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Abstract
As first shown by Popescu (1995 Phys. Rev. Lett. 74 2619), some quantum states
only reveal their nonlocality when subjected to a sequence of measurements
while giving rise to local correlations in standard Bell tests. Motivated by this
manifestation of ‘hidden nonlocality’ we set out to develop a general framework
for the study of nonlocality when sequences of measurements are performed.
Similar to Gallego et al (2013 Phys. Rev. Lett. 109 070401) our approach is
operational, i.e. the task is to identify the set of allowed operations in sequential
correlation scenarios and define nonlocality as the resource that cannot be cre-
ated by these operations. This leads to a characterization of sequential non-
locality that contains as particular cases standard nonlocality and hidden
nonlocality.
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1. Introduction

One of the major problems in physics is the characterization of the different correlations that
arise between distant observers performing measurements on physical systems. The set of valid
correlations depends strongly on the theory that one uses to describe such systems. Indeed, such
correlations allow one to distinguish in an operational way classical theory, quantum theory and
more general probabilistic theories. For instance, since the work of Bell [1], it has been known
and widely studied that some correlations obtained from measurements on quantum systems
cannot be simulated by any local and classical theory (local hidden-variable models). This
phenomenon is referred to as nonlocality. It can be seen in an extremely simple scenario
consisting of two distant parties performing one out of two possible measurements in each
round of the experiment. Extensions to more than two parties have also been studied giving rise
to the notion of multipartite nonlocality. Remarkably, nonlocality has also been shown to be
useful to perform quantum information tasks without a classical analogue, such as quantum key
distribution [2–4] and random number generation [5, 6].

In this work, we study a new form of correlations: those that arise between distant
observers performing a sequence of measurements on their physical systems. Naively, one may
think that the sequence of measurements can be cast as an effective unique measurement and
that the scenario is not essentially different from the standard one. However, we show that this
scenario is in many ways richer than the one with single measurements per round. This is
already implied by the results of [7] where it was shown that some quantum states display only
local correlations in scenarios with single projective measurements per round, but give rise to
nonlocal correlations when a sequence of measurements is performed instead. This
phenomenon was termed ‘hidden nonlocality’. Our main goal is to provide a general
framework for the study of correlations that arise from a sequence of measurements on classical
and quantum systems. Already in the classical case, we show that different sets of correlations
arise and hidden nonlocality is only the tip of the iceberg. First, we study classical hidden-
variable models from the point of view of a resource theory. We establish a set of operations
that one can perform on classical systems that do not create nonlocality between distant
observers. This set of operations is determined by the causal structure established given by the
sequence of measurements performed by the observers. Relying on this operational framework,
we are able to define a notion of ‘sequential nonlocality’ that contains as particular cases
standard nonlocality and hidden nonlocality. We further investigate a type of hidden-variable
models specially suited for scenarios with sequential measurements, in the spirit of time-ordered
local models considered in [8, 9]. These different notions of classicality for the scenario with
sequential measurements are also generalized to the quantum case. This analysis leaves
numerous open problems that we enunciate and motivate for further study.

2. Sequential correlation scenarios

In the study of correlation scenarios one typically assumes that for every physical system,
prepared by a common source, each party chooses one measurement to perform and records the
corresponding result before the source generates a new physical system for the next run of the
correlation experiment. The data collected in this way allows the parties when they come
together after sufficiently many runs to calculate the joint probabilities. This work studies a
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generalization of this situation where the parties are allowed to perform a sequence of
measurements on their part of the system in every run of the experiment.

2.1. General notation

In general, these scenarios can be formulated for an arbitrary number of parties; for simplicity,
however, we will restrict our study to the case of two parties. As in a usual correlation scenario
with a single measurement per party in each round, a common source produces a bipartite
physical system and sends one subsystem to A and the other to B. In contrast to the standard
situation, each party has now not only one set of possible measurement settings but one set of
possible settings for each measurement of the sequence of measurements it is going to perform
in each run of the experiment. To keep the notation simple let us start with the case of a
sequence of two measurements for each party where we label the ith measurement setting and
the ith outcome with x a,i i and y b,

i i for A and B (figure 1). Then, the observed correlations are
the collection of joint probabilities

|P a a b b x x y y( ). (1)1 2 1 2 1 2 1 2

Clearly, the outcome of the first measurement cannot depend on later measurement
choices; but in the present scenario of sequential measurements later outcomes may well depend
on the settings and outcomes of previous measurements. Therefore, the correlations

|P a a b b x x yy( )1 2 1 2 1 2 1 2
should not be viewed as four-partite nonsignalling correlations, but rather

as a bipartite distribution, where no-signalling holds with respect to A versus B but where
signalling from the first measurement of each party to the second of the same party is allowed.

Formally, the no-signalling condition between A and B means that a correlation P that was
obtained from a sequence of two measurements for each party obeys

∑ |P a a b b x x y y y y( ) is independent of , , (2)
b b,

1 2 1 2 1 2 1 2 1 2

1 2
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Figure 1. Sequential correlation scenario in the bipartite case. A common source
prepares a physical system and each of the two parties receives a subsystem. The parties
A and B choose the settings x1 and y

1
for their first measurement respectively and obtain

the outcomes a1 and b1; after recording the outputs of the first measurement they choose
the measurements x2 and y

2
yielding outcomes a2 and b2. The experiment is described

by the collection of the joint probabilities |P a a b b x x y y( )1 2 1 2 1 2 1 2
.



∑ |P a a b b x x y y x x( ) is independent of , , (3)
a a,

1 2 1 2 1 2 1 2 1 2

1 2

which guarantees that the marginal distributions for A and B

∑| = |P a a x x P a a b b x x y y( ) ( ) (4)A
b b

1 2 1 2
,

1 2 1 2 1 2 1 2

1 2

∑| = |P b b y y P a a b b x x y y( ) ( ) (5)B
a a

1 2 1 2
,

1 2 1 2 1 2 1 2

1 2

are well defined. Furthermore, as later measurements cannot influence the outcome of previous
ones, the correlations further have to fulfil

∑ |P a a b b x x y y x( ) independent of (6)
a

1 2 1 2 1 2 1 2 2

2

∑ |P a a b b x x y y y( ) independent of . (7)
b

1 2 1 2 1 2 1 2 2

2

Correlations fulfilling the above conditions are the objects of interest in the study of
sequential correlation scenarios. This notion can straightforwardly be generalized to the case of
longer sequences of measurements.

