
Dynamic Management for Business Processes Modeling &
Execution in Workflows

Mati Golani matig@il.ibm.com

Abstract

Contemporary workflow-management systems cannot represent change or

evolution of business processes. When a change is needed due to external reason, an

offline procedure is invoked in order to create a new workflow engine template for the

future instances in the workflow enactment module.

The standard interfaces do not deal with the business process metadata in a way that can

actually change it as a reaction to inbound knowledge. There are many relevant cases,

especially in the virtual enterprise arena, where the business process is not deterministic

and is influenced by external parameters (such as the selection of virtual partners), so the

knowledge of what should be done is available, however it is external to the system.

There is a need to develop a modeling mechanism that enables to transfer process

definitions in an automatic way, without the need for human interference. One way of

confronting with these issues is the use of a rule-based engine to monitor business process

execution. This engine will contain internal meta-rules that refer to metadata entities, i.e.

rules that describe how to act on other rules (business process routing) when a change is

detected, while executing all needed consistency checks.

1 Introduction
Workflow (WF) is a visual model of information flow and monitoring system

that executes predefined actions at given predefined situations. The sequence of such

actions (activities) defines a business process (BP). One or more agents can execute the

business process. A significant reduction of cost as well as increase of efficiency can be

achieved by managing these processes in an automatic or semi-automatic fashion,

resulting in an improvement of product or service.

A reference model (figure 1) was developed on a generic basis by WFMC

(workflow management coalition), in order to define various components of the workflow

with emphasis on the functionality of each one, and the interfaces between them

[wfmcD95]. The Workflow Enactment Service is a central module that acts as a hub to

connect all other modules using APIs. This module is a software component that contains

one WF engine or more that creates, manages and executes instances of WF. The

enactment service module is responsible for the logical routing of activity execution,

while the execution itself is done by other modules.

• Interface 1 defines the connection to the process-modeling environment,

where all business processes are defined (build time).

• Interface 2 defines the connection to WF client applications, i.e.

applications that provide an interaction with the user.

• Interface 3 defines similarly to interface 2, the connection to external

applications, to be invoked by the WF system.

• Interface 4 defines the connection to other WF enactment services, in

order to enable data exchange.

• Interface 5 defines the connection to the monitoring and administration

module.

Information Systems Engineering Department

Faculty of Industrial Engineering and Management

Technion- Israel Institute of Technology

I.B.M Haifa Research Laboratory

ISRAEL

Once the Business process model was defined (GUI, WF declarative language etc. – tool

dependent) it is compiled and transferred by interface 1 to the enactment module.

1.1 Dynamic Updates
Observations show that in a dynamic environment organizations are required to

constantly change their business processes, in order to survive the market competition and

perform optimal usage of technological limitations. The change can be done on 3 levels:

Business process improvement: perform the same business process with higher

efficiency. This usually involves organizational structure modification, and

responsibility allocation.

Innovative modification: where the process deliverables remains the same, but

the way of execution is redesigned.

Exception: The process modeling is based upon predefined entities that are

processed through the BP execution (purchase orders, raw materials, invoices

etc.). These entities have characteristics that may be updated and would effect

the BP execution (in the case of exception). Furthermore, such exceptions can

even cause the business process execution failure. For example, a material has a

certain package weight that was updated to a higher weight, which in turn

exceeds the weight limitation of the distributor for express deliveries, while the

BP still expects this material to arrive on a special express delivery.

Standard commercial WF systems do not deal with model versioning, thus the current

compiled version is the one to be executed. Research projects have dealt with this issue

by defining types of update. Most of them refer to immediate/semi immediate types

[D+98] [KCD99]. The most comprehensive one [SO98]partitioned the updates into these

categories:

Flush - all existing instances are permitted to continue executing according to

the “old” version.

Abort - all current instances are aborted.

Migrate - all instances will perform future activities according to the updated

version.

Adapt - relates to identified exceptions and errors.

Build - all instances are aborted, and start over again according to the updated

version.

All the above mentioned (and more) described models and projects define

manually the business process update. Classical WF system use the WF definition module

in order to define such updates, and then compile it into a runtime version. More

advanced systems (research prototypes) that combine active database technology as an

integral part of the system, use the active module for deriving rules that reflect the

business logic, and monitor its progress. These models can do a superb job until the time

in which a change in the BP model is required. In this case there is a need to return to the

build time module for reconstruction of the BP model and then runtime generation, that

will derive the new rules to be monitored.

2 The Research question
The research question is twofold:

Construct a model that will enable dynamic automated modification on running WF

systems; Resolve inconsistencies that may occur as a result of such modification.

2.1 Motivation

Virtual enterprises are formed in a competitive market as a result of the

need to improve cost/performance ratio by cross-organizational cooperation.

