
Developing Internet-based integrated architecture for managing
globally distributed software development projects

Julia Kotlarsky
Department of Decision & Information Sciences, Erasmus University

P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
Email:   jkotlarsky@fbk.eur.nl

Abstract
Given the increasing importance of globally distributed software development (GDSD)
over the last decade, it is surprising that empirical research in this area is still in the very
early stage. The few existing suggest that traditional coordination and control
mechanisms can be effective for these projects only with support from appropriate
information technology. However, at present, little is known about the success of current
Information and Communication Technology (ICT) support in the context of GDSD
projects. Therefore, the main question this research addresses is what ICT-based support
is appropriate for globally distributed software development projects? The objectives of
this research are to elicit and develop the functional requirements for ICT support for
GDSD projects, to analyze the gap between existing tools and these requirements, and to
develop an Internet-based integrated architecture of tools that would fill these gaps.

1. Motivation and Significance of the Topic
Historically the demand for software services has outpaced supply. As we enter the

era of e-business, companies are increasingly adopting complex software systems to
support their internal and external processes. Meanwhile, we are also witnessing an
exponential increase in the use of embedded software systems. Appliances such as mobile
phones, organizers, cars etc. are beginning to be equipped with sophisticated software that
communicates over the web. The demand for software and consequently software
developers is exploding in all parts of the world.

This imbalance between demand and supply is further exacerbated by the high
levels of skill and training required for building software. Software engineering
organizations have always had trouble meeting the growing demand for high quality
software. Although numerous improvements have been introduced to software engineering
practices, Brooks’ [1] claim that “building software will always be hard” is now generally
accepted. Brooks listed four unique characteristics  of software that make software
development more difficult than other system-engineering disciplines. Software systems are
complex, unvisualizable, and are constantly subject to change. Furthermore, they are
expected to conform to the needs of the continuously changing environment in which they
operate. These “inherent” challenges make software engineering a complex discipline.
Hence,  skilled software engineers and experienced software project managers are scarce
and relatively expensive in most regions of the world. Consequently, large software
development projects are regularly delayed and often show huge budget overruns [2].

In order to build quality software faster and cheaper companies in industrialized
countries are turning to GDSD projects. A number of economical and technical trends are
likely to further accelerate the growth of distributed software development. Economical
trends include globalization of the industry in general. Multi-national companies often
require software systems to be developed for geographically dispersed locations. Moving
parts of the development process to emerging countries (such as India and Israel that are
known to have large pools of highly trained software engineers at relatively low-costs) can
decrease development cost [3,4]. Another perceived advantage of global distribution is the
reduction in project life-cycle times by using time zone differences to organize “follow-the-
sun” (or “round-the-clock”) development [3-6].

On the technological side, ongoing innovations in ICT, by eliminating the
perception of distance, create new possibilities to cooperate in software development
projects in a distributed mode. Moreover, software industry has recently started to adopt a



more modular component-based architecture that further facilitates distributed development
of software products.  Traditionally, component-based architectures have been successfully
used in industries such as aircraft, automotive, electronics, computers, for setting-up
globally distributed design and production. Within the software industry, component-based
development by reducing interdependencies between components, holds the promise that
software components may be developed largely independently at dispersed sites.

Given the increasing importance of GDSD, it is surprising that only a limited
number of empirical studies on distributed software development currently exist. The few
existing studies [3,4,7] report numerous problems in distributed projects. The time,
governance, infrastructure, and culture gaps, associated with the geographical dispersion of
work, make it more difficult to manage inter-site work dependencies and to coordinate and
control the distributed work. Furthermore, traditional coordination and control mechanisms
are less effective in GDSD projects. Carmel [3] and Van Fenema [7] suggest  that these
traditional mechanisms will be effective for dispersed projects only with appropriate
technology support. However little is known of the success of current ICT support within
GDSD projects. Hence, our main research question is what ICT-based support is
appropriate for globally distributed software development projects?

The objectives of this research therefore are to elicit and develop the functional
requirements for ICT support for GDSD projects, to analyze the gap between existing
tools and these requirements, and to develop and test an Internet-based integrated
architecture of tools that would fill these gaps.

2. Research Approach
2.1  Research Questions
Our main research question is what ICT-based support is appropriate for globally
distributed software development projects?