Definition 1. Sequential correlations. For two parties A and B that perform a sequence of s
and t measurements respectively, let a( j, x )j denote the jth outcome and setting of A for

⩽ ⩽j s1 and b( j, y )
j
the jth outcome and setting of B for ⩽ ⩽j t1 . The correlations, given by

the collection of the joint probabilities

… … | … …P a a b b x x y y( ), (8)s t s t1 1 1 1

are said to be sequential with respect to s t( , ), if

∑ … … | … …
…

P a a b b x x y y( ) (9)
a a

s t s t
, ,

1 1 1 1

j s

is independent of …x x( , , )j s for all ⩽ ⩽j s1 and

∑ … … | … …
…

P a a b b x x y y( ) (10)
b b

s t s t
, ,

1 1 1 1

j t

is independent of …y y( , , )
j t

for all ⩽ ⩽j t1 .

Note that conditions (9) and (10), when taking j = 1 just express the no-signalling
condition between parties A and B. That is, the marginal statistics of A (B) do not depend on the
inputs chosen by B (A). The remaining conditions obtained for < ⩽j s1 in (9)—or < ⩽j t1 in
(10)—capture the temporal ordering between the sequence of measurements chosen by A and B.
For instance, taking j = 2 in (9) we arrive at the condition that

… | … …P a b b x x y y( , , , , , , , , )t s t1 1 1 1
is independent of …x x, , s2 . This must be the case as the

inputs …x x, , s2 should not influence neither B nor the previous event a x( , )1 1 in A.
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Ignoring the length of the input and output alphabets for each measurement, a sequential
correlation scenario is then characterized by (s, t) specifying the length of the measurement
sequence for each party.

2.2. Known notions of nonlocality

Before we turn to the study of nonlocality in scenarios with sequential measurements let us
review known notions of nonlocality, namely standard Bell nonlocality [1] and ‘hidden
nonlocality’ first considered by Popescu [7].

The standard notion of locality is due to Bell, who showed that correlations arising from
local measurements on a bipartite quantum system cannot always be explained by a local
hidden-variable model [1]. More precisely, consider the situation of two parties A and B
performing local measurements on their share of a bipartite system. Each system can just be
seen as a black box that accepts a classical input, x for A and y for B, and produces a classical
output, a and b respectively. The correlations between the input and output processes among the
two parties are then described by the joint conditional probability distribution |P ab xy( ). The no-
signalling principle for this case states that

∑

∑

|

|

P ab xy y

P ab xy x

( ) is independent of

( ) is independent of . (11)

b

a

Correlations are said to admit a local hidden-variable model if the probability distribution
can be decomposed as

∑| = | |
λ

λ
λ λP ab xy p P a x P b y( ) ( ) ( ), (12)A B

where λp is a probability distribution of the hidden variable λ and λ λP P,A B are probability

distributions of the outcomes a b, given the inputs x y, respectively. There exist different
equivalent formulations of the set of assumptions leading to (12). For instance, the assumption
of local-realism— | = | |λ λ λP ab xy P a x P b y( ) ( ) ( )A B —together with the so-called assumption of
measurement independence—stating that =λ λp xy p( ) —lead straightforwardly to (12). For sake
of conciseness we incur in an abuse of terminology denoting correlations of the form (12)
simply as local. Equivalently, correlations that cannot be written as (12) will be termed
nonlocal.

The set of all probability distributions that fulfil (11) and (12) define the convex polytope
of local correlations [11]. Any no-signalling probability distribution that does not admit a local
hidden-variable model violates at least one of the facet defining inequalities of the local
polytope; these inequalities are called Bell inequalities and it is known that every pure entangled
quantum state violates a Bell inequality [12].

While every pure entangled state violates some Bell inequality, there are entangled mixed
states that do not violate any Bell inequality as shown by Werner [13]. He introduced a class of
bipartite mixed states that, for a certain parameter region, are entangled but notwithstanding
admit a local hidden-variable model for all possible projective measurements. These Werner
states W act on  ⊗d d and are of the form
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   = +
+

+ − −
−

W p
d d

p
d d( 1)

(1 )
( 1)

, (13)

where  denotes the identity matrix on the d × d dimensional Hilbert space,

 = ∑ ⊗i j j i
ij

the flip operator, and ⩽ ⩽p0 1. For = +p d

d

1

2 2 these states are

entangled but do not violate any standard Bell inequality. Werner proved this by constructing an
explicit local hidden-variable model that reproduces the correlations of these states for arbitrary
projective measurements [13].

However, as noted by Popescu in [7], a state like (13) can give rise to correlations that are
incompatible with an explanation by local hidden variables if it is subjected to a sequence of
measurements, thereby revealing what he named ‘hidden’ nonlocality. To see how this
argument works, suppose that the system is subjected to a sequence of two projective
measurements for each party. First, each party performs a measurement that corresponds to the
projection of that partyʼs subsystem onto a two-dimensional subspace (or its orthogonal
complement), i.e. A performs the measurement given by the projections  −P P{ , }d and B the
measurement given by the projections  −Q Q{ , }d , where

= +P 1 1 2 2 (14)
A A

= +Q 1 1 2 2 . (15)
B B

Now, after recording the outcome of the first measurements the parties choose their
measurement settings for the second round of measurements. When the parties obtained the
outcomes corresponding to the projections P and Q respectively in the first round, the post-
measurement state is given by

′ = ⊗ ⊗
⊗

W
P QWP Q

P QWtr ( )
(16)

 Ψ Ψ=
+

+ − −⎜ ⎟⎛
⎝

⎞
⎠

d

d d2
1

2
, (17)4

where

Ψ = −− 1

2
( 1 2 2 1 ) (18)

the singlet state. If the parties now choose observables A A B B, , ,0 1 0 1 for A and B respectively
that give the maximal value of the Clauser–Horne–Shimony–Holt (CHSH) expression [14] for
the singlet state, they obtain the following value

β = ′ + + − =
+

W A B A B A B A B
d

d
tr ( ( ))

2 2
2

(19)0 0 0 1 1 0 1 1

that depends on the local dimension d. For ⩾d 5 we have β > 2, a violation of the CHSH
inequality, indicating that in this case the observed correlations cannot be explained by a local
hidden-variable model. So, even though a local hidden-variable model can account for all the
correlations obtained from Werner states with ⩾d 5 that result from a single round of local
projective measurements, no such model could account for the correlations obtained when a
sequence of two projective measurements is performed by each party.
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The example [7] gave was concerned with a specific class of quantum states. Clearly, those
states display some sort of nonlocality but they have a standard local hidden-variable model.
Thus, the question naturally arises how to formulate the notion of locality in sequential
correlation scenarios.

