

Computer Vision using MatLAB and the Toolbox of Image Processing

Technical Report B-05-09

Erik Cuevas1,2, Daniel Zaldivar1,2, and Raul Rojas1

1Freie Universität Berlin, Institut für Informatik

Takusstr. 9, D-14195 Berlin, Germany
2Universidad de Guadalajara, CUCEI

Av. Revolucion No. 1500, C.P 44430, Guadalajara, Jal, Mexico.
{cuevas, zaldivar, rojas}@inf.fu-berlin.de

November 12, 2003.

Abstract

During the implementation of computer vision algorithms the manipulation of pointers, memory
administration and some other resources are expensive in time even for friendly programming language.
All these problems can be resolved if the implementation test is carried out in MatLAB using its toolbox
of image processing with it the time of implementation becomes the minimum with the trust of using
algorithms scientifically proven and robust. In this work we show the form in which can be used matlab
and its toolboxes to solve common problems of computer vision efficiently.

Introduction

During the implementation of computer vision algorithms the manipulation of pointers,
memory administration and some other resources are expensive in time even for
friendly programming language. To implement it in C++ language (due to their
characteristics of high and low level it is appropriate for the implementation of
computer vision algorithms) it would suppose the lost of valuable time that which is
very important in those cases in which we do not have the security of what we want to
implement finally will work. Also, to use C++ for the test period demands a correction
time due normal errors in the implementation process of the algorithm, that is to say
programmatic errors made to the moment to multiply two matrix or any other
resemblance. All these problems can be resolved if the implementation test is carried
out in MatLAB using its toolbox of image processing with it the time of implementation
becomes the minimum with the trust of using algorithms scientifically proven and
robust.

The toolbox of image processing implements a group of well-known algorithms to work
with binary images, geometric transformation, morphology and color manipulation that
together with the functions already integrated with matlab allows to implement analysis
and transformations of images in the domain of the frequency (Fourier and Wavlets
transform).

This work is divided in 3 parts, the first one treats the basic concepts of the images how
they are represented in matlab as well as an introduction to the basic operations of
handling of files. The second part covers the common and representative image
processing functions in the area of computer vision; explaining the use of these

functions through examples. Finally the third part explains the use of the tool vfm used
to capture images of devices installed in the computer such as video cards and USB
Webcams.

Basic concepts of the images and manipulation functions

In matlab an grayscale image is represented by a two-dimensional matrix of m x n
elements where n represents the number of pixels of wide and m the number of pixels
of long. The element corresponds to the top left element. Where each element of the
image matrix can have the value from 0 (black) to 255 (white). The figure 1 shows in
detail these concepts.

11v

11 12 1

21 22 2

1 2

(,)

n

n

m m mn

v v v
v v v

I x y

v v v

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

m

 n

Figure 1. Grayscale image representation in MatLAB.

On the other hand a RGB color image (several types exist however it is the broadly
used for computer vision, besides representing for matlab the default option) it is
represented by a three-dimensional matrix m x n x p, where m and n have the same
significance for the case of the grayscale images while p represents the plane that can
be 1 for the red, 2 for the green and 3 for the blue. The figure 2 shows details of these
concepts.

Reading and writing images from a file

To read images in matlab contained in a file the function imread is used whose syntax
is

imread(‘name of the file´)
Where, ‘name of the file’ is a chain of characters containing the complete name of the
image with their respective extension, the formats of images that matlab supports are
shown in the table 1.

 2

Format Extension

TIFF .tiff
JPEG .jpg
GIF .gif
BMP .bmp
PNG .png
XWD .xwd

Table 1. Formats and extensions supported by MatLAB.

11 12 1

21 22 2

1 2

(, ,1)

n

n
R

m m mn

r r r
r r r

I m n

r r r

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

11 12 1

21 22 2

1 2

(, , 2)

n

n
G

m m mn

g g g
g g g

I m n

g g g

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

11 12 1

21 22 2

1 2

(, ,3)

n

n
B

m m mn

b b b
b b b

I m n

b b b

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

IG(m,n) IB(m,n)

n

IR(m,n)

I(m,n,p)

 m

Figure 2. Representation of an RGB image color in MatLAB.