 Our proposition is that despite a large number of tools currently available at the
software market, they  provide only partial support for GDSD projects. Furthermore,  those
tools are not designed to work together. Our starting premise is that the current generation
of  ICT-based tools available for supporting GDSD can be categorized into four functional
groups (figure 1). As the figure 1 shows, there is usually some overlap in the functionality
provided by the different categories of tools (tools are explained in section 3.2.2):

To address the main research question we have developed a number of sub-
questions to assist in identifying the requirements for tools to support GDSD:
Q1    Based upon current state of theory, what requirements for tools to support GDSD

projects can be identified?

Q2    What functionality is offered by tools currently available in the market?
Q3.1 What features of these tools are used in practice in GDSD projects?

Q3.2 What are  the requirements for an ICT-based architecture to support GDSD projects
that can be identified from such  projects in the field?

Q4.1 What is the gap between the  field-based requirements (identified in Q3.2), theory-
based requirements (Q1) and the functionality offered by existing tools (Q2)?

Q4.2 Based upon the analysis in Q4.1, what requirements for an  ICT-based architecture to
support GDSD projects can be identified?

GSS PM

CASE WFM

GSS   – Group Support Systems
PM     – Project Management tools
CASE – Computer-Aided Software Engineering tools
WFM  – Workflow Management tools

Where:

Figure 1:  Functionality provided by tools to be included into GDSD architecture.



Q5.1 What is an appropriate ICT-based architecture to support GDSD projects?

Q5.2 How can this architecture be effectively used in GDSD projects?
To answer these questions the research has been divided into several phases.

Results obtained at each phase will be used as inputs for the next phase to define a scope
and further develop questions to be researched in a next step. There has been  a strong
tradition of using a phased approach in systems development work, therefore we also
follow this approach.

2.2 Research Model and Research Methodology
Figure 2 describes the structure of the research and the phases and steps to be

undertaken at each phase. Furthermore, the model explains the research method to be used
at each step (in white rectangles). Sources of information for each phase are mentioned in
the upper (grey) rectangles.

In phase 1, basing on existing literature, we will develop theoretical functional
requirements for tools to support GDSD and functionality offered by existing tools (market
offering). In phase 2 we will look from a GDSD projects’ perspective at the features of

Implementation
(Future research)

Requirements

IIII  Q1

  II   Q2

Q3.1, Q3.2

Phase 1: Theory- and Tool-
Based requirements

Phase 2:
Field-Based
requirements

Phase 3:
Gap
Analysis

Literature
review

Literature
review

Survey of
current
tools

Tools

Case study
Field survey

Projects

Design

VII

Phase 4:
Developing
integrated
architecture

Tools architecture to
support GDSD

   (and method for use) Review/
comparison

Experts

VI    Q5.1, Q5.2

Enhanced requirements for
tools to support GDSD

Engineering

Prototype

Theoretical
requirements

Market
offering

Field-Based   
requirements

 IV Q4.1; V Q4.2

Figure 2: Research model

Gap
analysis



tools currently used in real projects and what functionality project members would like to
have in addition (field-based  requirements). In phase 3 we will conduct a gap analysis to
see if there is a gap between theory-based requirement, field-based requirements, and
market offering. Based on the gap analysis we will integrate the three sets of requirements
into enhanced functional requirements for tools support. In phase 4 we will develop a high-
level design of the tools architecture and test the architecture. In future research, possibly,
some prototype tools will be developed using the architecture.

As figure 2 shows, each phase addresses a number of research sub-questions (Q1-
Q5.2), uses a variety of research methods and consists of number of steps (I-VII).

Phase 1
The objectives of this phase are to develop: (1 ) theoretical requirements for ICT-based
tools to support  GDSD and (2) functionality offered by existing tools.
The following table explains research questions, steps and methods of phase 1.

Research questions Methods Steps to be undertaken

Q1 What requirements
for tools to support
GDSD projects can be
identified based upon
current theory?

Literature study

(academic, trade and
professional)

I Development of theory-based
requirements needed to support
GDSD projects.

Q2 What functionality is
offered by tools
currently available in the
market?