Cross-organizational operations require a dynamic and flexible mechanism that

can handle the data flow between different partners [SN96][SN97]. Consider a

virtual enterprise in which partner A delivers raw material k to partner B for

further processing during an assembling process H, where the process H is

dependent upon the nature of k. There may be a situation in which partner A, for

some reason, has changed the characteristics of raw material k (exception,

temporal change, permanent change). This should be reflected in process H (for

example, there might be a need for machinery replacement). Once process H is

active, a query should be sent to partner A, to receive such modifications.

Alternatively, a message from A can be generated and sent to inform the

responsible person at B. Notice that the update takes place in one enterprise, but

defines the BP of another one.

In environments with a demand for fast response, an off line updating

procedure decreases the efficiency of the organization and causes one of two

depending on the update frequency:

• The system gives a good response time, but relies on possibly
wrong data and knowledge.

• The system is reliable, but is occasionally in update status that
prevents its fluent functionality.

A different attitude that may solve the problem is:

• The raw martial engineers (at partner A) update the local database
regarding the new specifications.

• This update generates a rule with the “new” logic (materials,
quantities, machinery, and routing).

• This rule is activated on partner A’s database, and is monitored

since its definition time. Once a situation that relates to the

relevant data is identified, the new data is applied, and the WF is

respectively updated automatically.

• When a situation that defines the end of temporary modification is
traced, the mechanism updates the WF system back to its initial

state.

2.2 The Solution approach

2.2.1 Methodology

��Definition of a theoretical model for business process updates

management and monitoring.

��Monitoring mechanisms definition for dynamic workflow

processes. Several issues will be examined:

Centralized/Distributed- although most WF system are

categorized as centralized system that holds all the data, the option

of a distributed monitoring mechanism should be considered, since

the market is turning into a distributed environment work space

(virtual enterprises etc.). In case the central option will be chosen,

in order to get inbound data, it needs an interface with other

external system mechanisms using the modification language

(wrapped with XML).

Combined data-metadata/fragmented- the meta data (for

monitoring) can be an integral part of the database containing the

“regular” data, or a an autonomous fragment

��Definition of BP structural modification language. This language

will support the definition of the data/knowledge, which is required

for BP modification. It will enable users/machine to represent the

new BP process, including nodes (activities) and edges that were in

the original BP (modified or erased).

��A verification process can run over the requested change, to ensure

the modification authorization and correctness, using graph theory

algorithms.

��Build a mechanism that uses the language, manages and monitors the

processes (and activities) that are defined in the WF. The language will

support composite event detection and WF oriented actions, definitions

and modification (i.e. roles, activities, decision nodes, and routers). These

actions will be done automatically once the updated data is monitored, and

the run time version will be updated.

2.2.2 The model components

Situation monitoring engine: there is a basic version at IBM Haifa Research

Laboratory (HRL). It detects situations that are composed of simple events. It

uses temporal, quantitative, and logical operators. It supports context driven

filtration, and will be customized to support WF oriented events.

Database: a relational schema that holds the logical model of rules and situations.

Management & Monitoring Tool Module: this module is the main axis that

connects and flows information among the other modules.

Process Definition Tool: A standard module in every WFMC standard supported

WF tool, providing the option of assimilating it into the monitoring system. If

needed, a standard compatible module that cooperates with the management &

monitoring module will be built.

2.2.3 Design

The design schematics is shown in figure 2. This figure is based on the standard

design (figure 1), and the darker “L” shaped area borders the related modules that

are issued in this research. A functional core construction for event and activities

detection, will support API ‘s launching.

Core XML wrapper for distributed connectivity for various applications.

Uses common interfaces according to WFMC. Interface 1 for Process definition

tools, and interface 5 for Administration & monitoring tools. These two modules

will be either taken from a WF vendor tool or there might be a need to create

independent modules that use the standard interfaces (1 and 5).

The monitoring mechanism will be constructed of active database components,
but the meta-rules structure is to be defined, considering two alternatives:

1. A model that is an extension of the classical ECA rule structure. This

option is supported in most commercial databases, although its ability

is quite poor when it comes to composite event definition. This option

will reflect the business logic in rules that will spot events, and as a

result will modify the WF structure.

2. A model that is based on the situation language Amit (IBM HRL) that

was originally developed for middleware services monitoring [EA99].

Amit gets events as input and detects situations, which are composed

of the events. Thanks to the large variety of operators, one can easily

define a situation, which is quite impossible to define as a classical

ECA rule. Amit language is currently not supported in commercial

databases, but is a powerful tool for definition and detection of

processes characterized with high complexity. Further more, Amit

engine is platform independent.

