Probability that n random points are in convex position $^{\diamond}$

Pavel Valtr*

B 94-01 January 1994

$\mathbf{Abstract}$

We show that n random points chosen independently and uniformly from a parallel-ogram are in convex position with probability

$$\left(\frac{\binom{2n-2}{n-1}}{n!}\right)^2.$$

The work on this paper was supported by the "Deutsche Forschungsgemeinschaft", grant We 1265/2-1.

^{*}Department of Applied Mathematics, Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Bepublic and

Graduiertenkolleg "Algorithmische Diskrete Mathematik", Fachbereich Mathematik und Informatik, Freie Universität Berlin, Takustrasse 9, D-14195 Berlin, Germany

1 The result

A finite set of points in the plane is called *convex* if its points are vertices of a convex polygon. In this paper we show the following result.

Theorem 1 The set A of n random points chosen independently and uniformly from a parallelogram S is convex with probability

$$\left(\frac{\binom{2n-2}{n-1}}{n!}\right)^2.$$

A large part of studies in stochastic geometry deals with the convex hull C of a set of n points placed independently and uniformly in a fixed convex body K in \mathbb{R}^d . Typical questions are: How many vertices does C have? What is the volume of C? What is the surface area of C? See [WW] for a survey. In this paper we settle one very special case – the probability that C has n vertices in the case K is a parallelogram. It is interesting that our approach is purely combinatorial, with no use of integration. We think that our method based on an approximation of the uniform distribution in a square by a large grid might have other applications. However, it is already not clear how to apply our method for K a triangle or in three dimensions.

In this section we prove Theorem 1, and in the next section we mention some applications of Theorem 1.

Proof of Theorem 1. Let n > 2 be a fixed integer. Since a proper affine transformation transfers the uniform distribution on S onto the uniform distribution on a square, we may and shall assume that S is a square. We shall approximate the square S by a grid whose size tends to infinity.

Let m be a positive integer (denoting the size of the grid). Partition the (axis-parallel) square S by m-1 horizontal and by m-1 vertical lines into m^2 squares S_1, \ldots, S_{m^2} of equal size. The centers of the squares S_1, \ldots, S_{m^2} form a square grid $m \times m$. Every point of A lies in each of the squares S_1, \ldots, S_{m^2} with the same probability $1/m^2$. Move every point of A to the center of the square S_i in which it lies, and denote the obtained multiset by A(m). It is not difficult to see that

$$\operatorname{Prob}(A \text{ is convex}) = \lim_{m \to \infty} \operatorname{Prob}(A(m) \text{ is convex}).$$

Thus,

$$\operatorname{Prob}(A \text{ is convex}) = \lim_{m \to \infty} \operatorname{Prob}(R_m \text{ is convex}),$$

where, for every $m \ge 1$, R_m is a multiset of n points chosen randomly and independently from the square grid $G_m = \{(i, j) : i, j = 1, 2, ..., m\}$ (each point of G_m is always taken with the same probability $1/m^2$).

Let $\mathcal{M}(G_m)$ be the set of all multisets of size n with elements from G_m , and let $\mathcal{C}(G_m)$ be the set of all convex n-element subsets of G_m . It is easy to see that

$$\operatorname{Prob}(A \text{ is convex}) = \lim_{m \to \infty} \operatorname{Prob}(R_m \text{ is convex}) = \lim_{m \to \infty} \frac{|\mathcal{C}(G_m)|}{|\mathcal{M}(G_m)|} = \lim_{m \to \infty} \frac{|\mathcal{C}(G_m)|}{\binom{m^2}{n}}.$$

In the sequel we shall estimate the size of $C(G_m)$.

Every convex set $R \in \mathcal{C}(G_m)$ is uniquely defined by the smallest axis-parallel rectangle Q(R) containing R and by the set V(R) of the n integer vectors forming the boundary of the convex hull of R oriented in counterclockwise order.