 3

To introduce an image of a file with some of the formats specified in the table 1 it is
only necessary to use the function imread and to assign its result to the variable that
will represent to the image with the structures shown in the figure 1 or 2. For example
that if it is wanted to introduce the image contained in the file data.jpg to a variable for
its later processing in matlab we have to write in the command line window

>>image=imread(‘data.jpg’);

with this command the image contained in the file data.jpg was stored in the variable
image.

Once the image is contained in a matlab variable then is possible to use the functions to
process the image. For example a function that allows to find the size of the image is
size(variable)

>>[m, n]=size(image);

where m and n will contain the values of the dimensions of the image.

To record the content of an image in a file the function imwrite(variable,‘ name

of the file’)is used, where variable represents the variable that contains the image
and name of the file, the name of the file with its respective extension according to the
table 1. Supposing that the variable image2 contains the image to be record in the file
dato2.jpg in this case we have to write

>>imwrite(image2, ‘data2.jpg’) ;

It is always necessary when we carry out some processing with the image to plot the
obtained result, the function imshow(variable) allows to plot the image in a window
in the matlab environment. If the variable to plot is face then we have to write in the
command line

>>imshow(face);

 4

we would obtain the image of the figure 3.

Figure 3. Example of the use of the function imshow.

Access to pixel and planes in the images.

The access to a pixel of an image is one of the most common operations in computer
vision and this is totally automatic in matlab; only it is enough to index the interested
pixel in the structure of the image. Let us consider that we have an image image1 in
grayscale and we want to obtain its intensity value in the píxel specified by m=100 and
n=100; we would have to write

>> image1(100,100)

ans =

84

100

100
n

m

Figure 4. Obtaining the value pixel an image2.

 5

Thus, if we want to change the pixel value to black, that is to assign it the value of 0
what we have to writte in command line is

>>image1(100,100)=0 ;

In the case of grayscale images we have to process only a plane (constituted by the
matrix m x n that contains the values of intensity for each index). However the color
images are composed for more of a plane. In the case of images RGB (just as it was
explained above) these have 3 planes one for each color. Let us consider the image
RGB contained in the variable image2 (shown in the figure 3), and we want to obtain
each one of its planes. Then we have to write

>>planeR=image2(:, :,1) ;

>>planeG=image2(:, :,2) ;

>>planeB=image2(:, :,3) ;

The resulting planes of the previous commands are shown in the figure 5.

 (a) (b) (c)

Figure 5. Planes of the image a) red, b) green and c) blue.

If we want to manipulate a pixel from an RGB color image then we have to assign a
value for each plane. Let us suppose that we have the image RGB contained in the
variable image2 and we want to obtain the value of the pixel m=100 and n=100 for
each plane R, G and B. we have to write

>>valueR=image2(100,100,1) ;

>>valueG=image2(100,100,2) ;

>>valueB=image2(100,100,3) ;

 6

That will give three values as a result. The same case as with the grayscale example we
can change this pixel value to some other color, for the appropriate determination of
each of their respective planes; for example

>>image2(100,100,1)=255;

>>image2(100,100,2)=255;

>>image2(100,100,3)=255;

In occasions it is preferable to know the color or the intensity (the pixel value) in an
active way , that is to have the possibility to select a pixel in a homogeneous region and
to obtain the value of it. This possibility is offered by the function impixel, which
actively gives the value (one or three) of the selected pixel that appears in the window
ploted by the function imshow. The format of this function is

value=impixel;

Where value represents a escalar (in case that the image is grayscale) or a vector of 1 x
3 (with the values corresponding to each one of the RGB plane).

Before to use this function is necessary to call the function used to plot the image (with
the function imshow). Once ploted it is called the function and when the mouse cursor
is on the surface of the image changed to +. When the left button of the mouse is
pressed the pixel ist selected, we can select again the pixel in case that we have made a
mistake positioning the mouse, since the function will be activated until the enter key is
pressed. The figure 6 shows an image with the operation here described.

Figure 6. Use of the function impixel.

