
Integration of plasmonic Ag nanoparticles as a back reflector  

in ultra-thin Cu(In,Ga)Se2 solar cells 

Guanchao Yin
1*

, Alexander Steigert
2
, Patrick Andrae

1,4
, Manuela Goebelt

3
, Michael Latzel

3,5
, 

Phillip Manley
1
, Iver Lauermann

2
, Silke Christiansen

3,6
, Martina Schmid

1,4
    

1 Nanooptix Concepts for PV, Helmholtz Zentrum Berlin, 14109 Berlin, Germany 

2 Heterogeneous Material System, Helmholtz Zentrum Berlin, 14109 Berlin, Germany 

3 Max Planck Institute for the Science of Light, 91058 Erlangen, Germany 

4 Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany 

5 Institute Nano-Architectures for Energy Conversion, Helmholtz Zentrum Berlin, 14109 Berlin, Germany  

6 Institute of Optics, Information and Photonics, Friedrich-Alexander-University Erlangen- Nürnberg, 91058 Erlangen, Germany 

*Corresponding author: guanchao.yin@helmholtz-berlin.de (Guanchao Yin) 

Abstract: Integration of plasmonic Ag nanoparticles as a back reflector in ultra-thin 

Cu(In,Ga)Se2 (CIGSe) solar cells is investigated. X-ray Photoelectron Spectroscopy results show 

that Ag nanoparticles underneath a Sn:In2O3 back contact could not be thermally passivated even 

at a low substrate temperature of 440 °C during CIGSe deposition. It is shown that a 50 nm thick 

Al2O3 film prepared by Atomic Layer Deposition is able to block the diffusion of Ag, clearing the 

thermal obstacle in utilizing Ag nanoparticles as a back reflector in ultra-thin CIGSe solar cells. 

Via 3-D finite element optical simulation, it is proved that the Ag nanoparticles show the 

potential to contribute the effective absorption in CIGSe solar cells. 

Keywords: ultra-thin Cu(In,Ga)Se2 solar cells, Ag nanoparticles , thermal stability,  Al2O3 film, 

atomic layer deposition 

1. Introduction  

In the last decade, tremendous attention has been paid to Cu(In,Ga)Se2 (CIGSe) solar cells with 

thinner absorbers [1-6], which enables  the reduction of consumption of rare material indium (In) 

and resulting manufacturing cost compared to their thick counterparts. However, it is 

demonstrated that high efficiencies (> 15 %) can only be maintained when the CIGSe absorber is 

thicker than 1 μm [1, 3, 7]. One of the dominant reasons is the incomplete absorption of incident 

light arising from the absorber thickness reduction [1-5], which leads to a much lower current 

density. Our final goal is to obtain highly efficient ultra-thin CIGSe solar cells (with CIGSe 
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absorber thickness below 500 nm).  Therefore, light trapping is crucial to maintaining high 

efficiencies for ultra-thin CIGSe solar cells. Among various light-trapping technologies, 

subwavelength plasmonic metallic nanostructures have shown pronounced light-trapping effects 

in thin-film solar cells [8-11], because they can exhibit localized surface plamsons and increase 

the absorption of solar cells either by strong scattering or local near-field concentration.  

The CIGSe solar cell has a typical structure of Al:ZnO(AZO)/i-ZnO/CdS/CIGSe/Back contact/ 

glass substrate from top to bottom. Regarding the location of nanoparticles in the solar cell, we 

can in principle place the nanoparticles at any interface. For the consideration of favourable 

electrical properties of solar cells, it is not advisable to place the metallic nanoparticles at any of 

the interfaces within the AZO/ZnO/CdS/CIGSe/back contact layers. To avoid parasitic absorption 

and lower transmission originating from the Fano effect [12-14] at wavelengths below the surface 

plasmon resonance, placing the particles on the top of solar cells (air/AZO) is not recommended 

either. In this work, therefore, we limit our investigation to the configuration of placing metallic 

nanoparticles at the rear interface of back contact/glass substrate as a back reflector. Since the 

decaying length of near field is only a few nm, the enhanced near fields surrounding the particles 

will not penetrate into the absorbing layer. This indicates that only scattering from the particles 

will contribute as the light-trapping mechanism in this configuration.  The concept of metallic 

nanoparticles as a back reflector has been both experimentally and theoretically observed in thin-

film Si solar cells [9, 15-17]. However, there have been few reports of CIGSe solar cells using 

metallic nanoparticles as a back reflector. Compared to amorphous Si solar cells, the 

experimental challenges of incorporating metallic nanoparticles into CIGSe solar cells are as 

follows: 1) the deposition of amorphous Si solar cells can be done at a low substrate temperature 

around 250 °C or even lower [18, 19], which is not high enough to trigger the diffusion of 

metallic particles underneath  the back contact. In contrast, the CIGSe absorber is normally 

deposited at above 500 °C [20], which poses a high risk of triggering the diffusion of metallic 

material through the back contact into the absorber. 2) The conventional back contact layer of 

CIGSe solar cells is the opaque Mo rather than transparent conductive oxide (TCO), which makes 

it hard to harvest the light-trapping benefit from the rear side.  

