SERIE B — INFORMATIK

Weighted Closest Pairs *

Michael Formann®

B 92-04
February 1992

Abstract

In this paper we study the following weighted closest pair problem: Given a set of
planar objects with centerpoints, determine the mazimal scaling factor bmaz, such
that the objects scaled by émqex are pairwise disjoint.

We describe a method to compute the maximal scaling factor in optimal O(nlog n)
time for a wide class of objects, including disks generated by L,-norms (1 < p < oo).

*This work was partially supported by the ESPRIT II Basic Research Action of the European Community
under contract No. 3075 (project ALCOM I).

¢Institut fiir Informatik, Fachbereich Mathematik, Freie Universitat Berlin, Arnimallee 2-6, W1000 BERLIN
33, Germany; e-mail: formann@tcs.fu-berlin.de

1 Introduction

In this paper we study the following weighted closest pair problem: Given a set of
planar objects with centerpoints, determine the maximal scaling factor 6,,4., such
that the objects scaled by 6,4, are pairwise disjoint. Clearly 6,,,, can be computed
in O(n?) time, by taking the minimum of all (;) pairwise maximal scaling factors.
(It is assumed, that the computation of the maximal scaling factor of two objects is
a primitive operation that can be done in O(1) time.) The goal of this article is to
beat the O(n?) time bound.

If all the objects considered are unit-disks then we are faced with the ordinary
closest pair problem, that is to determine the closest distance between any pair
of points. This is a well-studied fundamental problem of computational geometry
(cf. [HNS90], [HS75], [BS76]). Another related problem is finding the closest pair
among a set of objects (cf. [BHI1], [For87], [Sha85], [Yap87]).

’ S TS
________________________ / \ s ‘\\
| 1 /’ \ R N
1 ! \ N
1 1/ \ , N
1 \ \ ’ \
H [\ / \
1 ! ! 1 \
1 | | 1 \
1 | I 1 \
1 " 1 1)
1 N] \ N
1 "™ ! \ [
| a : \ / \ /
1 ° \ ”~ \ ’
] [RN 7 N \ ’
] N 4 4 A ’
1 7’ ’ N N ’
1 I AN ’ ’ NN -
1 1 ~ s v’ N ~ PR
| ~ i ’ A Seaeo -~
1 So - v’ N
1 T TSea =T 7’ N
1 S ’
1 N ’
| 1 N ’
1 N 4
1 N ,
1 1 N ’
1 1 \ ’
1 AN
e ” N
0N
7 \C
’ < > N
< ’
N ’
N ’
N s
~v

Figure 1: five objects (solid) scaled by 6,4, (dashed)

Figure 1 illustrates the aforementioned closeness concepts. Five objects are
drawn in solid lines in their original size. The 6,,,,-scaled objects are shown in
dashed lines (6mar = 2). The square around a and the disk around b are the closest
weighted pair, points ¢ and d are the closest pair (in the Euclidean metric) and
the shortest distance between any pair of objects (the Hausdorff-distance) occurs
between the square around d and the circle around e.

In principle, we could determine the maximal scaling factor via a Voronoi dia-
gram approach. For example we are given a set of disks with different radii. From

Weighted Closest Pairs 3

the center p of a disk we measure the weighted distance from p as

dp(l') — Hp—l’ H

T'p

Y

where r, denotes the radius of the disk around p. The bisector of two disks with
centers p and ¢ will be the set of points in the plane that have equal weighted distance
to p and to ¢. Then we could define a pair p,q as closest pair if it minimizes the
shortest weighted distance to its bisector among all pairs. Exactly the closest pairs
of 6,uq0-scaled disks will touch. This approach doesn’t lead to an efficient solution,
because the Voronoi diagram might have quadratic complexity (cf. [AE84]).

We describe a method to compute the maximal scaling factor in optimal O(nlogn)
time for a wide class of objects. The basic idea is as follows: In a preprocessing step
we compute an over-estimate 6 > 0,4, for 0,4, Clearly, if 6 > 6,,,. then there are
intersections in the set of é-scaled objects. We ensure, that after the preprocessing
step only a linear number of pairs of the é-scaled objects will intersect. We detect
these intersections in O(nlogn) time by a standard sweep-technique and compute
the related pairwise maximal scaling factors. The minimum of 6 and these O(n)
numbers will determine 6,,45.