 7

An important operation in computer vision is determining a image profile; that is to
convert a segment from the image to a one-dimensional signal to analyze their changes,
this is of special meaning in stereo vision where ist analyzed, for the algorithms
epipolar segments of each camera. Matlab has the function improfile that allows to
trace the segment interactively with the mouse, deploying the profile of the image in a
different graph. This function needs the image on which is wanted to obtain the profile
to be ploted previously with the function imshow. It should consider that if the image is
grayscale the profile will show only a signal corresponding to the fluctuations of the
image intensities, however if the profile is of RGB color, this will show one signal
segment for each plane. For the use of this function it is necessary to write on
command line

>>improfile

improfile is a iteractiv function so, as soon as the mouse is on the surface of the
image the pointer changed the symbol to a +, of this way we can configure the wanted
profile by the establishment of a line in the image. The figure 7 shows an image of the
described operation.

RGB profiles

Figure 7. Utilización de la función improfile.

 8

Sub-sampling of images

In occasions it is necessary to make calculations that require to process the image
completely, in these cases make it on the original resolution will be expensive. An
alternative is the sub-sampling of the image. Sub-sampling means to generate an image
from periodic samples of the original image in such a way that this will be the
representation of the original image but with a small size. If it is considered the image
I(m,n) defined as

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

(,)

n

n

n

m m m mn

v v v v
v v v v

I m n v v v v

v v v v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (1)

and it is wanted sub-sampling the image in a half of the original the new image would
be composed by the elements “taking one” element and “other not” of the original
image as it is shown below

v11 v12 v13 v14 v15 v16 v17

2

11 13 15 1(2)

31 33 35 3(2)

51 53 55 5(2)

(2)1 (2)3 (2)5 (2)(2)

(,)

n

n

nS

m m m m n

v v v v
v v v v
v v v vI m n

v v v v

−

−

−

− − − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2)

Considering a RGB image contained on the variable image2 and we want to acoplish a
Sub-sampling in half, we have to write the following code on command line

>>imageSub2=image2(1:2:end,1:2:end,1:1:end);

Data type of the image elements

The image elements in matlab have the format integer uint8, that is a data type that can
vary from 0 to 255, without being able to support float data type and values outside of
that range. This is a obstacle in those cases where algorithms to be implemented work

 9

with float data type. In these cases it is necessary to transform the data type image from
uint8 to double. It is important to observe that if the function imshow is used to plot the
images; this function does not have the capacity to plot images of double data type, for
that once accomplished the operations of floating point are necessary to convert the
data type to uint8. Let us suppose that we have a grayscale image represented in the
variable imagegray and we want to reduce their intensities in half, then we have to
write

>>imagegrayD=double(imagegray) ;

>>imagegrayD=imagegrayD*0.5 ;

>>imagegray=uint8(imagegrayD) ;

>>imshow(imagegray) ;

Image processing functions

The functions that the image processing toolbox implements are very diverse, without
to count the multiple offer of functions generated by other users and available in the
Internet, however in this chapter only some functions considered as importat in
computer vision will be treated.

Spatial filtering

Spatial filtering is one of the common operations in computer vision either to carry out
effects of noise elimination or border detection. In both cases the pixel determination
of the new image depends of the original image pixel and their neighbors. For it is
necessary to configure a matrix (mask or window) that considers which neighbors and
in what forms they will influence in the determination of the new pixel. Let us consider
an image IS(m,n)

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

(,)

n

n

S n

m m m mn

vs vs vs vs
vs vs vs vs

I m n vs vs vs vs

vs vs vs vs

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

that will be the image to be filter and IT(m,n)

 10

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

(,)

n

n

T n

m m m mn

vt vt vt vt
vt vt vt vt

I m n vt vt vt vt

vt vt vt vt

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

the resulting image; if we also consider w(r,t) the matrix that is used to carry out the
filtering

11 12 13

21 22 23

31 32 33

1
w w w

w w w w
h

w w w

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

where r=3 and t=3, and each element of IT(m,n) is calculated as

22 11 (1)(1) 12 (1) 13 (1)(1)
1 [ij ij i j i j i jvt w vs w vs w vs w vs
h − − − − += + + +

 21 (1) 23 (1) 31 (1)(1) 32 (1) 33 (1)(1)]i j i j i j i j i jw vs w vs w vs w vs w vs− + + − + ++ + + + + +

The figure 8 shows these details.