Another example of hidden nonlocality was reported in [15] where examples of entangled
states in dimension d = 2 were presented that do not violate the CHSH inequalities for rounds of
single measurements but do so when sequences of generalized measurements, given by
positive-operator valued measures (POVMs), are performed. It is worth mentioning that, until
recently, all known examples of hidden nonlocality were derived for states that are local under
projective measurements. Therefore, it was open whether the nonlocality of these states could
simply be detected by allowing general measurements. In fact, while there exists a local model
for general measurements acting on some entangled Werner states [16], these states do not
display hidden nonlocality à la Popescu. This question was solved in a recent work, where a
class of entangled two-qubit states was presented that have a local model for general
measurements (POVMs) for rounds of single measurements, but violate a Bell inequality after
local filtering operations [17].

For the sake of simplicity let us for now focus on the case considered by Popescu, i.e. a
sequence of two measurements for each party, where the first measurement by each party is
always the same. We will denote by x y,2 2

the measurement settings for the second

measurement and by a b,i i for i = 1, 2 the outcome of the ith measurement of the parties A B, .
Obviously, the notion of locality in the current scenario of sequential measurements should

include the standard notion of locality in the sense of Bell, that the probability distribution
should be able to be decomposed as

∑| = | |
λ

λ
λ λP a a b b x y p P a a x P b b y( ) ( ) ( ). (20)A B1 2 1 2 2 2 1 2 2 1 2 2

After the discussion of Popescuʼs example it is also clear that another necessary condition
for an appropriate definition of locality in sequential scenarios is the absence of hidden
nonlocality. Therefore, one will further require that all possible post-selections have a local
model as well, i.e.

∑| = | |
λ

λ
λ λ

|P a a b x y b p P a a x P b y( ) ( ) ( ) (21)
b A B1 2 2 2 2 1 1 2 2 2 21

∑| = | |
λ

λ
λ λ

|P a b b x y a p P a x P b b y( ) ( ) ( ) (22)
a A B2 1 2 2 2 1 2 2 1 2 21

∑| = | |
λ

λ
λ λ

|P a b x y a b p P a x P b y( ) ( ) ( ) (23)
a b A B2 2 2 2 1 1 2 2 2 21 1

for all values of a b( , )1 1 and where the weights λ |·p will in general depend on the outputs of the
first measurement round.

Let us return to the explicit example by Popescu. Denote the first measurements of A and B
by the projectors Pa1

and Qb1
; and the second measurements by ˜

|Pa x2 2
and ˜

|Qb y2 2
. Then the

probabilities read
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|

= ˜ ⊗ ˜
| |( )

P a a b b x y

P P P Q Q Q W

( )

tr . (24)a a x a b b y b

1 2 1 2 2 2

1 2 2 1 1 2 2 1

Now, for Popescuʼs example the projections of the first and second measurement commute
for both A and B. Thus, the expression (24) can be seen as correlations arising from a single
projective measurement on each side and are therefore, due to the explicit hidden-variable
model constructed by Werner, local in the sense of (20). On the other hand, they do not fulfil the
condition (23), for the probabilities post-selected on the first outcome of the first measurement,

| = =P a b x y a b( , 1, 1), (25)2 2 2 2 1 1

violate the CHSH inequality.
As said, the first condition (20) is nothing but the standard locality condition in the spirit of

Bell between the two parties A and B when the pairs a a( , )1 2 and b b( , )1 2 are seen as one output
for A and B respectively. The remaining conditions (21) through (23) ensure that there is no
hidden nonlocality as the correlations that arise from the subsequent measurement can be
simulated by a local hidden-variable model whatever results were obtained in the first
measurement round. As we will see in the following, these necessary requirements are in
general not sufficient to capture the notion of locality in a sequential correlation scenario.

3. Nonlocality in sequential correlation scenarios

Popescuʼs example already showed that the standard notion of locality is not sufficient to
capture the behavior of correlations that can arise in a sequential correlation scenario. As said,
the correlations obtained from rounds of single measurements are local as they admit a standard
local hidden-variable model. One way to interpret the nonlocality revealed in Popescuʼs
example is to observe that the correlations do not fulfil condition (23). On the other hand, the
post-selection of the ensemble in (23) is an operation that can be performed by the two parties
locally and can thus be seen as a local preparation of a physical resource that is then subjected to
a standard Bell test. This way of looking at Popescuʼs example gives rise to an operational
definition of nonlocality. In the following we present a general framework for this operational
characterization of nonlocality adapted to sequential correlation scenarios.

3.1. Time-ordered local models

Before we turn to the task of characterising nonlocality in operational terms, however, let us
examine the lack of a decomposition as in (23) for sequential correlations. This form of
nonlocality of correlations can be understood as not admitting a local and causal hidden-
variable model as mentioned in [18].

Definition 2. Time-ordered local models. Given sequential correlations with respect to (s, t),
described by the joint probabilities

… … | … …P a a b b x x y y( ). (26)s t s t1 1 1 1

The set TOLoc of correlations admitting a time-ordered local model is given by correlations
that can be decomposed as
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∑
… … | … …

= … | … … | …
λ

λ
λ λ

P a a b b x x y y

p P a a x x P b b y y

( )

( ) ( ) (27)

s t s t

A s s B t t

1 1 1 1

1 1 1 1

where the positive weights λp sum to unity and the conditional probabilities λPA and λPB are
sequential, i.e. for all λ we have

∑ … | …λ

…

P a a x x( ) (28)
a a

A s s
, ,

1 1

j s

is independent of …x x( , , )j s for all ⩽ ⩽j s1 and

∑ … | …λ

…

P b b y y( ) (29)
b b

B t t
, ,

1 1

j t

is independent of …y y( , , )
j t

for all ⩽ ⩽j t1 .

Let us illustrate the definition of time-ordered local models for a simple example of
= =s t 2. In this case, a time-ordered local model reads

∑
|

= | |
λ

λ
λ λ

P a a b b x x y y

p P a a x x P b b y y

( )

( ) ( ) (30)A B

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

where we demand also that ∑ |λP a a x x( )
a A 1 2 1 2

2
is independent of x2 for all λ, and equivalently for

λPB . This should be interpreted as λ carrying information about the local instructions λPA and λPB ,
which fulfil the condition imposed by the sequential ordering of the measurements: the behavior
of x a( , )1 1 does not depend on the posterior input x2, and equivalently for Bob.

Let us compare these models with the standard formulation of local hidden-variable
models by Bell. The theorem of Bell assumes a certain causal structure between the hidden
variable λ and the events of measurements x y, and outcomes a b, of two separated parties to
derive linear constraints, in the form of inequalities, on the joint probabilities |P ab xy( ).