1) Review of tools’
specifications and actual
tools

2) Survey of tools’ vendors
and distributors

II Evaluation of existing tools
(collecting and summarizing
functionality provided by these
tools into market offer).
Evaluation framefork to be
developed.

Table 1: Description of phase 1

In step II we will compare several tools (e.g. 3-4 market leaders and 1-2 new entrants) from
each of our four target groups (see figure 1).

Phase 2
The purpose of this phase is to develop field-based requirements for the ICT-based
architecture.
Existing studies (e.g. [8]) have shown that even if a tool can support a variety of
requirements, not all the functionality of the tool is actually used in real projects. Usually
only the major functionality (in which the tool is perceived to be strong) is used. For
example, CASE tools have been reported as used mainly in the analysis and design phases
[9], while most of other CASE features are not used. Kemerer [10] found that organizations
were not using 70-90% of the CASE tools package purchased. Similarly, while CASE tools
have features for project management and communications, they are reported as being
minimally used for coordination tasks: “…organizations are leaning toward dedicated, user-
friendly tools, such as Microsoft Project for resource management and Lotus Notes for
communication“ [11]. Furthermore, even if tools provide the required functionality, in
reality “information technology will not always be used in ways envisioned by designers or
intended by implementors” [8]. This leads us to think that field-based requirements for the
architecture could be somewhat different than those based on the theory and existing tools.
Therefore it is our hope that by analysing the gaps between the three, and integrating them
we will have a more complete set of requirements.
The following table presents research questions, steps and methods of phase 2.



Research questions Methods Steps to be undertaken

Case study of  two-three GDSD projects
and field survey of project managers and
software developers in order to:

Q3.1 What features of
existing tools are used in
practice in GDSD
projects?

III.a Study what functionality of tools
available for project members is used in
practice and what is not used(and why
not used, e.g. because it is not required
or some other tool is used to fulfill this
functionality)
III.b Study what functionality is
identified by the project members as
missing in tools they currently have
(desired functionality).

Q3.2 What requirements
for an ICT-based
architecture to support
GDSD projects can be
identified from such
projects in the field?

Case studies
(participant
observation,
interviews)

Field survey
using interviews
and
questionnaires

III.c Develop field-based requirements
based upon the functionality that is used
and desired functionality.

Table 2: Description of phase 2

Phase 3
The purpose of this phase is to conduct gap analysis of field-based requirements,
functionality offered by existing tools and theoretical requirements.
The following table explains research question, step and method of phase 3.

Research questions Methods Steps to be undertaken

Q4.1 What is the gap between
the field-based requirements, the
functionality offered by existing
tools, and the theoretical
requirements?

Subjective/
Argumentative

IV Three-way gap analysis –of
field-based requirements, the
market offering and theory-based
requirements.

Q4.2 What are requirements for
an ICT-based architecture to
support GDSD projects?

V Using a combination of results
from previous steps, developing a
set of ehchanced integrated
requirements for tools to support
GDSD.

Table 3: Description of phase 3

Phase 4
The objectives of this phase are to develop: (1) integrated architecture for ICT-based
tools to support GDSD projects and (2 method for efficient use of the architecture.
The following table presents research question, step and methods of phase 4.

Research questions Methods Steps to be undertaken

VI.a Based upon the review and analysis of
phases 1-3, define the objectives and scope of
the proposed architecture.
VI.b Define criteria to assess success of the
proposed architecture.

Q5.1 What is an
appropriate ICT-
based architecture to
support GDSD
projects?

System
engineering

VI.c Using the principles of system engineering,
develop a conceptual design of the integrated
architecture.



VII.a Test the architecture: a group of experts
will be asked to evaluate the architecture.

VII.b Assess results of the evaluation of the
architecture, revise objectives and scope if
necessary, and develop proposals for re-design.

Subjective/
Argumentative

(expert panel

review)

VII.c Iterate to step VI.a, until satisfactory
results are achieved.

Q5.2 How can this
architecture be
effectively used?

Engineering
(of method)

VI.d Developing a method to provide guidelines
for efficient use of the ICT-based tools
integrated into the architecture.