3. A combination of both options (most probable solution), meaning: the

use of active database for rule management and simple event detection.

The situation manager will form an upper level, applied for definition

and monitoring of complex situations.

System data and fluent control data will be stored in relational schemes.

At this point some issues are raised.

��The perception of ownership/authorities/privileges regarding one

changing others’ business process definition.

��Inconsistency check to verify that the change has created a

“connected” graph meaning there are no activities that are not

connected to the path starting from the initial activity.

��Inconsistency check to verify that the final activity is always

reached.

2.3 Case study

This case study shows the use of simple ECA rules to model and monitor BP

execution through modifications. Figure 3 describes a 3 companies B2B network,

where the retailer is the front end available to customers through the net, the

orders are transferred to the manufacturer, and the distributor. Further data

transfer that is not related to a new order is done directly between the

manufacturer and the distributor. Such networks have the following

characteristics:

• Business partners cooperate in some of their business processes
(Amazon/FedEx/ Publishers etc.)

• The information system of each partner is not shared with the others.

External

API

execution

• Knowledge that has been produced with in one partner’s organization and
affects the other partner processes is transferred to this partner.

Figure 3: an illustration of the interaction between business partners

given the following scenario:
Tarzan, a Virtual book shop, is updated using common interfaces (EDI usually)

that provide data which is relevant to current business processes activities, and is

not relevant to undefined ad hoc activities.

BedEX – the distributor, informs Tarzan that for the next two weeks, all

shipments to the Middle East are canceled (for new orders) and the shipping

charges for the same destination for the following week are raised by 35%

This modification is visualized in figure 4. The update is performed as an off-line

procedure… excluded from the monitoring system.

Figure 4: Order process flow in Tarzan

The database structure and content for modeling the business processes is as

follows:

Table 1 defines the root task of each business process.

Table 1:Workflow (Wfname, Start task)

BookOrder Purchase request

Table 2 lists the tasks related to each business process with assigned roles for each

activity.

Table 2:Work task (Wfname, Wtname, role)

BookOrder Purchase Request Client

BookOrder Availability Check Auto

BookOrder CreditCard Check Auto

BookOrder SuspendedRequestOption Client

BookOrder Request rejection Auto

BookOrder WarehouseNotification Auto

Table 3 lists the routing nodes related to each business process, and defines their

type.

Table 3:Routing task (Wfname, Rtname, type)

BookOrder ItemAvailable? Xor split

BookOrder Approved? Xor split

BookOrder CustomerInterested? Xor split

BookOrder J1 Xor join

BookOrder J2 Xor join

Table 4 lists the sequences segments of each BP. For cases of one activity follows

another without splits or joins.

Table 4:Next (Wfname, Task name, Next task)

BookOrder Purchase request Availability

check

BookOrder Availability

Check

Item Available?

BookOrder Suspended

RequestOption

Customer

Interested?

BookOrder CreditCardCheck Approved?

BookOrder Warehouse

Notification

End

BookOrder RequestRejection End

Table 5 connects the routing nodes with the following tasks

Table 5:After fork (Wfname, ForkTask, Next task,Condition)

BookOrder Item Available? Credit Card Check true

BookOrder Item Available?

SuspendedRequestOption

false

BookOrder CustomeInterested? J2 true

BookOrder CustomeInterested? J1 false

BookOrder Approved? J2 true

BookOrder Approved? J1 false

This business logic is transferred into rules, which will monitor the system. The

rules are ECA structured, meaning first an event is detected, then the condition is

evaluated, and if it is true than the defined action is performed. Thus the business

logic is maintained.

Initial BP Rules

 Event Condition Action Role
1 Purchase request(id) True Availability check(id) Client

2 Availability check completed Item.status=Available CreditCardCheck System

3 Availability check completed Item.status!=Available SuspendedRequestOption System

4 SuspendedRequestOption client.interested = true WarehouseNotification (id) Client

5 SuspendedRequestOption client.interested =False Request rejection(id) Client

6 CreditCardCheck(id) Result = OK WarehouseNotification (id) System

7 CreditCardCheck(id) Result = Denied RequestRejection (id) System

The incoming input (knowledge) regarding the required change might be

interpreted into meta data (knowledge monitoring) rules.

Suspend(1); - due to the 1st change (and the second change later on).