Formally, a causal structure is a set of variables V and a set of ordered pairs of distinct
variables (x, a) determining that x is a direct cause of a relative to V [19, 20]. A convenient way
to represent causal structures is through directed acyclic graphs, where every variable ∈x V is
a vertex and every ordered pair (x, a) is represented by a directed edge from x to a.
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Figure 2. Causal structure of the standard bipartite Bell scenario. The observed
variables are the inputs x y, of the two parties and their respective outputs a and b;
further a hidden variable λ is assumed as a common cause for both a and b.



In the standard Bell scenario of two parties there are the observed variables x y a b, , , and
further the hidden variable λ, a common cause of both outputs a and b. Thus, in this case one
arrives at the causal structure presented in figure 2.

As for time-ordered local models let us for definiteness start with the simple case of two
parties each performing a sequence of two measurements. The observed variables in this case
are x x y y a a b b, , , , , , ,1 2 1 2 1 2 1 2, where xi and ai denote the ith measurement setting and ith

outcome for A, and y
i
and bi denote the ith measurement setting and ith outcome for B; further a

hidden variable λ that is a common cause for all outputs is assumed. Clearly, there are direct
causal influences from xi to ai, from y

i
to bi and from λ to all outputs. As we are treating the

parties A and B as separated, we exclude causal influences from inputs of one party to the
outputs of the other. Later measurement outcomes of one party, however, will in general depend
on earlier settings or outcomes of that party. The response of one party for its ith measurement
should depend only on the given hidden variable λ, the first i measurement settings and the first

−i 1 measurement outcomes of that party. The resulting causal structure is shown in figure 3.
Note, any collection of conditional probabilities λ Λ| ∈λ λP P{ , }A B fulfilling the conditions of

(28) and (29) defines via (27) valid bipartite sequential correlations admitting a time-ordered
local model for any distribution λp of the hidden variable. Once we fix the causal structure,
expressed in the conditions (28) and (29), no fine-tuning of the model parameter λp is needed to
obtain correlations with the correct causal independence conditions. The fact that the models
defined on the causal structure shown in figure 3 do not require fine-tuning makes them the
natural generalization of local hidden-variable models to sequential correlation scenarios. As
already noted in [18], one can easily see that correlations admitting such a model do not display
hidden nonlocality.

Proposition 1. Let P be sequential correlations with respect to (s, t) that admit a time-ordered
local model. Then all correlations obtained by post-selection admit a time-ordered local model.
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Figure 3. Causal structure for the bipartite sequential correlation scenario with
sequences of two measurements for each party. The observed variables are the inputs
x x,1 2 of the first party, the inputs y y,

1 2
of the second party and the corresponding

outputs a a,1 2 and b b,1 2. The first output of one party is determined by the first input of
that party and the hidden variable λ; the second output depends on both inputs of the
respective party and the hidden variable λ.



Proof. Consider post-selection on the first measurement of A to yield a1 given the setting x1.
Given the time-ordered local model for P

∑
… … | … …

= … | … … | …
λ

λ
λ λ

P a a b b x x y y

p P a a x x P b b y y

( )

( ) ( ) (31)

s t s t

A s s B t t

1 1 1 1

1 1 1 1

the post-selected correlations are given by

… … | … …

=
|

… … | … …

|P a a b b x x y y

P a x
P a a b b x x y y

( )

1
( )

( ) (32)

a x s t s t

s t s t

2 1 2 1

1 1
1 1 1 1

1 1

and can be written as

∑
… … | … …

= ˜ ˜ … | … … | …
λ

λ

λ λ

|P a a b b x x y y

p P a a x x P b b y y

( )

( ) ( ), (33)

a x s t s t

A s s B t t

2 1 2 1

2 2 1 1

1 1

where we defined

˜ =
|

|λ
λ

λ

p
p P a x

P a x

( )

( )
(34)

A

A

1 1

1 1

and

˜ … | … =
… | …

|
λ

λ

λP a a x x
P a a x x

P a x
( )

( )

( )
. (35)A s s

A s s

A
2 2

1 1

1 1

As the resulting correlations admit a time-ordered local model, further post-selections by either
party will again result in correlations admitting such a model. □

Thus, one way to understand the nonlocality revealed by Popescuʼs argument is to observe
that the corresponding correlations do not admit a time-ordered local model as in definition 4.

3.2. Operational characterization of nonlocality

As said above, however, identifying post-selection as a possible operation that can be
performed locally by the parties opens the possibility to characterize nonlocality operationally.
So, instead of defining locality in a given correlation scenario through a specific class of models
we set out to define nonlocality in operational terms; this was done in [9] for the case of
multipartite nonlocality with single measurements in each round. The general idea within this
approach is to interpret nonlocality as a resource, i.e a property of correlations that cannot be
created by a certain set of allowed operations. Just as one can define entangled states as
nonseparable states, one can alternatively define entanglement as the resource that cannot be
created between two distant laboratories by the use of local operations and classical
communication [21]. In [9] an analogous operational framework for the resource of nonlocality
was developed. In the following we briefly review the elements of this framework and adapt
them to the current scenario of sequential measurements.

The set of objects in the present scenario is the set of sequential correlations described by
joint probabilities of the form

New J. Phys. 16 (2014) 033037 R Gallego et al

11



… … | … …P a a b b x x y y( ) (36)s t s t1 1 1 1

that, as in definition 1, can be obtained in a correlation experiment with sequences of
measurements. To characterize nonlocality as a resource we need to specify the set of allowed
operations in this scenario. A valid protocol for the two parties consists of two stages, the
preparation stage and the measurement stage.

The first stage takes place before the inputs for the final nonlocality test are provided and
allows the parties to perform measurements on their share of the physical system and
communicate the corresponding results among each other. Depending on the obtained and
communicated results the parties may choose to perform further measurements.

Note that classical communication is allowed at this stage; as the parties have not yet
received the inputs for the final Bell test, however, this communication cannot be used to create
any nonlocal correlations.