Let X(R) and Y(R) be the multisets of the first and of the second coordinates of vectors in V(R), respectively. Formally,

$$X(R) = \bigcup_{(x,y)\in V(R)} \{x\}, \quad Y(R) = \bigcup_{(x,y)\in V(R)} \{y\}.$$

Let $\mathcal{C}'(G_m)$ be the set of all convex sets $R \in \mathcal{C}(G_m)$ such that $0 \notin X(R) \cup Y(R)$ and that the directions of the n^2 vectors (x,y) formed by all the n^2 pairs $x \in X(R), y \in Y(R)$ are distinct. Thus, in particular, the multisets X(R) and Y(R) are sets for any $R \in \mathcal{C}'(G_m)$. It is not difficult to see that

$$\lim_{m \to \infty} \frac{|\mathcal{C}'(G_m)|}{|\mathcal{C}(G_m)|} = 1.$$

Therefore,

$$\operatorname{Prob}(A \text{ is convex}) = \lim_{m \to \infty} \frac{|\mathcal{C}(G_m)|}{\binom{m^2}{n}} = \lim_{m \to \infty} \frac{|\mathcal{C}'(G_m)|}{\binom{m^2}{n}}.$$

In the estimation of the size of $\mathcal{C}'(G_m)$ we use an auxiliary set \mathcal{S} defined by

$$\mathcal{S} = \{ (X(R), Y(R), Q(R)) : R \in \mathcal{C}'(G_m) \}.$$

The following construction shows that, for every $(X, Y, Q) \in \mathcal{S}$, there are exactly n! sets $R \in \mathcal{C}'(G_m)$ with (X(R), Y(R), Q(R)) = (X, Y, Q):

Take any of the n! one-to-one correspondences $f: X \to Y$ between X and Y, and define a set V of n vectors by $V = \{(x, f(x)) : x \in X\}$. Due to the definitions of $\mathcal{C}'(G_m)$ and \mathcal{S} , vectors in V have distinct directions and, consequently, form the (counterclockwise oriented) boundary of the convex hull of a unique set $R \in \mathcal{C}'(G_m)$ fitting into the rectangle Q.

Thus,

$$|\mathcal{C}'(G_m)| = n! \cdot |\mathcal{S}|$$

and

$$\operatorname{Prob}(A \text{ is convex}) = \lim_{m \to \infty} \frac{|\mathcal{C}'(G_m)|}{\binom{m^2}{n}} = \lim_{m \to \infty} \frac{n! \cdot |\mathcal{S}|}{\binom{m^2}{n}}.$$

It remains to estimate the size of the set S which is done in the sequel technical part of the proof.

For $(X, Y, Q) \in \mathcal{S}$, partition each of the two sets X and Y into two subsets containing elements with the same sign:

$$X^{+} = \{x \in X : x > 0\}, \quad X^{-} = \{x \in X : x < 0\},$$

 $Y^{+} = \{y \in Y : y > 0\}, \quad Y^{-} = \{y \in Y : y < 0\}.$

Suppose that each of the sets X^+, X^-, Y^+, Y^- is ordered in an arbitrary way. Denote $s = |X^+|$ and $t = |Y^+|$. Thus,

$$X^+ = \{x_1, \dots, x_s\}, \quad X^- = \{x_{s+1}, \dots, x_n\},$$

 $Y^+ = \{y_1, \dots, y_t\}, \quad Y^- = \{y_{t+1}, \dots, y_n\}.$

For every $(X, Y, Q) \in \mathcal{S}$, where $Q = \{(x, y) : a_1 \leq x \leq a_2, b_1 \leq y \leq b_2\}$, the orders on the sets X^+, X^-, Y^+, Y^- uniquely determine four sets D^-, E^-, D^+, E^+ of integers from the set $\{1, 2, \ldots, m\}$ in the following way:

$$D^{+} = \{a_1 + \sum_{i=1}^{k} x_i : k = 0, 1, \dots, s\}, \quad D^{-} = \{a_2 + \sum_{i=s+1}^{k} x_i : k = s, s+1, \dots, n\},$$

$$E^+ = \{b_1 + \sum_{i=1}^k y_i : k = 0, 1, \dots, t\}, \quad E^- = \{b_2 + \sum_{i=t+1}^k x_i : k = t, t+1, \dots, n\}.$$