Potential applications arise in computer graphics (simultaneously resizing win-
dows on a screen such that there is no overlap), robotics (maximizing the minimal
workspace of stationary rotating robots), computational cartography (e.g. maximiz-
ing rectangular labels attached to certain geographical sites) etc.

The paper proceeds as follows. In Section 2 we show how to compute maximal
scaling factors for a set of disks with possibly different weights. Section 3 discusses
generalizations of this result for disks generated by different L,-norms with different
weights. Section 4 addresses further generalizations.

2 Weighted Closest Pairs for Disks

In this section we will describe how to compute the maximal scaling factor for a
set of (topologically open) disks with (possibly) different radii. Firstly we define
a certain property, the halfmoon property for disks. Then we show that if that
property holds for a set of disks, then the number of intersecting pairs of disks is
only linear. We will then present an algorithm to preprocess a set of disks — we
scale them — such that the halfmoon property is fulfilled. On the way we describe
how we glue everything together to an algorithm for computing the maximal scaling
factor.
Let us now start with a definition.

Definition 1 Let D = {Dy,D,,...,D,} be a set of disks in R*. We say, that D
fulfills the halfmoon-property if no disk in D cuts the vertical diameter of another
disk of D. For a disk D; € D we will call the two parts of D; to the left and to the

right of the vertical diameter left resp. right halfmoon of D; and denote them by
D; resp. DF.

We sum up some simple facts about a set of disks that fulfills the halfmoon-
property.

Observation 1 Let D = {Dy,Dy,...,D,} be a set of disks with the halfmoon prop-
erty.

(1) No two left and no two right halfmoons intersect.
(2) No disk is completely contained in another.
(3) No point in the plane is covered by more than 2 disks of D.

Proof: (1) and (2) are immediately clear. Note, that Fact (1) is equivalent to the
halfmoon property. If (3) is violated, then we have a point in two left halfmoons or
in two right halfmoons — a contradiction to (1).

We are now ready to present our main lemma:

Lemma 1 The number of intersecting pairs in set of disks that fulfills the halfmoon
property is at most 3n — 6.

Proof: Let D = {D1,D,,...,D,} be a set of disks with the halfmoon property. We
will show, that the graph G formed by putting vertices at the centers of the disks
and drawing edges by straight line segments between centers of intersecting disks is
plane. Then the claim follows.

Look at two embedded edges ab and 75 with disjoint endpoints. There must be
a point ¢ on ab that is contained in the disk around @ and also in the disk around
b by definition of the edges. Similarly, there is a point ¢ on 75 that is contained
in the disks around r and s. The points ¢ and ¢ must be distinct, otherwise we
have found a point ¢ = ¢ that is contained in four disks, a contradiction to Ob-
servation 1(3). Now draw the perpendicular bisector g between ¢ and t. s and ¢
must lie on different sides of ¢, otherwise the disk around s contains ¢ and there-
fore ¢ is contained in three disks. Similarly r and ¢ must lie on different sides of
g. Therefore s,t and r lie on the same side of g. By mirrorsymmetric arguments
a,band ¢ lie on the other side of g. Therefore the segments ab and 75 do not cross.

In the proof of the Observation above, we have shown that the “intersection graph”
of a set of disks with the halfmoon property is planar. The converse is also true,
Koebe [Koe36] showed that any planar graph can be realized as the “contact graph”
of a set of nonoverlapping disks in the plane. An elementary proof of this result, as
well as two generalizations are given in [PR]. An alternative proof of Lemma 1 may
be obtained via power diagrams (see [Aur87] for the apparatus of power diagrams).
Note, that the regions of two intersecting disks are neighbours in the power diagram
because of Observation 1(3). Therefore the edges of ¢ are a subgraph of the dual
graph of the power diagram, which is planar.

Let us now turn our attention to the description of our main algorithm. Similarly
to the halfmoon property we could define two properties as follows.

Weighted Closest Pairs 5

Definition 2 Let D = {Dy,D,,...,D,} be a set of disks in R*. We say, that D
fulfills the left (resp. right) halfmoon-property if no two left (resp. right) halfmoons
in the set D7, Dy, ..., D> (resp. DY, Df,..., DY) intersect.