The second stage starts when the inputs for the final nonlocality experiment are provided;
from this point on no more communication is allowed. The local operations every party can
now perform consist of processing the classical inputs and outputs, referred to as wirings. Upon
receiving the input x party A can choose an arbitrary function f

1
to determine the input x1 for the

first measurement yielding an outcome a1; the inputs for the following measurements are
determined by a function of the provided input x and all measurement outcomes obtained so far,
i.e. = … −x f x a a( , , , )i i i1 1 . Lastly, the final output a is determined by a function g of the input x
and all outputs ai. Or, more formally,

Definition 3. Sequential wiring. Let P be bipartite sequential correlations with respect to (s, t).
A sequential wiring for party A is specified by functions …f f g{ , , }

s1
and takes P to the

correlations ′P , where ′P is characterized by

∑ ξ ξ

′ … | …

= … … | … …
…

… =

P ab b xy y

P a a b b y y

( )

( ) (37)

t t

a a
g x a a a

s t s t

1 1

s.t. ( , )

1 1 1 1
s

s

1

1

with ξ = f x( )1 1
and ξ = … −f x a a( , , , )i i i1 1 for ⩾i 2.

It is easy to see that the resulting correlations ′P are well defined; in particular they are
sequential with respect to t(1, ). Analogously, one can define a wiring for party B. Furthermore,
a sequential wiring can act on n different sequential probability distributions members. In this
case, a set of extra functions specifies the order according to which each party measures its
share of the n systems, which may depend on the input and the previous outcomes.

With the allowed operations defined, we can now define nonlocality as the property of
sequential correlations that cannot be created by these allowed operations.

Definition 4. Operationally local correlations. Consider the set of bipartite correlations that
are sequential with respect to (s, t). Sequential correlations P belong to the set OpLoc of
operationally local correlations, if for any n the product correlations ×P n are mapped by any
valid protocol to bipartite correlations that are local in the standard sense.
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In other words, correlations ∈P OpLoc cannot be employed to violate a standard Bell
inequality between A and B. Even if we allow for an arbitrary large number of copies of P and
any local processing of information.

In the standard bipartite scenario with single measurements the operational definition of
locality coincides with the characterization by local hidden-variable models as in (12) [9]. For
the present situation of sequential correlations we can show that correlations admitting a time-
ordered local model are compatible with our operational definition in the sense that no allowed
operation can map time-ordered local correlations into nonlocal correlations.

Proposition 2. The set of time-ordered local correlations is contained in the set of
operationally local correlations, i.e. ⊂TOLoc OpLoc.

Proof. During the preparation stage A and B implement measurements on a subset of the n
systems shared by them and communicate the corresponding results. The resulting correlations
are nothing but post-selections of the original correlations, which by proposition 1 admit a time-
ordered local model. The local sequential wirings applied during the measurement stage map
these time-ordered local correlations to bipartite local correlations. □

Another way of formulating proposition 2 is the following: given sequential correlations P,
it suffices to find a decomposition as in (27) to ensure that any protocol processing locally n
copies of P will not violate a Bell inequality between A and B. The set of correlations admitting
a time-ordered local model is therefore contained in the set of correlations that are local in the
operational sense. From this operational point of view we see that in Popescuʼs example the
parties use the operation of post-selection to create nonlocal bipartite correlations.

However, the situation described by Popescu is special insofar as there is only one setting
for the first measurements of A and B. As we show next, in a situation like this the existence of a
time-ordered local model for the correlations is equivalent to all post-selections having a time-
ordered local model.

Proposition 3. Consider sequential correlations with respect to (s, t) and assume that for the
first measurement by A and the first measurement by B there is only one setting each, i.e. the
correlations are characterized by

… … | … …P a a b b x x y y( ). (38)s t s t1 1 2 2

Then the following are equivalent:

(i) P admits a time-ordered local model with respect to (s, t).

(ii) All post-selections on the first measurement of A and the first measurement of B admit a
time-ordered local model with respect to − −s t( 1, 1).

Proof. That (i) implies (ii) is clear by proposition 1. To see the converse consider the post-
selections

∑
… … | … … =

… | … … | …
λ

λ
λ λ

|

P a a b b x x y y a b

p P a a x x P b b y y

( , )

( ) ( ) (39)

s t s t

a b A s s B t t

2 2 2 2 1 1

, 2 2 2 21 1
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all of which admit a time-ordered local model by assumption. Define a new hidden variable
μ λ= ′ ′a b( , , )1 1 distributed according to = ′ ′

μ λ | ′ ′q p P a b( )
a b, 1 1

1 1
and sequential response functions

δ˜ … | … = … | …μ λ′P a a x x P a a x x( ) ( ) (40)A s s a
a

A s s1 1 2 21

1

δ˜ … | … = … | …μ λ′P b b y y P b b y y( ) ( ) (41)B t t b
b

B t t1 1 2 21

1

to get the time-ordered local model with respect to (s, t)

∑
… … | … …

= ˜ … | … ˜ … | …
μ

μ

μ μ

P a a b b x x y y

q P a a x x P b b y y

( )

( ) ( ). (42)

s t s t

A s s B t t

1 1 1 1

1 1 1 1

□

So for scenarios where the first measurements have only one setting, i.e. the first
measurements are always the same, the absence of hidden nonlocality when post-selecting on
these first measurements is equivalent to the existence of a time-ordered local model for the
correlations. In particular, in a scenario as described by Popescu we have that all sequential
correlations whose post-selections fulfil the CHSH inequality necessarily admit a time-ordered
local model. In the general case, however, the question arises whether there are forms of
nonlocality that are different from standard Bell nonlocality or Popescuʼs hidden nonlocality.

In other words, are there correlations that are local in the standard notion, do not display
hidden nonlocality, but nevertheless need to be considered nonlocal in the operational sense?

3.3. A simple scenario

To give a first answer to this question we will consider the simplest nontrivial case of sequential
measurements in a bipartite scenario, namely one measurement for party A and a sequence of
two measurements for B, where for each measurement the respective party can choose from two
settings yielding one of two possible outcomes. We denote the outcomes of A and B by

∈ + −a b b, , { 1, 1}1 2 and the inputs by ∈x y y, , {0, 1}
1 2

and consider the joint probabilities

|P ab b xy y( )1 2 1 2
.

Thus, in this scenario TOLoc denotes the set of sequential correlations P that admit a time-
ordered local model for the given scenario, i.e. for ∈P TOLoc we have

∑| = | |
λ

λ
λ λP ab b xy y p P a x P b b y y( ) ( ) ( ) (43)A B1 2 1 2 1 2 1 2

with

∑ |λP b b y y y( ) independent of . (44)
b

B 1 2 1 2 2

2

Further, let PostLoc denote the set of sequential correlations P that have a local hidden-variable
model with respect to |A B and whose post-selected correlations are local as well, i.e. for

∈P PostLoc we have

∑| = | |
λ

λ
λ λP ab b xy y p P a x P b b y y( ) ( ) ( ) (45)A B1 2 1 2 1 2 1 2
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and

∑| = | |
λ

λ
λ λ

|P ab xy b y p P a x P b y( ) ( ) ( ). (46)
b y A B2 2 1 1 , 2 21 1

Both TOLoc and PostLoc are convex polytopes, that is compact convex sets with a finite
number of extreme points. By proposition 1 correlations from TOLoc do not display hidden
nonlocality, so that we have the inclusion ⊆TOLoc PostLoc. Next we will show that this
inclusion is in fact strict, i.e. there are correlations P that are in PostLoc but not in TOLoc.