Note that the sets D^-, E^-, D^+, E^+ satisfy the following conditions:

$$|D^{+}| + |D^{-}| = n + 2$$
, $a_1 = \min D^{+} = \min D^{-}$, $a_2 = \max D^{+} = \max D^{-}$, (1)
 $|E^{+}| + |E^{-}| = n + 2$, $b_1 = \min E^{+} = \min E^{-}$, $b_2 = \max E^{+} = \max E^{-}$. (2)

For any $(X, Y, Q) \in \mathcal{S}$, we obtain $|X^+|!|X^-|!|Y^+|!|Y^-|!$ different 4-tuples of sets D^- , E^- , D^+ , E^+ corresponding to different orders on the sets X^+ , X^- , Y^+ , Y^- . Denote the set of all these 4-tuples (D^-, E^-, D^+, E^+) by $\mathcal{F}(X, Y, Q)$. Thus,

$$|\mathcal{F}(X,Y,Q)| = |X^{+}|!|X^{-}|!|Y^{+}|!|Y^{-}|!$$

= $(|D^{+}|-1)!(|D^{-}|-1)!(|E^{+}|-1)!(|E^{-}|-1)!,$

where (D^-, E^-, D^+, E^+) is an arbitrary 4-tuple in $\mathcal{F}(X, Y, Q)$. For $0 \le i \le n-2$ and $0 \le j \le n-2$, we say that a 4-tuple (D^-, E^-, D^+, E^+) of sets of integers has property $\mathcal{P}_{i,j}$ if

 $\mathcal{P}_{i,j}$: $|D^+| = i + 2$, $|E^+| = j + 2$, and the sets D^-, E^-, D^+, E^+ satisfy (1) and (2) for some $1 \le a_1 < a_2 \le m$ and $1 \le b_1 < b_2 \le m$.

There are $\binom{n-2}{i}\binom{m}{n}\cdot\binom{n-2}{j}\binom{m}{n}$ 4-tuples (D^-,E^-,D^+,E^+) with $\mathcal{P}_{i,j}$ and $|D^+\cap D^-|=|E^+\cap E^-|=2$. It follows that there are $(1+o(1))\cdot\binom{n-2}{i}\binom{m}{n}\cdot\binom{n-2}{j}\binom{m}{n}$ 4-tuples (D^-,E^-,D^+,E^+) with $\mathcal{P}_{i,j}$. (Throughout the proof, o(1) denotes functions of m

which tend to 0 as m tends to infinity.) Most of them (i.e., a (1 - o(1))-fraction of them) lie in the disjoint union

$$\bigcup_{(X,Y,Q)\in\mathcal{S}} \mathcal{F}(X,Y,Q).$$

Thus,

$$|\mathcal{S}| = \sum_{(X,Y,Q)\in\mathcal{S}} 1 = \sum_{(X,Y,Q)\in\mathcal{S}} \frac{|\mathcal{F}(X,Y,Q)|}{|X^+|!|X^-|!|Y^+|!|Y^-|!} =$$

$$= \sum_{i=0}^{n-2} \sum_{j=0}^{n-2} \frac{(1-o(1))\cdot(1+o(1))\binom{n-2}{i}\binom{m}{n}\binom{n-2}{j}\binom{m}{n}}{(i+1)!(n-i-1)!(j+1)!(n-j-1)!} =$$

$$= (1+o(1))\binom{m}{n}^2 \cdot \sum_{i=0}^{n-2} \sum_{j=0}^{n-2} \frac{\binom{n}{n-i-1}\cdot\binom{n}{n-j-1}}{(n!)^2} \binom{n-2}{i}\binom{n-2}{j} =$$