(i,j) (i,j)

(i-1,j-1) (i-1,j) (i-1,j+1)

(i,j-1) (i,j+1)

(i+1,j-1) (i+1,j) (i+1,j+1)

11 12 13

21 22 23

31 32 33

1
w w w

w w w w
h

w w w

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Figure 8. Spatial filtering for one mask of 3 x 3.

 11

To develop in matlab this operation the function nlfilter is used, whose structure is
the following

IT=nlfilter(IS,[i j],fun);

where IT is the variable that contains the resulting image of the operation, IS it is the
variable that contains to the original image, [i j] are the dimensions of the mask that
defines the influence of the neighbors for the calculate of the new pixel, finally fun
represents the function that develops the calculate on the elements in a defined
neighborhood dimension i x j.

The function fun receives as input a matrix x of i x j data corresponding to the pixel
neighbors of the image which are processed by the function and then returning the value
that corresponds to the element centered in the mask.

To implement a low pass filter on the image of the figure 1 this should be represented in
the variable image3, having as mask

1 1 1
1 1 1 1
9

1 1 1
w

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

For it is implemented a .m file with name myfunction and whose content will be
integrated by the following lines

function result=myfunction(x)

result=1/9*(x(1,1)+x(1,2)+x(1,3)+x(2,1)+x(2,2)+x(2,3)...

 +x(3,1)+x(3,2)+x(3,3));

To carry out the filtering we have to write on command line

>> image3=double(image3);

>> imageR=nlfilter(image3,[3 3],@myfunction);

>> imageR=uint8(imageR);

>> imshow(imageR);

The result is shown in the figure 9.

 12

Figure 9. Resulting image of the spatial filtering.

Edge detection functions

In computer vision is of utility for the object recognition or to segment regions, to
extract the borders of objects that define in theory their sizes and regions. The function
edge gives the possibility to obtain the borders of the image. The function edge allows
to find the borders by means of two different algorithms that can be chosen, canny and
sobel. The format of this function is

ImageT=edge(ImageS, ‘algorithm’);

Where ImageT is the image obtained with the extracted borders, ImageS is the variable
that contains the grayscale image which we seek to recover its borders, while algorithm
can be one of the two canny or sobel. Thus, if we want to recover the borders of the
grayscale image contained in the variable imagegray using the canny algorithm we
have to write

>>ImageR=edge(imagegray, ‘canny’);

The figure 10 shows an example of the function.

Figure 10. Resulting image of the canny algorithm.

 13

Binary images and segmentation for threshold.

A binary image is an image in which each pixel can have only one possible values 1 or
0. An image under those conditions is easier to find and to distinguish structural
characteristic.

In computer vision the processing with binary images is very important either to carry
out segmentation for intensity image in reconstruction algorithms or for structure
recognition.

The common form of generating binary images is by means of the use of the threshold
value ; that is to say a limit value is chosen (or an interval), starting from which all the
bigger intensity values will be coded as 1 while those that are for under it will be coded
to zero. In matlab this type of operations are carried out in a simple way using the
properties of overload of the relation operators.

For example if we want on the image sample to carry out this operation, that the pixels
bigger at 128 is considered as 1 and those that are smaller or similar to 128 as zero, it
would be written on command line as

>>result=sample>=128;

The figure 11 shows the original image and the result of applied the previous
instruction.

 (a) (b)

Figure 11. a) Original image and b) Resulting image of the application of a threshold of 128.

Morphological operations

One of the common operations in computer vision on binary images are the
morphological operations. The morphological operations are operations carried out on
binary images based on forms. These operations take as input a binary image returning
as a result also an image binary. The value of each pixel of the binary resulting image
is based on the value of the corresponding pixel of the binary original image and its

 14

neighbors. Then choosing appropiately the neighbors structure can be carry out
morphological operations sensitive to a particular form.

The main morphological operations are the dilation and erosion. The dilation operation
adds pixels in the border object, while the erosion removes them. In both operations a
structure is used that determines which neighbors of the central element of the mask
will be taken for the determination of the resulting pixel. The structure is an square
arrangement that contains ones and zeros, in the places that contains ones will be the
neighbors of the original image considering the central píxel that will be taken to
determine the resulting pixel of the image, while the places that have zeros are not taken
into account. The image 12 shows graphically the effect of the mask on the original
image and its result in the final image.