Similarly to the definition of the maximal scaling factor é,,,, we define the mazimal
left scaling factor 6, .. of a set of disks as the maximal number such that in the set
of 6 -scaled disks no two left halfmoons intersect, 6% is analogously defined as
the mazimal right scaling factor. Clearly &4, < min{é> 6% 1 and if we scale

maxr? T max

the disks by min{é>, ,éF 1 then the left and the right halfmoon properties and
therefore also the halfmoon property itself holds for the scaled disks. After that
scaling process we can run a standard intersection detecting algorithm (cf. [BO79])
that will output at most 3n—6 intersecting pairs of disks. Then we take the minimum
of those pairwise scaling factors and min{é;_ _, 6% 1. This number clearly is 6,4z
the output of our algorithm.

So far we have reduced our original problem to that of computing the maxi-
mal left and right scaling factors. Without loss of generality we describe only the
algorithm for computing the maximal right scaling factor 6t . The basic idea of
that algorithm is as follows: We start with an initial assumption about &F | say
we set 6 := +oo. Then we sweep in the plane with a vertical line from left to
right. Whenever we meet a centerpoint of a disk D;, we insert that disk into the
vertical structure. If the right halfmoon of the newly inserted disk has intersections
with right halfmoons of disks inserted before, we decrease 6 so that the intersections
disappear. When all disks have been processed the algorithm stops and outputs
Ofae = 0.

In order to work correctly our algorithm will maintain the following two invari-
ants:

Invariant 1: All é-scaled disks whose right halfmoon cuts the sweepline are stored
in the vertical structure (sweepline-status) ordered by the y-coordinates of
their centerpoints. All é-scaled disks whose right halfmoon is to the right of
the sweepline are not stored in the vertical structure.

Invariant 2: The right halfmoons of the é-scaled disks already processed do not
intersect.

It is clear that we have to insert a disk into the vertical structure exactly when the
sweepline passes the centerpoint of that disk. Invariant 1 allows, that disks whose
right halfmoon does no longer cut the sweepline, remain in the sweepline. Note that
neither Invariant 1 nor Invariant 2 is destroyed if we decrease 6.

The only problem appears when a new disk D; is inserted into the sweepline. Its
right halfmoon may intersect other right halfmoons already processed and we have
to decrease 6. We detect such situations and handle them as follows:

Look at the upper neighbour D; of D; in the vertical structure.

1. D; lies completely behind the sweepline. Then it is clear that D;’ NDf =90
and we may delete D; from the vertical structure.

2. D;’ N Df = 0. Then it is clear, that D; also does not cut any right half-
moon which is in the vertical structure and whose centerpoint is above the
centerpoint of D;.

3. D;’ N DF # (. Then we compute the pairwise maximal right scaling factor of
D;" and D;". This number 6;; must be lower than the current 6 and we set
0 := 0;;. Two cases may appear:

(a) D;’ now lies completely behind the sweepline. We proceed as in Case 1.

(b) D;’ still cuts the sweepline. We proceed as in Case 2.

After that process D; might have a new upper neighbour (in Cases 1 and 3a) and
we have to repeat this process until either Case 2 occurs or D; does no longer have
an upper neighbour. A similar processing is done for the lower neighbour of D;.
Finally we will have again established Invariant 2.

As already said we start the sweeping process with 6 := 4o0. If the sweepline
is to the left of the leftmost centerpoint the vertical structure is empty and we can
scale the disks by 4+oo without violating Invariant 2. During the algorithm 6 will
only be decreased when required and only so much that still two right halfmoons
will touch. Then it is clear that the final value of 6 equals 6t . Note, that for our
purpose it is not necessary to compute the pairwise maximal right scaling factor in
Case 3. In an actual implementation we could compute the pairwise maximal scaling
factor instead, since the maximal scaling factor is really what we are interested in.

|

maxr

Lemma 2 The maximal right scaling factor o of a set of n disks in the plane

can be computed in O(nlogn) time.