TCO substrates have shown the potential to be promising alternative back contacts for CIGSe 

solar cells [21, 22]. Further, in our previous work [5], it was demonstrated that low substrate 

temperature (440 °C) could also enable efficient ultra-thin CIGSe solar cells. The low substrate 



temperature makes it possible that metallic nanoparticles can be thermally passivated by a TCO 

back contact. The two points provide possibilities to utilize metallic nanoparticles as light-

trapping structures at the rear interface (back contact/glass substrate) of CIGSe solar cells. Thus, 

in this work, we will investigate the potential of using metallic nanoparticles as light-trapping 

structures in ultra-thin CIGSe solar cells deposited at low substrate temperature on TCO substrate.  

2 Experiments and characterization 

Ag nanoparticles: Ag is selected as the plasmonic material in this work because of its strong 

scattering ability and low parasitic absorption [23]. The Ag nanoparticles were prepared by the 

so-called surface-tension-induced agglomeration method [15, 24]. A 30 nm thick Ag film was 

first grown on a glass substrate by thermal evaporation and was then annealed at 450 °C for 

30 minutes in ambient atmosphere. 

Al2O3 thin films: An Al2O3 thin film was introduced to thermally passivate the Ag particles 

before TCO deposition. The Al2O3 films were prepared by Atom Layer Deposition (ALD) using 

a BENEQ TFS200 ALD system. Trimethyl aluminium (TMA) and oxygen plasma were used as 

precursors for the plasma-enhanced ALD process at room temperature [25]. 

Solar cells: For the device completion, a 200 nm thick Sn:In2O3 (ITO) layer was sputtered on the 

prepared Ag particles as the TCO back contact. Subsequently, a 460 nm thick CIGSe absorber 

was fabricated by 3-stage co-evaporation process at a low substrate temperature of 440 °C. The 

[Ga]/[Ga+In] and [Cu]/[Ga+In] ratio are 0.35±0.01 and 0.87±0.01, respectively. A 50 nm thick 

CdS layer was then grown by chemical bath deposition (CBD). A sputtered 130 nm i-ZnO and a 

240 nm Al doped ZnO (AZO) layer followed. The Ni/Al front contact was evaporated through a 

shadow mask with a total thickness of 2.5 μm.  Finally, the solar cells were mechanically scribed 

to 0.5 cm
2
 for a single solar cell. For comparison, solar cells without the incorporation of Ag 

nanoparticles were prepared simultaneously.  

Characterization: For characterization of morphologies, scanning electron microscopy (SEM) 

was used. To investigate the thermal stability of Ag nanoparticles during CIGSe deposition, X-

ray photoelectron spectroscopy (XPS) was applied.  Transmittance (T) and reflectance (R) 

measurements of the samples under normal incidence were carried out by UV-Vis spectrometer 

with an integrating sphere, Absorption (Abs = 1-R-T) was deduced.  To theoretically demonstrate 
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the light-trapping effect of Ag nanoparticles, 3-D numerical simulations were carried out using a 

Finite Element software package (JCMsuite) [26]. The simulation unit cell consists of the basic 

structure of AZO/ZnO/CdS/CIGSe/ITO/Al2O3/glass substrate with the thicknesses of 

240/130/100/460/200/50/200 nm from top to bottom. The structure and thickness values were 

chosen according to the experimental samples. The Ag nanoparticles are placed at the rear 

interface of ITO/glass substrate. The unit cell is a hexagonal prism, consisting of three sets of 

periodic boundary conditions in the x-y plane.  Perfectly matched layers (PML) are used in the 

both of the z directions to remove artificial reflections.  Since the glass substrate block is too 

thick to be included inside the FEM domain, only 200 nm of glass substrate is included in the 

computational domain. Since we have a PML layer, it means that reflections from the rear glass 

side are neglected. 