Table 4: Description of phase 4
We are looking for definitions of system architectures proposed in literature. As for

now, the one we have found the most suitable for an integrated architecture of ICT-based
tools is a definition proposed by Van Der Linden and Muller [12]. According to their
definition, the systems architecture we are developing will include:
 

�
 system structure, broken into hardware and software components

 
�

 visible attributes of these components, such as interfaces, resource usage, and other
non-functional requirements

 
�

 constraints imposed on the components design
 

�
 system standards that all components must meet

The deliverable of the research project will be conceptual design of the architecture.
The recent tendency in software development industry as well as IS research is to

integrate tools/systems with different specialization (usually best in their field or best of
breed tools) and not develop a single tool/system that can do everything. Accordingly, in
this project we are proposing an integrated architecture for these  tools. Given the
requirement that the tools operate in a globally distributed environment, they will need to
work on globally distributed and globally accessible Internet/Intranet platforms.
Consequently, the integrated architecture will be built using component-based modeling
methods.

2.3  Selection of Research Methods
The research combine a qualitative case study (step III) and system engineering

(steps VI and VII) methodologies.
The qualitative case study methodology (based on positivist philosophical

assumption) has been chosen as a research strategy for steps III.a-III.c for a number of
reasons. The two main reasons are: (1) The theoretical model of functional requirements for
ICT-based tools, which will be employed in the empirical part of the research, comprises
too many variables. Consequently it will not be possible to  formulate and test quantitative
hypotheses. (2) The research project is aimed at understanding of field-based requirements
for ICT-based tools. In order to “understand people and the social and cultural contexts
within which they live” [13], the research project employs a qualitative research
methodology. Qualitative research offers an opportunity to gain in-depth insight in the
actual problems management faces in global projects [14]. As such, the methodology is
considered to match the descriptive character of this stage of the research. Qualitative
research offers a range of methods, such as Action research, Case study research and
Ethnographic research [13]. The choice for positivist case study research as an appropriate
research strategy is based on (1) the characteristics of the research and (2) the contingencies
of case study research as proposed by Yin [15]. (1) Typically case studies are proposed
when previous research and theory directly supporting the research are limited. (2) “A case
study method is an empirical inquiry that investigates a contemporary phenomenon within
its real-life context, especially when the boundaries between phenomenon and context are
not clearly evident” [15].



3. Earlier Research and Status of the Area

To address our main research question what ICT-based support is appropriate for
GDSD projects, we have studied academic, trade and professional literature (both
traditional and on Internet) in:

�
 traditional and global project management (generic and software)

�
 software development (traditional and global)

�
 distributed coordination and control

�
 concurrent engineering (co-located and distributed)

In addition we have reviewed the literature on virtual projects, organizations and teams,
remote. Furthermore, we will conduct a market analysis to get a picture of the current state
of ICT-based tools. The literature review is presented under two sub-topics:
⇒ Theoretical developments in the area
⇒ Practical developments – prototype and existing ICT-based tools (commercial and

academic).

3.1 Theoretical Developments in the Area

This literature can be classified as literature on global system development (I) and
literature on virtual teams and remote collaboration (II).

(I) Global system development

Essential part of this literature comes from experience in managing projects. Most
reported research focuses on different issues of onsite and offshore outsourcing (especially
in automotive and software industry). It primarily presents case studies conducted within
real projects, and/or surveys and  interviews of project managers, executives and product
developers. However, only a limited number of empirical studies currently exist that
discuss management issues in GDSD projects with a project unit of analysis. The few
studies that exist [3,4,7] report numerous problems with distributed projects. Global
distribution has brought new challenges to the already problematic management of software
projects. First, the lack of face to face communication in a geographically distributed
project reduces the “observability” of the software products thereby compounding the
problems of “visualization” identified by Brooks [1]. Furthermore, the time, governance,
infrastructure, and culture gaps associated with the geographical dispersion of work make it
more difficult to manage inter-site work dependencies and to coordinate and control the
distributed work.  Distance also leads to a loss of “teamness” and causes further problems
in inter-site communications. From a management perspective, the reduced “observability”
introduces difficulties related to integration of organizational structures, management and
development practices, tools and configuration management systems [4]. Thus moving to
global distribution can be a painful process for organizations. Carmel [3] paraphrases one
software manager: “no one in their right mind would do this”.