 (a) (b)

Figure 12. a) Original image and b) resulting image of the application of the morphological operation
considering the structure of 3 x 3.

As the figure 12 shows only the pixels of yellow color in the original image participates
in the determination of the red píxel of the resulting image.

Once assigned the size of the structure and their configuration, then the morphological
operation is applied. In the case of the dilation if some of the pixels of the structure
configured as ones coincides with at least one of the image, then the pixel is set to one.
On the contrary in the erosion, all the pixel of the structure configured as ones must
coincide with all those of the image, if this does not happen the pixel is set to 0.

In matlab the functions used to carry out these two morphological operations are erode
and dilate. The format of both functions are

ImageR=erode(ImageS,w);

ImageR=dilate(ImageS,w);

Where ImageR is the variable that receives the resulting image, ImageS is the original
binary image to which we want to apply the morphological operation and w it is a
matrix of ones and zeros that determines the format and structure of the mask.

Let us consider that we want to apply to the binary image shown in the figure 11.b the
morphological operation of the erosion considering as structure the represented in the

 15

figure 12. Then we would have to write supposing that the binary image is contained in
the variable imagebinary the following

>>w=eye(3);

>>imageR=erode(imagebinary,w);

where eye(3) generates a identity matrix of 3 x 3 that it is used as structure for the
function erode. The figure 13 shows the obtained result.

Figure 13. Resulting image of the function erode.

Object-Based Operations

In a binary image can be defined an object as a group of connected pixels with value 1.
For example the figure 14 represent a binary image containing a square object of 4 x 4.
The rest of the image can be considered as the background.

Figure 14. Binary image containing an object.

For many operations the distinction of objects depends of the connectivity convention
used that is the form in which is considered if two pixel are part of the same object. The
connectivity can be of two types, connection-4 or connection-8. In the figure 15 both
connectivities are schematized.

 16

7

4 5

2

6 7 8

4 5

3 1 2

 (a) (b)

 Figure 15. (a) Connectivity connection-8 and (b) connection-4.

In the connectivity connection-8 the red pixel belongs to the same object if exists a pixel
of value one in the positions 1,2,3,4,5,6,7 and 8. On the other hand the connectivity
connection-4 relates only to the pixels 2,4,5 and 7.

For the operations that consider connectivity as parameter is important to take into
account that this determines strongly the final processing result, because can be
considered objects where if another connectivity is chosen they will not exist. To
explain the above-mentioned we consider the figure 16. As we can see if we choose the
connectivity connection-8 the figure contained in the image is considered as only one
element but if it is chosen the connectivity connection-4 we have 2 different objects.

Figure 15. The connectivity problem.

The function bwlabel carries out a labeled of the existent components in the binary
image, which can be considered as a form of to find how many elements (considering as
elements groupings of ones with some of the two connectivity approaches) are present
in the image. The function has the following format

ImageR=bwlabel(ImageS, connectivity);

Where ImagenR is the image that contains the labeled elements with the number
corresponding to the object, ImagenS is the binary image that we want to find the
number of objects and connectivity can be 4 or 8 (corresponding to the connectivity
type previously explained).

The effect of this function can be explained easily if it is analyzed the original image
and the result of applying the function bwlabel. This is shown in the figure 16.

 17

 0

 3

 2

 1

 (a) (b) (c)

Figure 16. a) binary original Image, b) Resulting image of the operation bwlabel
Considering as connectivity connection-4 and (c) the color code.

Let us suppose that the image (a) is the original binary image (ImagenR) and (b) it is
the resulting image (ImagenS) of executing the sentence

>>ImagenR=bwlabel(ImagenS,4);

the resulting image assigns to each pixel belonging to a certain object according to its
connectivity the label of the object number while the pixels in zero does not have effect
in the operation, in the figure 16 this corresponds to the color code shown in (c).