Proof: By the discussion above our algorithm computes 6 . We only have to
analyze the runtime. If we use some appropriate balanced tree scheme for the
vertical structure then an insertion or deletion of a disk can be done in O(logn)
time. But when we process an inserted disk in order to maintain the invariants, we
may have to look at many other disks.

The amount of work done for one of these disks is O(logn) (neighbour-finding
and computing the pairwise maximal right scaling factor). If the disk is deleted we
charge that work to the deletion. At most two disks — the topmost and bottommost
processed — are not deleted. That work is charged to the insertion.

Now insertions and deletions cost at most O(log n) time. Note that every disk is
inserted exactly once and deleted at most once. Therefore the total runtime of our

algorithm is O(nlogn).
We have now described all ingredients to solve the weighted closest pair problem
and sum up in the following Theorem.

Theorem 1 The mazimal scaling factor of a set of disks can be computed in O(nlogn)
time.

Weighted Closest Pairs 7

Since our problem is a generalization of the closest pair problem, the Q(nlogn)
lower bound of this problem (see [PS85]) also applies in our more general setting.
[t is easy to see, that the space requirement of our algorithm is O(n).

3 Weighted Closest Pairs for Generalized Disks

In this section we will briefly indicate how the method developed for disks in
Section 2 can be used for other objects shapes. Although the method works for
more general shapes, we only demonstrate it for unit-disks generated by L,-norms
(1 <p < o0) in order to keep the presentation simple.

So our setting is as follows:

Given a set of n convex planar figures (henceforth called bodies), each of them being
a disk of some L,-norm (1 < p < o0) scaled by some positive number (weight),
determine the maximal scaling factor 0,,4., such that the bodies scaled by 6,,.. are
pairwise disjoint.

Note that different bodies are allowed to be disks from different L,-norms and
with different weights. In a typical robot environment for example, some robots
could be abstracted as ordinary disks (L3), others could be squares (L1, L) (see
Figure 1).

In the sequel we again define a halfmoon propertyfor bodies as we did it for disks
in Section 2. Unfortunately it is no longer true, that the straight line embedding of
the “intersection graph” for a set of bodies with the halfmoon property is plane, but
it is still planar, i.e. there is some other embedding of the graph which is crossing-free,
but the straight line embedding has crossings. So again, the number of intersecting
pairs of bodies is only linear. These intersections can be determined by a plane-
sweep algorithm, the minimum of only linearly many pairwise scaling factors could
be computed etc. similarly as demonstrated for disks in Section 2. This section
shows only the planarity result. The actual computation of é,,,, 1s done similar as
for ordinary disks and therefore not described.

By the vertical diameter of a body we understand the intersection of the vertical
line through the centerpoint of the body with the body. Analogously as done for
disks in Section 2 we define the halfmoon-property for bodies.

Definition 3 Let B = {By, By, ..., B,} be a set of bodies in R*. We say, that B
fulfills the halfmoon-property if no body in B cuts the vertical diameter of another
body of B. For a body B; € B we will call the two parts of B; to the left and to the
right of the vertical diameter left resp. right haltmoon of B; and denote them by B,
resp. Bf.

The main common feature of bodies can be stated as follows:

Observation 2 Any body has horizontal tangents in the endpoints of its vertical
diameter.

This simple observation enables us to prove the following facts:

Observation 3 Let B = {By, B, ..., B,} be a set of bodies with the halfmoon
property.

(1) No two left and no two right halfmoons intersect.

(2) No disk is completely contained in another.
(3) No point in the plane is covered by more than 2 disks of B.

Proof: By Observation 2 it is clear that Facts (1) and (2) hold. By Fact (1) a point
must lie in different halfmoons of different bodies and therefore Fact (3) holds.

Let us now state the main lemma of this section.

Lemma 3 Let B ={By, By, ..., B,} be a set of bodies with the halfmoon property.
The graph G with the vertex set B and edges between any pair of intersecting bodies
is planar.