In his book based on ten years of research, Carmel, while arguing that there are five
centrifugal forces influencing global software teams (figure 3), proposes six centripetal
forces for successful global software teams (figure 4):



The Collaborative Technology (one of the  centripetal forces), Carmel defines as:
1. Generic Technology that includes well-known tools listed in the time-place matrix

(figure 5):

2. Technology to Support Software Engineering that provides the following functions:
1) Software Configuration Management
2) Project status
3) Notification services
4) Projects schedule and tasking

5) CASE and process management
6) Programming tools
7) Bug and change tracking
8) Team memory and knowledge center

Summarizing, the available literature on GDSD shows that project distribution
has greatly affected the communication, coordination, and control mechanisms used in
such projects. Due to the “gaps” inherent in a globally distributed development situation,
mechanisms traditionally used in a co-located mode have been found to have reduced
effectiveness in a distributed environment. However, at present it seems there is no
comprehensive and cohesive theoretical basis for managing GDSD/IS projects. Carmel’s
work presents important conclusions that could be seen as background for theory of
managing such projects, but the whole work does not have a shape of a theory. Initial
theoretical framework is presented by Van Fenema [7]. This theory is based on an
integration of existing theories from different fields and their contribution for (1)
Coordination and Control Theory and (2) Distributed Work Coordination and Control.
The theory first presents an integrated view on coordination and control mechanisms (see

     Figure 3: Five centrifugal forces                        Figure 4: Six centripetal forces

Time
same                           different

P
la

ce
sa

m
e 

   
   

   
   

   
   

  d
if

fe
re

nt

video-conference
audio-conference
e-chat
e-whiteboard

e-mail
voice-mail
video-mail
groupware platform
calendar/scheduling
discussion list

meetingware

Figure 5: The time-place matrix for Generic Technology (adopted from [3]).



appendix 1) then explains how they are affected by global distribution. It also discusses
how they are adapting for a distributed mode. However this theory is very recent and it
has not yet been tested for managing real projects.

(II) Virtual teams and remote collaboration

This literature mainly deals with communication problems between teams and
team members working on relatively small task, where a task is not considered to be a
part of the project/process. Although in those studies a typical unit of analysis is a team
(and not project as in our research), still some of the studies, especially those focusing on
use of tools for remote communications, are  relevant for management of GDSD projects.

3.2 Surveying Existing ICT-Based Tools
We are now conducting a survey of commercial tools currently available on the

market. As earlier mentioned, our target tools are Project Management, CASE,
Groupware and Workflow tools. Furthermore, we are examining prototypes of academic
tools that fit in the above-mentioned categories developed to support either co-located or
distributed development of physical products and/or software.

3.2.1 Prototypes of  Academic Development Support Tools
When studying the literature about tools, we have found several projects that

have developed models and prototype tools to support concurrent engineering. These
tools are primarily used in the context of  physical product development, and mainly  in a
co-located mode. However, we believe  that some ideas proposed in that literature may
also be applied to the support of GDSD. This belief may be justified as transmitting
digital components over distance is less challenging than physical components and
distribution of software development does not necessary require duplication of
equipment. Consequently, as far as the product visualization and sharing is concerned,
distributed software development is not likely to result in as difficult logistics challenges
as visualizing physical products and components at a distance.

We will briefly present two related projects, whose ideas will be employed in our
research:
1) Project Coordination Board (PCB) conducted by the Concurrent Engineering
Research Center of West Virginia University. Londono et al. [16] propose a computer-
based system called the PCB to facilitate coordination of group works by an
electronically-networked (virtual) team of product developers. The main idea of the
system is that there is a common workspace that “is equivalent to a meeting table around
which product developers gather to discuss and to reach consensus in traditional
engineering environments” [16]. A prototype of the PCB was developed. However this
prototype did not implement all the ideas proposed by the authors. We did not find any
further publications of the research group that was related to the PCB system. It seems
that even though the model underlying the PCB systems was developed some time  ago,
there is still no computer-based tool that implements all their ideas.
2) Global Engineering COordination Support (GECOS) project conducted by TAI
Research Center of Helsinki University of Technology. The goal of the project was to
develop a system,  methods, and recommendations to address the problem of managing
virtual development teams in traditional manufacturing environments (i.e., virtual
prototyping of physical products). The project was concluded in February 2000.
However, it did not reach all of its goals. From private communication we have been told
that most of the software produced was not finalized for real use due to the lack of time
and resources. The project however did result in tool prototypes. It  produced some
technological studies and two master theses, which describe the software prototypes. The
software itself is owned by the “consumer” industries and is not publicly available.



