p} is well defined. Clearly, (4.1) follows from (e) above.

Since for separable spaces the condition $T(X)=2$ is equivalent to the presence of a canonical ℓ_{1}-type sequence and a canonical ℓ_{1}-type sequence evidently contains a subsequence equivalent to the canonical basis of ℓ_{1}, to prove Theorem 1.2 it is sufficient to demonstrate the following:

Theorem 4.3. Let X be a Banach space containing a copy of ℓ_{1}. Then X can be renormed to admit a canonical ℓ_{1}-type sequence. Moreover if $\left(e_{n}\right) \subset$ X is an arbitrary sequence equivalent to the canonical basis of ℓ_{1} in the original norm, then one can construct an equivalent norm on X in such a way that $\left(e_{n}\right)$ is isometrically equivalent to the canonical basis of ℓ_{1} and $\left(e_{n}\right)$ forms a canonical ℓ_{1}-type sequence in the new norm.

Proof. Let Y be a subspace of X isomorphic to ℓ_{1}, and let $\left(e_{n}\right)$ be its canonical basis. To begin with, we can renorm X in such a way that Y is isometric to ℓ_{1} and $\left(e_{n}\right)$ is an isometric ℓ_{1}-basis.

Let \mathcal{P} be the family of all seminorms \tilde{p} on X that are dominated by the norm of X and for which $\tilde{p}(y)=\|y\|$ for $y \in Y$. By Zorn's lemma, \mathcal{P} contains a minimal element, say p. We shall argue that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p\left(x+e_{n}\right)=p(x)+1 \quad \forall x \in X \tag{4.2}
\end{equation*}
$$

To show this it is sufficient to prove that for every free ultrafilter \mathcal{U} on \mathbb{N}

$$
\begin{equation*}
\mathcal{U}-\lim _{n} p\left(x+e_{n}\right)=p(x)+1 \quad \forall x \in X \tag{4.3}
\end{equation*}
$$

To this end associate to p and \mathcal{U} the functional \bar{p} from Lemma 4.2. Note that $0 \leq \bar{p} \leq p$, but \bar{p} need not be a seminorm. However,

$$
q(x)=\frac{\bar{p}(x)+\bar{p}(-x)}{2}
$$

defines a seminorm, and $q \leq p$. By Lemma 4.1(b) and by minimality of p we get that

$$
\begin{equation*}
q(x)=p(x) \quad \forall x \in X \tag{4.4}
\end{equation*}
$$

Now, since $p(x) \geq \bar{p}(x)$ and $p(x)=p(-x) \geq \bar{p}(-x)$, (4.4) implies that $p(x)=$ $\bar{p}(x)$. Finally, by Lemma 4.1(a) and the definition of \bar{p} we have $p(x)=p_{r}(x)$ for all $r>0$; in particular $p(x)=p_{1}(x)$, which is our claim (4.3).

To complete the proof of the theorem, consider

$$
\|x\|:=p(x)+\|[x]\|_{X / Y}
$$

this is the equivalent norm that we need. Indeed, clearly $\|x\|\|\leq 2\| x \|$. On the other hand, $\|x\| \geq \frac{1}{3}\|x\|$. To see this assume $\|x\|=1$. If $\|[x]\|_{X / Y} \geq \frac{1}{3}$, there is nothing to prove. If not, pick $y \in Y$ such that $\|x-y\|<\frac{1}{3}$. Then $p(y)=\|y\|>\frac{2}{3}$, and

$$
\|x\| \geq p(x) \geq p(y)-p(x-y)>\frac{2}{3}-\|x-y\|>\frac{1}{3} .
$$

Therefore, $\|$.$\| and |||.| |$ are equivalent norms, and
$\lim _{n \rightarrow \infty}\left\|x+e_{n}\right\|\left\|=\lim _{n \rightarrow \infty} p\left(x+e_{n}\right)+\right\|[x]\left\|_{X / Y}=p(x)+1+\right\|[x]\left\|_{X / Y}=\right\| x\| \|+1$
shows that $\left(e_{n}\right)$ is a canonical ℓ_{1}-type sequence for the new norm.

References

[1] D. Bilik, V. M. Kadets, R. V. Shvidkoy and D. Werner. Narrow operators and the Daugavet property for ultraproducts. Positivity 9 (2005), 45-62.
[2] Y. Ivakhno, V. Kadets and D. Werner. The Daugavet property for spaces of Lipschitz functions. Math. Scand. 101 (2007), 261-279.
[3] V. M. Kadets, N. Kalton, and D. Werner. Remarks on rich subspaces of Banach spaces. Studia Math. 159 (2003), 195-206.
[4] V. M. Kadets, V. Shepelska, and D. Werner. Quotients of Banach spaces with the Daugavet property. Bull. Pol. Acad. Sci. 56 (2008), 131-147.
[5] V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin, and D. Werner. Banach spaces with the Daugavet property. Trans. Amer. Math. Soc. 352 (2000), 855-873.
[6] V. M. Kadets and D. Werner. A Banach space with the Schur and the Daugavet property. Proc. Amer. Math. Soc. 132 (2004), 1765-1773.
[7] J.-L. Krivine and B. Maurey. Espaces de Banach stables. Israel J. Math. 39 (1981), 273-295.
[8] D. Werner. Recent progress on the Daugavet property. Irish Math. Soc. Bull. 46 (2001), 77-97.
[9] R. Whitley. The size of the unit sphere. Canadian J. Math. 20 (1968), 450-455.
Department of Mechanics and Mathematics, Kharkov National University, Pl. Svobody 4, 61077 Kharkov, Ukraine

E-mail address: vova1kadets@yahoo.com; shepelskaya@yahoo.com
Department of Mathematics, Freie Universität Berlin, Arnimallee 6, D-14 195 Berlin, Germany

E-mail address: werner@math.fu-berlin.de