Proof: We place the vertices at the centerpoints of the bodies. Let us now take a
look at some right (w.l.o.g.) halfmoon B of some body B;. By Observation 2 and
the fact that all bodies are convex it follows that the intersections of B with left
halfmoons of other bodies all lie in disjoint open horizontal stripes and to the right
of the vertical diameter. A similar argument holds for the left halfmoon B; . If we
now look at the relative complement of {B; |1 < j < n,¢ # j} with respect to B;

residue(B;) := B\ {B; |1 <j<n,i#j}

we observe that this is a simply connected area containing the vertical diameter.
As already stated, the straight-line embedding of the edges of ¢ is not plane, i.e
there may be intersections. So we will give another layout for the edges. Any edge
will be laid out completely in the two bodies, whose intersection defines it. So we
split an edge going from B; to B; into three parts, the part which will be laid out in
residue(B;), the part in B; N B; and the part in residue(B;). The first parts of all
edges with one endpoint in B; can now be easily laid out star-like in residue(B;) since
this is a simply connected area and no intersections with other edges will appear.
By symmetry, the third part of an edge can be laid out like its first part. The second
part of an edge going from B; to B; is the only edge that must be laid out in B; N B;
and is therefore crossing-free. It can easily be laid out to link the two other parts.

4 Further Extensions and Discussion

In the previous section we have extended our original ideas for circular disks to more
general disks, 1.e. for unit disks generated by L,-norms. There the most important

Weighted Closest Pairs 9

feature was the existence of horizontal tangents in the endpoints of the vertical
diameter of bodies (Observation 2). Of course we could also use our ideas for other
convex shapes with the property cited above, for example convex polygons with
that property. Also the choice of the vertical diameter with horizontal tangents is
in some sense arbitrary. For other shapes other directions can, or have to be chosen.
Furthermore also the convexity assumption can be relaxed.

Recall that it is assumed, that the computation of the maximal scaling factor of
two objects is a O(1) time operation, therefore we have to restrict ourself to simple
classes of objects to attain the promised runtime of O(nlogn). So for example in
Section 3 we have to restrict ourself to some finite class of norms.

Furthermore, we have used multiplicative weights. Our methods also work for
additive weights, but here we could also compute the Voronoi diagram (cf. [For87]) of
the boundary of the figures and extract the closest pair from the set of neighbouring
regions. Qur approach may be more practicable.

References

[AE84] Franz Aurenhammer and Herbert Edelsbrunner. An optimal algo-
rithm for constructing the weighted Voronoi diagram in the plane.
Pattern Recognition, 17:251-257, 1984.

[Aur87] Franz Aurenhammer. Power diagrams: properties, algorithms, and

applications. SIAM J. Comput., 16:78-96, 1987.

[BH91] Frank Bartling and Klaus Hinrichs. A plane-sweep algorithm for
finding a closest pair among cnvex planar objects. Technical Report
91-03, Gesamthochschule Siegen, Institut fiir Informatik, 1991.

[BOT79] J. Bentley and Thomas Ottmann. Algorithms for reporting and
counting geometric intersections. IEFE Trans. Comput., 28:643-
647, 1979.

[BS76] J. Bentley and M. Shamos. Divide and conquer in multidimensional

space. In Proceedings 8th Annual Symp. Theory Comput., pages
220-230, 1976.

[For87] S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorith-
mica, 2:153-174, 1987.

[HNS90] Klaus Hinrichs, J. Nievergelt, and Paul Shorn. Plane-sweep solves
the closest pair problem elegantly. Information Processing Letters,

pages 337-342, 1990.

[HST75] D. Hoey and M. Shamos. Closest-point problems. In Proceedings
17th IEEE Annu. Symp. Found. Comput. Sci., volume 26, pages
151-162, 1975.

10

[Koe36]

[PS85]

[Sha85]

[Yap87]

Paul Koebe. Kontaktprobleme der konformen Abbildung. Berichte
der Verhandlungen der Sachsischen Akademie der Wissenschaften
zu Leipzig, pages 141-164, 1936. Math.-Phys. Klasse 88.

William Pulleyblank and Gunter Rote. Disk packings, planar
graphs and combinatorial optimization. Unpublished.

Franco Preparata and M. Shamos. Computational Geometry: An
introduction. Springer-Verlag, New York, 1985.

Micha Sharir. Intersection and closest pair problems for a set of

planar discs. SIAM Journal on Computing, 14:448-468, 1985.

Chee Yap. An O(nlogn) algorithm for the Voronoi diagram of a
set of simple curve segments. Discrete Comput. Geom., 2:365-393,

1987.