The GECOS project has been conducted with strong participation of industry.
Furthermore we have found more projects developing tools to support distributed/
concurrent system engineering. The commonalties between the projects are:
1. Establishment of a research group, which can be characterized as a “brain” of the

projects.
2. Support of and basis in “consumer” industries that funded the projects and were used

for case studies and testing of pilot tools.
3. Participation of technical partners - industries to which technical (software)

development were outsourced (based on theoretical findings of the research group).
Existence of projects that develop tools, and the fact that the majority of them

were contracted and funded by industry, clearly shows the need of industry for the
support for product development.  However, two of the projects that are most relevant to
a distributed development context have, as of today, not been completed and were not in
the realm of distributed software development. This further underlines the challenge of
developing ICT support for distributed work projects.

3.2.2 Commercial Tools
According to our proposition presented in section 3.1, we will also conduct an

analysis of four groups of tools available commercially in the market
1. Project Management tools support traditional project management activities, such as

planning and scheduling, some support resource and budget management. Advanced
tools include enterprise-wide systems that are able to anticipate problems, errors and
bottlenecks by appropriately allocating resources during forward and backward
passes (simulation) through the list of activities of the project [17].

2. CASE tools are used to support software development process, mainly analysis and
design (modeling).

3. Groupware tools (also referred as GSS, collaborative technology and Computer-
Supportive Cooperative Work) are used to support (remote) collaboration. They
combine telecommunication with integrated functionality for messaging,
documentation and time management, and support real-time and asynchronous
communications.

4. Workflow tools are (1) generic tools used to model and then manage workflow and
(2) off-the-shelf workflow models that sometimes require customization and used for
managing workflow in organization.

4. A Model of Globally Distributed Software Engineering Environment
Based upon a survey of current research in the area we have developed model of

a GDSD environment. It employs and integrates software project management
principles with some of the ideas proposed in previous research (i.e. [3,7,16]). It
implements the idea of the common workspace proposed by Londono et al. [16].
However, since their model considers the development of physical products, we have
adapted the concept to apply it to software development.

The model of a GDSD environment (figure 2) defines categories of functional
requirements for tools to support the managing of GDSD projects. The idea is to use this
model as a basis for evaluation of existing tools (those described in section 3.2.2.). We
are further elaborating on detailed functional requirements (based on the categories
defined in the model) in order to use it as a framework for evaluation of ICT-based tools
used to support GDSD projects. This section presents and briefly explains the model at its
current stage.



The inside area of the model consists of a common workspace and contains the
product, process, project organization and plans that are interconnected. They are used to
describe and to maintain data information required by (remote) project members during
the product development life cycle.

The coordination and control framework, surrounding the common workspace,
includes the following activities:

�
 Planning, scheduling, allocation

�
 Constraint management

�
 Monitoring

�
 Progress measurement and ensuring quality

�
 Risk management

�
 Configuration management

�
 Version management

�
 Reuse management

All these activities are taking place on two organizational levels – (1)project level (i.e., inter-
site/global level) and (2)intra-site level (within local teams). They are applied to all relevant
components of the common workspace.

The third dimension of the model (dark grey) displays technical characteristics of the
common workspace and coordination and control framework:
⇒ Common visibility required in a distributed environment to make product, process,

project organization and plans transparent through remote sites.
⇒ Framework for negotiation and reaching of consensus provides functionality needed to

support remote communications. It applies to all elements of the coordination and
control framework and management object as well. On the technical level the above
mentioned functionality will be provided by collaborative technology.

Together, common visibility and framework for negotiation and reaching of consensus are
supposed to eliminate (or at least reduce) the perception of distance and unite remote project
members by creating a joint project environment.