3 Results and discussion 

3.1 Ag nanoparticles 

 

Fig.1 a) Surface morphology, b) reflectance (R), transmittance (T), absorption (Abs) of Ag 

nanoparticles on glass substrate   

Fig.1 a) shows the surface morphology of Ag nanoparticles prepared by surface-tension-induced 

agglomeration method. We can observe approximately spherical Ag particles. They are randomly 

separated and particles of 200 nm major diameter dominate the size distribution. The 

corresponding optical responses R/T/Abs (Abs = 1-R-T) were measured and are depicted in Fig.1 



(b) (solid lines). There is a broad resonance peak centered at the wavelength of 630 nm. This 

corresponds to the dipole resonance of the Ag nanoparticles.  The broadness of the resonance 

peak is due to the non-uniform size distribution and is actually beneficial for the broadband light-

trapping requirement. Besides, the absorption for the prepared nanoparticles is below 10 % 

beyond 600 nm, which indicates that the scattering predominates over parasitic absorption over 

most of the wavelength range of interest.  As to the parasitic absorption at wavelengths below 

600 nm, this is not deleterious to the light-trapping effect since light in this wavelength range is 

mainly absorbed by the solar cell before reaching the Ag nanoparticles at the interface of 

ITO/glass substrate. 

3.2 Thermal stability of Ag nanoparticles 

 

Fig.2 Investigation of Ag diffusion after the CIGSe deposition  

Although the CIGSe deposition temperature was largely reduced from standard high temperature 

(above 500 °C) to 440 °C, we still could not ensure the thermal passivation of Ag nanoparticles. 

We investigated the sample of Ag nanoparticles coated by a 200 nm thick ITO back contact layer 

(ITO/Ag/glass substrate), which experienced the whole CIGSe deposition process but was 

blocked from CIGSe deposition by a mask on top. XPS was used to characterize the ITO surface 

and the result (shot dotted line) is shown in Fig.2. The signal of Ag was still detected, which 

indicated that the ITO layer failed to thermally passivate the Ag nanoparticles even at the reduced 



substrate temperature during the CIGSe deposition. Further lowering the CIGSe deposition 

temperature may help block the diffusion of Ag, this will however lead to low-quality CIGSe 

absorbers and is not recommended. Increasing the thickness of the ITO layer is another 

alternative approach, this is however not feasible either. Because ITO has strong absorption due 

to free charge carriers, especially in the near infrared range, thicker ITO layers imply that more of 

the light scattered back from Ag nanoparticles will be dissipated in ITO.  A third approach is to 

insert a passivation layer between ITO and Ag nanoparticles. This passivation layer should fulfill 

at least two requirements: 1) there is no absorption in the wavelength range of 600-1200 nm, 

where ultra-thin CIGSe solar cells have poor absorption; 2) this passivation layer should be 

highly compact and thermally stable. Accordingly, dielectric materials like Al2O3 and Si3N4 are 

materials of choice. Considering the available experimental conditions, Al2O3 is selected in this 

work.   

The Al2O3 films were prepared by plasma-enhanced ALD at room temperature. Fig.2 shows the 

XPS result of the sample (solid line) with a 50 nm think Al2O3 film. It can be observed that the 50 

nm thick Al2O3 film was able to block the diffusion of Ag. We should stress here that whether the 

Al2O3 film can passivate the diffusion of Ag is dependent on how the Al2O3 film is prepared. We 

also tested a sputtered 150 nm thick Al2O3 film, which failed to block the diffusion of Ag (not 

shown here). This is due to the fact that the ALD-prepared Al2O3 film has a better conformity to 

the surface features and is much more compact than the sputtered.  

Fig.3 shows the cross section and the surface topography of the sample of ITO/Al2O3/Ag /glass 

substrate. The cross section shows that the Ag nanoparticles are conformally covered by the 

Al2O3 film. Moreover, the ITO layer is also laterally continuous on top of the Al2O3 layer and no 

fracture is observed, which is critical for electrical properties of solar cells. The top view also 

confirms the conformal growth: the Ag nanoparticles tend to ‘grow’ bigger and become closer.  



 

Fig.3 Morphologies of the structure of ITO/Al2O3/Ag/glass substrate  

The Al2O3 coating can influence the optical responses of Ag nanoparticles as well. Fig.1 also 

shows the optical responses of Ag nanoparticles after the 50 nm thick ALD-prepared Al2O3 film 

was coated (dash lines). Compared to the optical responses without the Al2O3 film, the main 

feature is that the dipole resonance peak red-shifts from the wavelength 630 nm to around 790 

nm due to the higher refractive index of Al2O3 than air [8, 15]. This redshift is actually beneficial 

for light trapping since the resonance peak is located at the center of the poorly absorbed 

wavelength range (600 - 1200 nm) for ultra-thin CIGSe solar cells. 