The resulting image is of the type double. Also due to their content (the values are very
small) cannot be ploted by the function imshow. An useful technique for the
visualization of this type of matrices is the pseudo-color in form of an index image. An
index image is an image that can represent color images like RGB but it uses a different
format, instead of using three planes as RGB images, it uses a matrix and a table, the
matrix contains in each pixel an integer number corresponding to the table index,
while each index of the table corresponds 3 values corresponding to the RGB planes,
with it is possible to reduce the image size when reducing the number of different
colors. The figure 17 shows an example of index image.

89
 100

 115
21

2

G

 21

20 30 89

20 30 89

20 30 89

 20

 22

R B

Figure 17. Example of index image.

 18

Using an index image each object of the resulting image of applying the function
bwlabel can be ploted in a different color and identified quickly. It is important to
emphasize that the necessary number of index to form the image is similar to the
number of labels found by the function bwlabel plus one, because the background
constituted of zeros is also an index.

Let us consider an example to illustrate the previous technique. Let us suppose that we
have the grayscale image represented by the figure 18.a and we convert it to binary
applying a threshold of 85 obtaining in this way the image 18.b.

>>imagebinary=imagegray<85;

 (a) (b)

Figure 18. a) Grayscale image and b) binary image.

The function bwlabel is applied to obtain the contained objects in the binary image
considering the connectivity connection-8

>>Mat=bwlabel(imagebinary,8);

We find the number of contained objects in the image

>>max(max(Mat))

ans=

 22

We generate the index image with 23 elements

>>map=[0 0 0;jet(22)];

>>imshow(Mat+1,map,’notruesize’)

Label number
+ 1

Giving the image represented in the figure 19 as result.

 19

Figure 19. Result of the example of the function bwlabel.

Object Selection

In computer vision is of special utility to be able to isolate objects of a binary image
with a quick and interactive method. The function of matlab bwselect allows
interactively to select the binary object to segment with only to point out it in the
window previously ploted by means of the function imshow. The format of the function
is

ImageR=bwselect(c);

Where ImageR is the image containing the selected object while c represents the
connectivity approach used. Likewise that other used interactive functions in this
document it is necessary to select with the mouse the object in the binary image to
isolate, pressing the right button and later the enter key. The following example
illustrates the use of the function. Let us consider that we have an grayscale image as
the exemplified by the figure 20.a and we convert it to binary with a threshold of 140 to
obtain this way the figure 20.b

>>imagebinary=imagegray<140;

Object 1

Figure 20. a) Grayscale image and b) binary image.

Now if we write

 20

>>imagesegment=bwselect(8);

and we select the object 1 as it shows in the figure 20b. Of the above-mentioned we
would have as resulting image imagesegment represented in the figure 21.

Figure 21. Representation of the variable imagesegment.

Feature measurement

In computer vision is of particular interest to find feature such as the area, centroid and
others of previously labeled objects by the function bwlabel with the objective of
identifying their position in the image. Matlab has the function imfeature to find such
feature. The format of this function is

Stats=imfeature(L,’ measurement’);

Where Stats is a structured type that contains the measurement value indicated in the
chain text measurement, measurement is a text chain that indicates to the function the
measurement to carry out on the contained objects in the image. The group of possible
measurements is represented in the table 2.

Area Image EulerNumber

Centroid FilledImage Extrema

BoundingBox FilledArea EquivDiameter

MajorAxisLength ConvexHull Solidity

MinorAxisLength ConvexImage Extent

Orientation ConvexArea PixelList

Table 2. Measurement carried out by the function imfeature.

It is important to notice that Stats is a structured type that contains the measurement of
all contained objects in the binary image, for what this structured type is indexed; that

 21

is to say we can control an index the measurement of the object that we want. For
example if the image contains 4 elements, we can access to the measurement of each
object writing

stats(1).Medicion

stats(2).Medicion

stats(3).Medicion

stats(4).Medicion

Let us consider that we have the binary image (contained in the variable imagebinary)
represented in the figure 22 and we try to find the centroid of both figures contained an
the image.

Figure 22. Image used to exemplify the use of the function imfeature.

