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Caged non-ionic detergents, comprised of polar oligo
(ethylene glycol) and non-polar alkyl chains joined by a
photocleavable ortho-nitrobenzyl sulfonate linker have been
synthesized and characterized. The light-triggered transfor-
mation of such chameleon surfactant from a charge-neutral
into a charged form offers great potential to improve 2-D gel
electrophoretic separation of complex protein mixtures.

In recent years, (macro)molecules that respond to external stimuli
by characteristic changes of their properties have become in-
creasingly important in so-called “smart” materials. In particular,
photoresponsive systems allowing for precise external control
over time and location of the non-invasive stimulus have been
developed. While the use of photochromic moieties allows
for reversibility and therefore true switching processes, many
systems relevant to biology,1 diagnostics,2 and materials science3

benefit from the concept of light-triggered, irreversible activation
of a protected group or molecule, sometimes referred to as
“caged” compounds.1 Among the most commonly explored
photolabile protecting groups has been the ortho-nitrobenzyl
moiety allowing for the unmasking of various functionalities,
such as ethers, esters, phosphates, sulfates etc.4 Upon irradiation,
the photocleavage process results in the spatially and temporally
defined presentation of these functionalities, allowing for specific
attachment5 and delivery6 as well as local changes in pH,7 elec-
trostatic interactions6,8 and aggregation behavior,9,10 among
others.

Due to the common interest in the often-challenging analysis
of less abundant regulatory proteins, such as transcription
factors,11 as well as membrane-bound proteins,12–14 we have
engaged in improving 2-D gel electrophoresis15–17 (2-D GE) by
the use of photoresponsive surfactants. Our chameleon surfac-
tants combine two different sets of properties facilitating the

separation of proteins in both dimensions. Specifically, we have
targeted non-ionic amphiphiles that solubilize the desired pro-
teins and aid isoelectric focusing in the first dimension, i.e. sep-
aration based on charge. After the proteins have reached the
location of their specific isoelectric point, which is naturally
associated with low solubility, irradiation of the gel should
trigger the photochemical conversion to an ionic surfactant
mimicking sodium dodecyl sulfate (SDS) in the second dimen-
sion, i.e. separation based on molecular weight, so called
SDS-PAGE. Therefore, the detergent would remain associated
with the micellar protein-surfactant complex, principally leading
to an enhanced separation performance as compared to tra-
ditional methods that necessitate detergent exchange.18–20 Such
exchange is usually incomplete leading to formation of a broad
distribution of protein-surfactant micelles and therefore loss of
resolution, i.e. “smearing”.21 Furthermore, the surfactant ex-
change is associated with significant loss of proteins therefore
pushing the concentration of under-represented proteins below
the detection limit.22

Here, we put forth a concept to overcome these problems by
the use of suitable photocaged detergents (Fig. 1). We describe
the design and synthesis of such photocaged detergents as well
as their photochemistry, aggregation behavior, and protein solu-
bilization ability.

In order to address the problem outline above, we designed
amphiphiles based on poly(ethylene glycol) (PEG) and alkyl
chains joined via a photocleavable ortho-nitrobenzyl moiety
leading to the release of the corresponding alkyl sulfonate upon
irradiation (Fig. 1). Synthesis‡ involved PEGylation of commer-
cially available 3-hydroxy-5-nitrobenzaldehyde 1 to give 4 fol-
lowed by reduction to yield the corresponding ortho-nitrobenzyl
alcohol 5, which was readily coupled with various alkylsulfonyl

Fig. 1 Improving 2-D gel electrophoresis using photolabile detergents
based on amphiphilic ortho-nitrobenzylsulfonates.
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chlorides to afford the desired detergents 7a–d (Scheme 1).
Note that the PEG-chain was attached to the photoreactive ortho-
nitrobenzyl moiety via an ether linkage in the para-position to
the nitro group in order to bathochromically shift the absorption
maximum and thereby avoiding potentially harmful excitation of
(hetero)aromatic amino acid side chain residues, such as trypto-
phane, tyrosine, phenylalanine, and histidine, in the gel. The
synthesis is highly modular by allowing for the introduction of
different hydrophobic alkyl side chains in the final step of the
sequence.