3.3 Integration of Ag nanoparticles in solar cells  

To confirm the light-trapping effect of Ag nanoparticles, the solar cells were prepared on top of 

ITO/Al2O3/Ag/glass substrate and ITO/Al2O3/glass substrate. Unfortunately, the cells with Ag 

nanoparticles showed poor electric performance. The reason is assumed to be related to the 

texture of the ITO layer as a result of the conformal growth as shown in Fig.3. Each single solar 

cell was mechanically scribed from 2.5*2.5 cm substrate to 0.5*1 cm. However, ITO has surface 

texture due to the conformal growth on Ag nanoparticles (see Fig. 3) and the distance between 

the neighbouring two nanoparticles is less than the size of the mechanical needle. Therefore, the 

mechanical needle either failed to completely separate the CIGSe absorber or cut off the ITO 

layer completely. This can shunt or open circuit the cells.   



 

Fig.4 Absorption of the complete cells (Abssolarcell) with and without Ag incorporation 

R and T of the complete solar cell with and without Ag nanoparticle incorporation were measured 

and the absorption of the complete solar cell (Abssolarcell) was calculated (in Fig.4). Abssolarcell is 

greatly enhanced in the wavelength range of 600-1200 nm due to the presence of the Ag 

nanoparticles. Since the solar cells showed poor electric performance, it is difficult to identify 

whether the increase in Abssolarcell is due to the effective absorption in CIGSe (AbsCIGSe) or to the 

parasitic absorption in either Ag nanoparticles or/and any of the other layers.  

To distinguish this point, 3-D simulations were carried out to check whether Ag nanoparticles can 

contribute to the effective AbsCIGSe using the FEM software package (JCMsuite). The simulation 

structure is illustrated as Fig.5 a). To approximate the effect of an ensemble of different particle 

sizes, we simulate only the mean particle size. This was experimentally determined to be a 

hemispherical shape with a height of 40 nm, a width of 150 nm and a radius of curvature of 90 

nm. This structure of Al2O3/Ag/glass substrate in the simulation gives a comparable resonance 

(around 800 nm) to the experimental sample as shown in Fig.2. b) Conformal growth of layers on 

top of Ag nanoparticles is not taken into account.  Since we only intend to confirm whether Ag 

nanoparticles are able to contribute to AbsCIGSe, the simulations are sufficient to confirm the 

feasibility of this mechanism. Fig.5 b) shows both the calculated AbsCIGSe and Abssolarcell with and 

without Ag nanoparticles. After incorporating Ag nanoparticles, the Abssolarcell is generally higher 

in the poor-absorbing spectrum region, which agrees with the changing trend of the 

experimentally measured in Fig.4. Similar to the Abssolarcell, AbsCIGSe is improved as well, which 

indicates that Ag nanoparticles are able to improve the effective AbsCIGSe. Further, from the 

comparison of differences between Abssolarcell and AbsCIGSe for solar cells with and without Ag 



nanoparticles, the improvement of AbsCIGSe is the dominant part of the increase of Abssolarcell. 

Therefore, we can conclude that Ag nanoparticles can improve the effective absorption in CIGSe 

layers. Here, it is stressed again that the goal of this work is to prove the concept of light-trapping 

effects of Ag nanoparticles at the interface of ITO/glass substrate. For the maximum absorption 

enhancement, an optimization of particle shape, size and density should be performed.  

 

Fig.5 a) Cross section of the unit cell in the finite element method (FEM) simulation; b) 

simulation of AbsCIGSe and Abssolarcell with and without Ag nanoparticles at the interface of 

ITO/glass substrate 

4 Conclusion and outlook  

In this work, incorporating Ag nanoparticles at the ITO/glass substrate interface as a back 

reflector in CIGSe solar cells has been investigated. It is confirmed that Ag nanoparticles can still 

penetrate the ITO back contact even at a low substrate temperature of 440 °C. The ALD-prepared 

Al2O3 film with a thickness of 50 nm is proved to be able to thermally passivate the diffusion of 

Ag. This addressed the thermal obstacle to utilize the Ag nanoparticles as a back reflector in 

CIGSe solar cells. With the help of the optical 3-D FEM simulation, it was proved that Ag 

nanoparticles underneath the ITO back contact could contribute to the effective absorption 

(AbsCIGSe) of solar cells from an optical point of view.  

To transfer the optical benefit to the electrical gain of solar cells, the next necessary step is to 

address the problem leading to the electrical failure of solar cells. Further, to achieve the 



optimum gain of AbsCIGSe enhancement, the geometry of the Ag nanoparticles needs to be 

optimized, which covers the size, shape, density and periodicity. 
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