In general a convex polytope can be either described by its extreme points or equivalently
by the set of facet-defining half-spaces. These half-spaces are given by linear inequalities

∑β β β= | ⩽ ˜
|P P ab b xy y( ) ( ) . (47)

a b b x y y
ab b xy y

, , , , ,
1 2 1 2

1 2 1 2

1 2 1 2

Using the polytope software PORTA [22] we fully characterized the polytope TOLoc in
terms of its facet-defining inequalities, see appendix A for details. The problem of deciding
whether ⊊TOLoc PostLoc or =TOLoc PostLoc can then be cast into a set of linear programs
maximising the inequalities of TOLoc over probability distributions from PostLoc. Let us
introduce explicitly one of the facet-defining inequalities that is of special relevance. In order to
do it, let us employ a common parametrization of the joint probability distribution in terms of
correlators. That is

| =

+ + +

+ +

+ +

⎡⎣

⎤⎦

P ab b xy y

a A b B b B

ab A B ab A B

b b B B ab b A B B

( )

1
8

1

, (48)

x y y y

x y x y y

y y y x y y y

1 2 1 2

1
1

2
2

1
1

2
2

1 2
1 2

1 2
1 2

1 1 2

1 1 2

1 1 2 1 1 2

where = = + | − = − |A P a x P a x( 1 ) ( 1 )x is the expectation value of the outcome for party A

given input x, = · = + | − · = − |A B P a b xy y P a b xy y( 1 ) ( 1 )x y y
2

2 1 2 2 1 21 2
is the expectation value

of the product of the outcome of A and the second outcome of B given the inputs x y y, ,
1 2

, and so
on.

If one defines the following linear combinations of correlators

= + − −⎡⎣ ⎤⎦B B B B B
1
2

(1 ) (1 ) (49)0
1

01
2

0
1

00
2

′ = − + +⎡⎣ ⎤⎦B B B B B
1
2

(1 ) (1 ) , (50)1
1

11
2

1
1

10
2

one can write one of the facet inequalities of TOLoc as

β = − ′ − + ′ ⩽P A B B A B B( ) : ( ) ( ) 2. (51)0 1

With this parametrization, this inequality resembles the CHSH bipartite Bell inequality. As
it turns out, the inequality (51) can be violated by probability distributions from PostLoc:
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β β= =Pmax ( ) 4, (52)
PostLoc PostLoc

showing that ⊊TOLoc PostLoc. The correlations ∈*P PostLoc attaining the maximum in (52)
have by definition a standard local decomposition with respect to |A B and do not display hidden
nonlocality. However, the violation of (51) by *P demonstrates that these correlations cannot be
explained by a time-ordered local model for sequential correlations. One may wonder whether
such correlations that belong to PostLoc but lie outside TOLoc are physical, in the sense that
they can be obtained with measurements on quantum states. We show that this is the case by
constructing an explicit example.

We consider a GHZ state +( 000 111 )1

2
shared between A and B. The first qubit is sent

to A while B has access to the other two qubits. At each round of the experiment A measures one
out of two possible observables Ax with ∈x {0, 1}. Part B first measures one of his qubits

according to the observables By
1

1
with ∈y {0, 1}

1
. Then, B performs a measurement on its

second qubit, using one out of eight possible observables Bb y y, ,
2

1 1 2
that depend on y

1
, the outcome

b1 and y
2
. For such a configuration, we have numerically found a maximal violation of

β =P( ) 2 2 . To achieve this it is sufficient to consider all measurements to lie in the X-Z plane
of the Bloch-sphere, that is, θ θ θ= +O Z X( ) cos ( ) sin ( ) with X and Z being the usual Pauli
matrices. Setting θ π= /2a0

, θ π= −a1
, θ θ π= = /2b b0

1
1
1 , θ θ θ θ π= − = = = /4b b b b0,0,1

2
0,1,0
2

1,1,0
2

1,1,1
2 ,

θ θ π= = 3 /4b b1,0,0
2

1,0,1
2 and θ θ π= − = /3b b0,0,0

2
0,1,1
2 we achieve the optimal value of β =P( ) 2 2

while not violating the usual CHSH inequality (conditioned on any possible values of y
1
and b1).

It is surprising that the observables for the first measurement performed by B can be the same,

its only role is to prepare the state + −( 00 ( 1) 11 )
b1

2
1 with which the rest of the experiment

is to be performed.
Now, as correlations from TOLoc are known to be compatible with our operational

definition of sequential locality, the violation (52) raises the question whether there is a
sequential wiring that takes *P to bipartite correlations ′P that are nonlocal in the standard
sense. In fact, we can prove an even stronger result.

Theorem 4. Consider the bipartite sequential correlation scenario with respect to (1, 2), where
each measurement has binary inputs and outputs. Then =OpLoc TOLoc.

Proof. That time-ordered local models are compatible with the operational definition, i.e.
⊂TOLoc OpLoc, was shown in proposition 2. To see the converse, consider P to be

compatible with the operational definition. We have that all post-selections have a local model

∑| = | |
λ

λ
λ λ|P ab xy b y p P a x P b y( ) ( ) ( ) (53)b y
A B2 2 1 1 2 2

1 1

for ∈ −a b b, , { 1, 1}1 2 and ∈x y y, , {0, 1}
1 2

. Further, for all sequential wirings, specified by
functions f f g, ,

1 2
, the wired correlations
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∑′ | = |

=

P ac xz P ab b xf z f z b( ) ( ( ) ( , )) (54)
b b

g y b b c
,

s.t. ( , , )

1 2 1 2 1
1 2

1 1 2

are local as well. The conditions (53) and (54) are linear constraints on the probabilities of P, so
that we can define linear programs

β β=⋆ P
P

maximise ( )
subject to fulfils (53) and (54), (55)

for all facet defining inequalities β of TOLoc. In the present case of just one measurement for A
and two for B, these conditions are still tractable and we solved the linear programs using the
software YALMIP [23]. We find

β β=⋆ Pmax ( ) (56)
TOLoc

for all facet defining inequalities β of TOLoc, which shows that the set of correlations
compatible with the operational definition of sequential nonlocality is equal to TOLoc. □

So, for this simple scenario, where A performs a single measurement and B a sequence of
two with binary inputs and outputs for all of them, the time-ordered local models exactly
capture the operational definition of locality. Correlations admitting a time-ordered local model
are not only compatible with the allowed sequential operations, but having such a model is
equivalent to be sequentially local in the operational sense.