Variation of both the length and the branching of the alkyl
chains, known to affect the packing of the hydrophobic tails in
surfactant assemblies such as micelles and bilayers,23 allowed
for convenient tuning of the surfactants’ critical micelle concen-
trations (CMCs),‡ as illustrated in Table 1. Clearly, the formed
micelles can be destabilized by shortening the alkyl chain length
and increasing the number of methyl branches, i.e. 7a → 7d.
Such control over the surfactants’ CMC is absolutely crucial in
order to develop and optimize a detergent, which can solubilize
the desired proteins and thereby enable their electrophoretic sep-
aration. In analogy to other charge-neutral detergents, such as
Triton X-100, 7a–d exhibit rather low CMCs.

Irradiation experiments using selective excitation at 313 nm‡

(for absorption maxima see Table 1) showed rapid transform-
ation of ortho-nitrobenzyl sulfonates 7a–d in water as indicated
by the observed changes in the UV/vis absorption spectra
(Fig. 2a). Simultaneous HPLC-monitoring confirmed formation
of a polar PEG-based fragment, most likely 9 based on MS
detection, eluting faster than its parent photocleavable amphi-
phile 7d (Fig. 2b). Clearly, irradiation leads to scission of the
charge-neutral ortho-nitrobenzyl sulfonate surfactant and creates
an ionic surfactant in the form of the corresponding dissociated
sulfonic acid. The CMCs of the sulfonic acid photoproducts,

such as laurylsulfonic acid 8, and their salts,24 closely resem-
bling SDS, are typically 2–3 orders of magnitude higher than of
their corresponding PEGylated derivatives (Table 1).

To analyze whether our caged detergents can be used to solu-
bilize complex protein mixtures rat dorsal root ganglia were
extracted with 2% of detergent 7d and separated by traditional
one-dimensional SDS-PAGE. The separated proteins were then
electrophoretically transferred to a nitrocellulose membrane and
analyzed by Western blotting for the presence of two different
membrane proteins. To determine its solubilization capacity we
performed the same experiment in the presence of an equal
amount of SDS, the detergent of choice for the extraction of
proteins from complex tissue samples. As shown in Fig. 3, β1-
integrin as well as the ion channel TRPV4 can be successfully
extracted with 3,7-dimethyloctylsulfonic acid suggesting that our
caged detergents can not only be used for the solubilization of
complex protein mixtures but also for the extraction of proteins
that are known to withdraw their detection by classical 2-D
GE.12–14

Table 1 Absorption maxima and critical micelle concentrations
(CMCs) of surfactants 7a–d and laurylsulfonic acid 8 in water

Compound 7a 7b 7c 7d 8

λmax (nm) 313 315 320 313 n.d.
CMC (μM) <10 40 60 75 8000

Fig. 2 Irradiation of surfactant 7d (120 μM in H2O at 25 °C). (a)
UV/vis absorption spectra and (b) HPLC traces, both in time intervals of
90 s.

Scheme 1 Modular synthesis of surfactants 7a–d.
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Conclusion

In summary, we have proposed a general new concept for
improving separation performance of 2-D GE for analysis of
complex protein mixtures containing proteins that are notor-
iously under-represented and difficult to separate. The principle
described herein is based on the use of a non-ionic detergent and
its in situ photochemical conversion to an ionic surfactant.
A modular synthesis of photocleavable PEG-based amphiphiles
has been developed that allows for convenient control over their
CMCs by introducing various alkyl substituents. Future work
will be concerned with the use of our caged alkylsulfonate 7d
for the separation of complex protein mixtures in the 2-D GE.
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