$$= (1+o(1))\binom{m}{n}^2 \frac{1}{(n!)^2} \left(\sum_{i=0}^{n-2} \binom{n}{n-i-1}\binom{n-2}{i}\right) \left(\sum_{j=0}^{n-2} \binom{n}{n-j-1}\binom{n-2}{j}\right) =$$

$$= (1+o(1))\binom{m}{n}^2 \frac{1}{(n!)^2} \binom{2n-2}{n-1}^2.$$

Hence,

$$Prob(A \text{ is convex}) = \lim_{m \to \infty} \frac{n! \cdot |\mathcal{S}|}{\binom{m^2}{n}} = \lim_{m \to \infty} \frac{(1 + o(1))\binom{m}{n}^2 \frac{1}{n!} \binom{2n-2}{n-1}^2}{\binom{m^2}{n}} = \left(\frac{\binom{2n-2}{n-1}}{n!}\right)^2.$$

2 Applications and related results

In this section we sketch some applications of our result.

1. Replacing the parallelogram by a convex body. It is known that, for every bounded convex body K in the plane, there are two parallelograms, one containing K and one contained in K, whose areas differ from the area of K at most by a constant factor (e.g., see [Ba] for analogous results). Using this result and Theorem 1, it is not difficult to show that there are two positive constants c_1 and c_2 such that the set of n points chosen independently and uniformly from an arbitrary convex body is convex with probability at least $\left(\frac{c_1}{n}\right)^n$ and at most $\left(\frac{c_2}{n}\right)^n$.

2. The expected area of a random triangle. It is not difficult to show that

$$Prob(A \text{ is convex}) + 4 \cdot E[Area \text{ of } T] = 1,$$

where A is a set of four random points selected independently and uniformly from a convex body S of area 1, and T is a triangle with random vertices selected also independently and uniformly from S. If S is a parallelogram, Theorem 1 yields that the expected area of T is

$$\frac{1 - (5/6)^2}{4} = \frac{11}{144},$$

which was also shown in [He] by a different method.

3. Convex subsets of a random set. The author originally considered Theorem 1 in connection with the following result.

Theorem 2 Let A be a set of n random points chosen independently and uniformly from a parallelogram. Let c(A) be the largest convex subset of A. Set $h = 2^{4/3}e \approx 6.85$. Then $c(A) \geq \lambda n^{1/3}$ with probability smaller than $\left(\frac{h}{\lambda}\right)^{3\lambda n^{1/3}}$, for any $\lambda \geq h$.

Proof. Let $\lambda \geq h$. For simplicity, assume that $\lambda n^{1/3}$ is an integer. The set A contains $\binom{n}{\lambda n^{1/3}}$ subsets of size $\lambda n^{1/3}$. According to Theorem 1, each of them is convex with probability

$$\left(\frac{\binom{2\lambda n^{1/3}-2}{\lambda n^{1/3}-1}}{(\lambda n^{1/3})!}\right)^2.$$

It follows that the expected number of convex independent subsets of A of size $\lambda n^{1/3}$ is at most

$$\binom{n}{\lambda n^{1/3}} \cdot \left(\frac{\binom{2\lambda n^{1/3} - 2}{\lambda n^{1/3} - 1}}{(\lambda n^{1/3})!} \right)^{2} < \frac{n^{\lambda n^{1/3}}}{\left(\frac{\lambda n^{1/3}}{e}\right)^{\lambda n^{1/3}}} \cdot \left(\frac{4^{\lambda n^{1/3}}}{\left(\frac{\lambda n^{1/3}}{e}\right)^{\lambda n^{1/3}}} \right)^{2} =$$

$$= \left(\frac{4^{2}e^{3}}{\lambda^{3}} \right)^{\lambda n^{1/3}} = \left(\frac{h}{\lambda} \right)^{3\lambda n^{1/3}}.$$

Consequently, A contains a convex independent subset of size $\geq \lambda n^{1/3}$ with probability smaller than $\left(\frac{h}{\lambda}\right)^{3\lambda n^{1/3}}$.

One application of Theorem 2 on so-called dense sets may be found in the author's PhD. thesis [Va].