This result together with the fact ⊊TOLoc PostLoc, shown above, implies that apart from
Popescuʼs hidden nonlocality there is a new form of nonlocality that can be revealed by
studying correlations arising in scenarios of measurement sequences. Formally stated we have
the

Theorem 5. In the bipartite sequential scenario with respect to (1, 2) with binary inputs and
outputs there exist correlations ∈P PostLoc that are nonlocal in the operational sense, i.e.

⊊OpLoc PostLoc.

To clarify the interpretation of this result, let us consider an hypothetical scenario where a
referee is given a device producing sequential correlations |P a b b x yy( )1 1 2 1 1 2

. The goal of the
referee is to infer whether two parties A and B could use this device to violate a Bell inequality,
which would make the device potentially useful for quantum key distribution, randomness
generation or any other information protocol based on nonlocality. The first naive attempt of the
referee would be to check if the device, without any processing, is capable of violating a Bell
inequality between A and B. After concluding that this is not the case and, aware of the notion
of hidden-nonlocality by Popescu, he implements a protocol of post-selection. That is, he
discards the events in which the input and output of the first measurement of B are different
from a certain combination b y1 1

. After doing so, he checks whether this post-selected statistics

violate a Bell inequality. He finds a negative answer for every combination of b y1 1
and concludes

that there is nothing useful in this device as it is producing correlations that are classical in every
sense. The implication of theorem 5 is simply that the referee may be mistaken in concluding
so. There exist correlations that may seem useless for such refereeʼs criteria, but that can be
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turned into nonlocal correlations by simply performing a local processing of information by A
and B.

The question that naturally arises is: what should have the referee checked to avoid any
wrong conclusion? In this simple scenario of one dichotomic measurement for A and two
sequential dichotomic measurements for Bob, due to theorem 4, we know that he should have
checked whether P had a time-ordered local model. If the correlations have such a model, then
they are useless for such purposes. If the correlations do not have such a decomposition, then he
can be sure that some protocol allows for a Bell inequality violation between A and B. Whether
this last implication holds in a general scenario is an open question that we enunciate, among
others, in the next section.

4. Open questions

The previous section, in particular theorem 5, shows that the study of nonlocality in sequential
correlation scenarios does not reduce to the study of standard Bell nonlocality; on the contrary,
inequivalent forms of nonlocality must be distinguished in these scenarios. However, a full
characterization of all forms of nonlocality is still elusive. In the following we will formulate
and discuss several interesting questions that remain open.

One of the most interesting open questions with respect to sequential nonlocality concerns
the relationship between the set TOLoc and the set of correlations that are sequentially local in
the operational sense. We know that having a time-ordered local model implies being local in
the operational sense, the converse, however, remains an open problem in the case of more
general scenarios.

Open problem 1. In a general sequential correlation scenario, ⊊TOLoc OpLoc or
=TOLoc OpLoc?

Suppose =TOLoc OpLoc. Then, for any sequential correlation scenario, the complicated
set of operationally local correlations can be characterized by the facet inequalities
corresponding to the set TOLoc and all types of nonlocality for this scenario can be detected
by these inequalities. If, however, ⊊TOLoc OpLoc, then, for some scenario, there are
sequential correlations that remain local under all protocols involving wirings and post-
selection while lacking a time-ordered local model.

Another relevant open problem is related to the nonlocality displayed by quantum states.
Does this new form of nonlocality open the possibility to detect more quantum states as
nonlocal than would be possible with standard Bell tests or using Popescuʼs argument of hidden
nonlocality? Due to the result of [7] we know that there are quantum states with a local hidden-
variable model for all projective measurements that display hidden nonlocality; furthermore
[17] provides a class of entangled states that show hidden nonlocality while having a local
model for general measurements (POVMs). But are there quantum states that do not display
hidden nonlocality in a given sequential scenario but nevertheless give rise to correlations that
do not have a time-ordered local model? This question was also raised in [24]. If so, this would
correspond to a new form of nonlocality exhibited by quantum states going beyond both
standard and hidden nonlocality.
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Open problem 2. Is there a quantum state ϱ acting on a product Hilbert space ℌ ⊗ ℌ
1 2

such
that the following holds?

(i) All correlations obtained from single projective measurements on ϱ are local.

(ii) All sequential correlations P obtained by measurements on ϱ do not display hidden
nonlocality.

(iii) For one choice of quantum measurements the sequential correlations P do not admit a
time-ordered local model.

Note that this problem is connected to the open question whether generalized
measurements in form of POVMs offer an advantage over projective measurements for
detecting standard nonlocality of quantum states and also to problem 1.

Proposition 6. Assume =TOLoc OpLoc and further that every quantum state ϱ that has a
standard local model for projective measurements also has such a model for measurements
given by POVMs. Then the answer to problem 2 is negative.

Proof. We want to show that under the given assumptions the conditions (i), (ii), and (iii) of
problem 2 cannot be all satisfied. We assume (ii) and (iii) and show a contradiction with (i).
Assuming =TOLoc OpLoc implies that (iii) is equivalent to the existence of sequential
correlations obtained from ϱ that are sequentially nonlocal in the operational sense. Assuming
(ii) excludes the possibility of hidden nonlocality, therefore only leaving the possibility that
there are sequential wirings taking the correlations P to some bipartite nonlocal correlations ′P .
Applying these wirings on the sequential correlations obtained from projective measurements
on ϱ defines a quantum realization of the nonlocal correlations ′P with POVMs for both parties.
Now, the assumption that POVMs do not offer any advantage over projections implies a
contradiction with (i). □

Popescu already mentioned that his argument using projective measurements to reveal
hidden nonlocality does not apply to the case of local dimension d = 2 [7]. The states found in
[15] in dimension d = 2 do display hidden nonlocality when sequences of generalized
measurements in form of POVMs are applied, however, these states do not have a standard
local model for all measurements, but are only local in the sense that they do not violate the
CHSH inequality for rounds of single measurements.