Updated rules table
 Event Condition Action Role

1 Purchase request(id) True Availability check(id) Client

2 Availability check completed Item.status=Available CreditCardCheck System

3 Availability check completed Item.status!=Available SuspendedRequestOption System

4 SuspendedRequestOption client.interested = true WarehouseNotification (id) Client

5 SuspendedRequestOption client.interested =False Request rejection(id) Client

6 CreditCardCheck(id) Result = OK WarehouseNotification (id) System

7 CreditCardCheck(id) Result = Denied RequestRejection (id) System

8 PurchaseRequest MidEastDest=True RequestRejection (id) Partner

9 PurchaseRequest MidEastDest=False AvailabilityCheck(id) Partner

10 2 Weeks from now True Resume(1); delete(8,9,10); System

A snapshot of the rules table after the 1st change

Updated rules table

 Event Condition Action Role
1 Purchase request(id) True Availability check(id) Client

2 Availability check completed Item.status=Available CreditCardCheck System

3 Availability check completed Item.status!=Available SuspendedRequestOption System

4 SuspendedRequestOption client.interested = true WarehouseNotification (id) Client

5 SuspendedRequestOption client.interested =False Request rejection(id) Client

6 CreditCardCheck(id) Result = OK WarehouseNotification (id) System

7 CreditCardCheck(id) Result = Denied RequestRejection (id) System

8 PurchaseRequest MidEastDest=True ShipingChargesUpdate(id) Partner

9 PurchaseRequest MidEastDest=False AvailabilityCheck(id) Partner

10 ShippingChargesUpdate(id) True AvailabilityCheck(id) Partner

11 3 Weeks from now True Resume(1); delete(8,9,10,11); System

A snapshot of the rules table after the 2nd change

Thus, at any given time the rule table contains the logic of current desired

behavior, while it may hold some more meta-data related to future changes. In a

way it is similar to a snapshot table in a temporal database, but different by fact

that the table here is dynamic and multiple versions are not maintained.

MetaData Rule

Suspended Rule

3 Research added value
All the current studies regarding dynamic process management deal with

the change as an operation that is done manually by the user, and the discussion

was on the effect on running WF instances, and future ones. Consequently, the

issue in focus was that once the BP is updated, there are several ways the WF

system may react, especially in cases where there are running instances of the

”old” BP model. Some studies that combine workflows with active databases,

emphasized the conversion of BP logic into rules, in a static manner

[DHL90],[K+95],[C+96], i.e., they referred to the given BP as a steady one, and

modeled it with rules. These projects neglected the aspect of how a business

process update is relevant to the area of active databases, although an active

database may be a convenient infrastructure for that matter. Thus, using the given

case study, all existing approaches would have modeled the BP in order to

compile it to an updated run-time version that will react to the given changes.

The development of a mechanism that supports BP dynamic update

performed on the runtime version is a significant extension to the use of active

databases in the WF arena. It will manage business processes using active

databases and will allow dynamic changes in business processes and automatic

creation of runtime versions. This reduces dramatically user interaction and

increases consistency and robustness of the system. In addition, a change, that it’s

origin in an event, and requires immediate response, is not applicable in classical

workflow systems that demand the user’s online interaction. Furthermore, event

that encapsulates knowledge will allow update using this knowledge that is

absolutely new to the system.

References

 [C+96] F.Casati,et al.. Deriving Active Rules for Workflow Enactment. Database

and Expert Systems Applications. 7th International Conference, DEXA 96
Proceedings. 1996 XV pp. 94-115

[D+98] A. Dogac, et al. Worflow Management Systems and Interoperability.

Springer-Verlag, 1998.

[DHL90] U. Dayal, M. Hsu, R. Ladin . Orgenizing Long Running Activities with

Triggers and Transactions. Proc. ACM SIGMOD, 1990

[EA99] O. Etzion, A. Adi. The Situation manager – an Application development

tool for reactive applications, IBM research Laboratory in Haifa, Isarel,
Technical Report, 1999.

 [K+95] G.Kappel et al.. Workflow Management Based on Objects, Rules and

Roles, Data Engineering, vol. 18, n. 1 pp. 11-18, March 1995.

[KCD99] P. Koksal, I. Cingil, A. Dogac. A Component-Based Workflow System

with Dynamic Modifications, Proc. of Next Generation Information
Technologies and Systems (NGITS '99), Springer-Verlag, Lecture Notes

in Computer Science, 1649, Israel, pp 238-255, July 1999.

[SN96] L. Song, R. Nagi. An integrated Information Framework for Agile

Manufacturing, Industrial Engineering Research Conference proc. IIE

Norcross, GA USA pp. 568-573, 1996

[SN97] L. Song, R. Nagi. Design and Implementation of Virtual Information

System for Agile Manufacturing, IIE Transactions V 29 n 10 pp. 839-
857, 1997

[SO98] S. W. Sadiq, M.E. Orlowska. On Dynamic Modification of Workflows

 Technical report, July 1998.

[wfmcD95] The workflow reference model, workflow management coalition, TC00-

1003 issue 1.1 January 1995