By a more careful handling with the result of Theorem 1, one can prove that, for any $\varepsilon > 0$ and any sufficiently large $n \ge n(\varepsilon)$,

$$(h/2 - \varepsilon)n^{1/3} \le c(A) \le hn^{1/3}$$

holds with a high probability.

4. Construction of random convex sets. Emo Welzl pointed out that the above proof of Theorem 1 yields a fast way how to construct a random convex set of size n in a square. Let M_n be the set of all n-element subsets of a square S, and let μ be the probabilistic measure on M_n corresponding to a choice of n points selected independently and uniformly from the square S. Let C_n be the set of all convex *n*-element subsets of *S*. Theorem 1 gives $\mu(C_n) = \left(\binom{2n-2}{n-1}/n!\right)^2$. The measure $\mu' = \mu/(\mu(C_n))|_{C_n}$ is a probabilistic measure on C_n . With respect to μ' , a random convex set $A \in C_n$ can be constructed in a straightforward way by repeated choosings of an n-point random subset A of S with respect to μ , until the set A is convex. However, this procedure has the expected running time at least $\Omega(R \cdot (n!/\binom{2n-2}{n-1})^2) = \Omega(R \cdot (n/4e)^{2n+1})$, where R is the time required for finding a random real number uniformly distributed in the interval [0, 1]. The above proof of Theorem 1 yields a procedure which constructs a random convex set with respect to μ' essentially faster, in time $\mathcal{O}(n \log n + n \cdot R + P(n))$, where R is as above and P(n)is the time required for constructing a random permutation of the set $\{1, 2, \ldots, n\}$. Of course, the argument also applies for any parallelogram.

5. The limit shape of a random convex set. Scale and shift the square grid $n \times n$ so that it fits into the square $S = \{(x,y): -1 \le x,y \le 1\}$, and consider the set K(n) of all its convex subsets. Bárány [Bá] proved that for every $\varepsilon > 0$ there exists n_0 such that for every $n \ge n_0$ the following holds: if we randomly choose an element A of K(n), each with the same probability, then the Hausdorff distance between the boundary of the convex hull of A and the curve $\{(x,y): \sqrt{1-|x|} + \sqrt{1-|y|} = 1\}$ is smaller than ε with a high probability. (Hausdorff distance between two sets is the maximum distance of a point in any of the two sets to the other set.)

It is interesting that random convex sets have the same limit shape. Consider the square $S = \{(x,y): -1 \leq x,y \leq 1\}$ again, and define C_n and μ' as in the above paragraph "Construction of random convex sets". With a help of the above proof of Theorem 1, it can be shown that for every $\varepsilon > 0$ there exists n_0 such that for every $n \geq n_0$ the following holds: if we randomly choose an element A of C_n with respect to the measure μ' , then the Hausdorff distance between the boundary of the convex hull of A and the curve $\{(x,y): \sqrt{1-|x|}+\sqrt{1-|y|}=1\}$ is smaller than ε with a high probability.

Let us note that the limit shape curve of the boundary of the convex hull of n random points chosen independently and uniformly inside any planar convex body K is (obviously) the perimeter of K.

Acknowledgment. I would like to thank Imre Bárány for interesting discussions which lead to this paper, and Stephan Brandt for valuable comments which helped me to improve the style of this paper.

References

- [Ba] K. Ball, Volume ratios and a reverse isoperimetric inequality, *J. London Math. Soc.* (2) 44 (1991), 351-359.
- [Bá] I. Bárány, The limit shape theorem for convex lattice polygons, to appear.
- [He] N. Henze, Random triangles in convex regions, J. Appl. Prob. 20 (1983), 111-125.
- [Va] P. Valtr, Planar point sets with bounded ratios of distances, PhD. thesis, Free Univ. Berlin (1994).
- [WW] W. Weil and J.A. Wieacker, Stochastic geometry, Chapter 5.2 in: P.M. Gruber and J.M. Wills (eds.), *Handbook of Convex Geometry*, *II*, North-Holland (1993), pp. 1393-1438.