As first step we use the function bwlabel and we verify the object number

>>imageR=bwlabel(imagebinary,8);

>>max(max(imageR))

 ans=

 2

Now the function imfeature is used to find the centroid of both figures

>>s=imfeature(imageR,’Centroid’);

>> s(1).Centroid

ans =

 81.9922 86.9922

>> s(2).Centroid

ans =

 192.5000 85.0000

 22

Figure 23. Centroid identification.

The conversion function of images and color models

The format of color representation offered by the images RGB is not appropriate for
applications in which the illumination change an is a problem for example the color
segmentation. Another type of less sensitive color formats to the illumination change is
the HSV model. Matlab has special functions to carry out conversions between color
models and to change color images to grayscale; some of those functions will be treated
in this section.

The function rgb2gray changes an image in format RGB to grayscale, the format of
this function is

imagegray =rgb2gray(imageRGB);

On the other hand the function rgb2hsv changes the RGB colormodel to the HSV
model, this function takes as input an RGB image compound of three planes and
returns the HSV image composed of three planes corresponding to the H, S and V. The
format of this function it is

Imagehsv=rgb2hsv(imageRGB);

The contrary conversion ist carried out with the function hsv2rgb.

To exemplify the use of these functions we consider the image represented in the figure
24. The idea is to transform this image to a less sensitive model to the illumination
changes as it is the HSV model and segment it.

 23

Figure 24. RGB image.

Writing on command line we obtain as a result the HSV image that if we represent it
considering the RGB model it would have the aspect of the figure 25.

>>imageHSV=rgb2hsv(imageRGB);

Figure 25. HSV image.

If we divide the image in their respective HSV planes, we will write

>>H=imageHSV(:,:,1);

>>S=imageHSV(:,:,2);

>>V=imageHSV(:,:,3);

we obtain as a result the figures 26.a, 26.b and 26.c.

 24

 (a) (b) (c)

Figure 26. Image planes a) H, b) S and c) V.

Of the previous images it is evident that can be used the plane S (saturation) to
segment the object.

The vfm tool

However an important problem in the previous versions to the release 14 (in this version
with the incorporation of the toolbox of image acquisition the problem was resolved) is
the lack connection between an image taken by video card (or simply a Web-cam) and
the processing carried out by matlab. To have this advantage allows to implement the
vision algorithms with the real characteristics of camera without any additional effort
as to implement a program to record the captured image in a file (with a specify
format), for later to use the normal toolbox commands to open the file.

The vfm tool [3] allows to resolver this problem, vfm is a group of dynamic libraries
that allow directly to access the device controllers registered by windows. Thus USB
Web-cams of low cost can be used as well as other devices to capture an image and later
to use it with matlab and its toolboxes.

The tool once installed allows to be used in a simple way. To use this it is only
necessary to write

>>vfm

Then a window will appear like the shown in the figure 27.

 25

Figure 27. Window of the vfm tool.

The tool has three menus to control the capture. In the menu Driver is allowed to select
one of several installed video sources, in the menu Configure can configure the format
and characteristic of the previously selected driver, finally in the menu Window is
allowed to control the flow of the presentation of the image, the mode Preview is
usually preferred so that the image is shown in all moment in the window.

Image capture in matlab

The captured images using the vfm tool are stored in RGB format.To capture the images
surrendered by the drivers in matlab is used the function vfm that has the following
format

ImageCaptured=vfm(‘grab’,n);

Where ImageCaptured is the variable that contains the image RGB, and n it is the
number of frames to capture, in the case that n is more as one then the variable of the
captured image is indexed where each index represents the frame number.

In such a way that if we want to capture the current frame seen by the camera we will
write

>>ImageRGB=vfm(‘grab’,1);

>>imshow(ImageRGB);

We will obtain as a result the shown in the figure 28.

 26

Figure 28. Capture process of vfm tool.

References

[1] Gonzales C. Rafael, Woods E. Richard, Digital image Processing, Prentice Hall,
2002 New York.

[2] Gonzales C. Rafael, Woods E. Richard, Eddins L. Steven, Digital Image Processing
using MATLAB, Prentice Hall, 2002 New York.

[3] http://www2.cmp.uea.ac.uk/~fuzz/vfm/default.html.

[4] Marchand Patrick, Holland O. Thomas, Graphics and GUIs with MATLAB,
Chapman & Hall/CRC, 2002.

 27