Crowston [18] defines coordination as the task of integrating interdependent activities
and resources to achieve organizational goals. Thus, the coordination management function
is supposed to integrate all resources and interdependent activities of the coordination and
control framework to accomplish a collective set of tasks. This function is dealing with all

Version
mgmt

Coordination
mgmt

Plan

Product Process

   Project
organization

Reuse
mgmt

Configuration
mgmt

Progress
measurement and
ensuring quality

Planning,
scheduling,
allocation

Risk
mgmt

           Common
      Workspace

Monitoring

Constraints
mgmt
mngm

Figure 6: A model of Globally Distributed Software Engineering Environment



available coordination mechanisms, techniques and supporting technologies. It is responsible
for enacting relevant coordination mechanisms and appropriate technology: to do it at the
right time, in appropriate situations (under proper conditions) and within the right interface
(to integrate the right parts of work or to make available communication of right people).

At the current stage the model could be applied for any software development project
– co-located and distributed. However, to support distributed projects more sophisticated
technical support is required. Running parts of a project concurrently at remote sites means
that the project exists in several dimensions (local and inter-site). This, in turn, require strong
technical support to coordinate and control project activities within each site and between
sites. For example, from technical point of view, configuration and version management of
remote project seems to be much more complicated that in co-located projects. Therefore
when developing further each of the categories defined in the model, it will be more clear
that the model support GDSD.

5. Implications of the Research
The implications of our research are relevant for both management research and

management practice. From a scientific perspective, this research would provide an
opportunity to test the applicability and effectiveness of existing theories and to improve
them in action. From a practical point of view, this research will provide guidelines and tools
for increasing the efficiency of managing GDSD projects. The project outcome will be also
useful for companies developing software tools by providing them with an analysis of user
requirements - requirements for tools of the growing number of companies that deploy
GDSD projects.

References
1. Brooks, F. P. (1987). “No Silver Bullet.” Developer productivity (November): 39-48.
2. The Standish Group (1995). Chaos, (http://standishgroup.com).
3. Carmel, E. (1999). Global Software Teams: Collaborating Across Borders and Time Zones. Upper

Saddle River, NJ, Prentice-Hall P T R.
4. Karolak, D. W. (1999). Global Software Development: Managing Virtual Teams and

Environments. Los Alamitos, California, IEEE Computer Society
5. Kumar, K. and L. P. Willcocks (1996). Offshore Outsourcing: A Country Too Far? European

Conference on Information Systems, Lissabon, Portugal.
6. Kumar, K. and L. P. Willcocks (1999). Holiday Inn's ’A Passage To India’. Global Software

Teams:Collaborating Across Borders and Time Zones. Upper Saddle River,NJ, Prentice-Hall PTR.
7. Van Fenema, P. C. (2001 (forthcoming). Coordination and Control of Geographically Distributed

Work: The Case of Global Information Systems Projects. Ph.D. thesis, Erasmus University. The
Netherlands.

8. Orlikowski, W. J. and D. Robey (1991). “Information Technology and the Structuring of
Organizations.” Information Systems Research 2(2): 143-169.

9. Iivari, J. (1996). “Why Are CASE Tools Not Used?” Communications of the ACM 39(10): 94-103.
10. Kemerer, C. F. (1992). “How the Learning Curve Affects CASE Tool Adoption.” IEEE Software

(May): 23-28.
11. Srinarayan, S. and R. Arun (2000). “CASE Deployment in IS Organizations.” Communications of

the ACM 43(1): 80-88.
12. Van Der Linden, F. J. and J. K. Muller (1995). “Creating Architectures with Building Blocks.”

IEEE Software 12(6): 51-60.
13. ISWorld (1997). Qualitative Research Internet Site,

http://www.auckland.ac.nz/msis/isworld/index.html.
14. Marshall, C. and G. B. Rossman (1995). Designing Qualitative Research. Thousand Oaks, CA,

Sage.
15. Yin, R. K. (1994). Case Study Research: Design and Methods. Newbury  Park, CA, Sage.
16. Londono, F., K. J. Cleetus, et al. (1992). Coordinating a Virtual Team, Concurrent Engineering

Research Center, West Virginia University.
17. Gould, L. S. (1998). “Project Management Hits the Desktop.” Automotive Manufacturing &

Production (January): 66-70.
18. Crowston, K. (1997). “A coordination theory approach to organizational process design.”

Organization Science 8(2): 157-175.