The authors of [24] further presented states in dimension ⩾d 3 that fulfil conditions (i) and
(ii) of 2, but they were not able to conclude whether (iii) holds. Based on these findings and the
conjecture that entanglement of a quantum state is equivalent to not having a time-ordered local
model they also proposed a scheme for the classification of nonlocality. According to this
scheme the nonlocality of a quantum state is characterized by two natural numbers 〈 〉N n, , the
indices of nonlocality. The first index N denotes the length of the sequences of measurements
necessary to reveal the nonlocality, i.e. the smallest number such that the quantum state gives
rise to correlations that do not have a time-ordered local model with respect to (N, N). For
instance, pure entangled states have N = 1 and Werner states in dimension ⩾d 5 have N = 2;
separable states have = ∞N . If < ∞N , then the second index n denotes the smallest value of
N that can be attained by nontrivial measurements. For the case of Werner states in dimension
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⩾d 5 we have n = 1, as the post-measurement state has N = 1. For states with = ∞N the
second index is defined as the minimal number of copies of the state needed to reveal its
nonlocality.

So far, all the problems that we have tackled in this paper are concerned with locality,
classicality and the different definitions and relations that emerge in a scenario with sequential
measurements. But similar questions can be posed by substituting locality or classicality by
quantumness. Let us define analogous versions of TOLoc and OpLoc for the quantum case.

Definition 5. Time-ordered quantum. Sequential correlations P belong to the set TOQuant of
time-ordered quantum correlations, if there are

(i) a quantum state ϱ on some product Hilbert space ℌ ⊗ ℌ
1 2

(ii) measurements on ℌ
1
and ℌ

2
given by the Kraus operators { }Ka

x

a1

1

1

and { }Lb
y

b1

1

1

respectively

(iii) and projective measurements{ }Ma
x

a2

2

2

and { }Nb
y

b2

2

2

on ℌ
1
and ℌ

2
such that the correlations P

can be expressed as

|

= ⊗ ϱ† †( )
P a a b b x x y y

K M K L N L

( )

tr ( ) ( ) . (57)a
x

a
x

a
x

b
y

b
y

b
y

1 2 1 2 1 2 1 2

1

1

2

2

1

1

1

1

2

2

1

1

Just as before one can consider the correlations resulting from some protocol and ask
whether there is a quantum realization for this final bipartite distribution, i.e. whether

′ | = ⊗ ϱ( )P ab xy M N( ) tr (58)a
x

b
y

for some quantum state ϱ and measurements Ma
x and Nb

y. Thus, analogous to definition 4 one can
define the set of operationally quantum correlations.

Definition 6. The set of operationally quantum correlations OpQuant is the set of sequential
correlations P such that for any n the product correlations ×P n are mapped by any valid
protocol to bipartite correlations that admit a quantum realization.

By a reasoning similar to the one used in proposition 2 it is clear that we have the inclusion
⊂TOQuant OpQuant. As a quantum version of open problem 1 we can then pose the

following

Open problem 3. Are there correlations that are operationally quantum but do not belong to the
set of time-ordered quantum correlations? That is, more formally, do we have

⊊TOQuant OpQuant or =TOQuant OpQuant?

Let us discuss the two possibilities separately. Consider that ⊊TOQuant OpQuant. In this
case, there are probability distributions that (i) do not have a decomposition of the form (57) and
(ii) result after any valid protocol in correlations with a quantum realization of the form (58).
Clearly, (i) implies that one cannot obtain these correlations by performing measurements on
quantum states. However, all the correlations (in the sense of a probability distribution between
distant observers, without any temporal order between measurements) that can be generated out
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of them, are quantum. This implies that if one attempts to characterize the observable statistics
valid within quantum theory, it will not suffice to characterize the correlations between distant
observers, but also scenarios with sequences of measurements need to be considered. This
would suggest that attempts to define quantum correlations via information principles might
leave a nontrivial part of quantum theory aside if they do not consider sequential measurements.
On the other hand, if =TOQuant OpQuant a converse reasoning applies. It would be striking
that both sets are equivalent, since the constraints to define TOQuant appear to be stronger that
the ones of OpQuant. Note that the decomposition (57) demands a well-defined post-
measurement state, whereas the decomposition (58) only requires the validity of the Born rule.
Therefore, the equality of the two sets would support the idea that the whole set of observable
statistics according to quantum theory only depends on the state space and measurements
together with the Born rule, rather than the transformations of states after measurements.

5. Conclusions

To summarize, we have studied nonlocality in scenarios where the parties are allowed to
perform sequences of measurements. As we have seen, sequential correlations give rise to
inequivalent notions of nonlocality that we summarize in the following.

1. PostLoc: this is the set of probability distributions that are local in the standard bipartite
sense studied by Bell and that do not show any hidden nonlocality, i.e. the probability
distributions after post-selection on the previous measurements are local.

2. OpLoc: this is the set of sequential correlations such that any valid protocol takes an
arbitrary number of copies of these correlations to standard bipartite local correlations.
These protocols process classical information locally and correspond to the allowed
operations in a locality scenario, i.e. nonlocality is the resource that cannot be created using
these operations.

3. TOLoc: this is the set of probability distributions that have a time-ordered local model, i.e.
a local hidden-variable model that respects the causal structure of the sequential correlation
scenario.

We have studied the different relations between these sets and our findings can be
summarized as

⊆ ⊊TOLoc OpLoc PostLoc, (59)

where we could show the equality =TOLoc OpLoc in a simple scenario. We further stated and
discussed several interesting open problems, among which the most important one concerns the
question whether =TOLoc OpLoc or ⊊TOLoc OpLoc in the general case. Furthermore, we
presented a quantum version of the different sets leading to analogous questions concerning the
quantumness of correlations.
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Appendix A. Inequalities of TOLoc for a simple scenario

Using standard techniques of polytope analysis one can easily obtain all the facets of the set
TOLoc. This is however a computationally costly task. We have been able to obtain all the
facets only for the scenario of two parties, A and B, where A performs chooses one binary
measurement out of two at each round; and B performs two sequential binary measurements
choosing also at each time between two different measurements. The experiment is described
by the probability distribution |P a b b x yy( )1 1 2 1 1 2

.
The facets can be divided into three groups. First, inequalities involving only the marginal

|P a b x y( )1 1 1 1
or |P a b x yy( )1 2 1 1 2

. The ones of the former type are equivalent (up to symmetries of
permutation of inputs, outputs and parties) to the well-known CHSH inequality [14],

= | + = |
+ = | + ≠ | ⩽

P a b P a b

P a b P a b

( 00) ( 01)

( 10) ( 11) 3. (A1)
1 1 1 1

1 1 1 1

The inequalities involving |P a b x yy( )1 2 1 1 2
are also equivalent to the CHSH. Now B can

choose among four different inputs given by y y( , )
1 2

, these inequalities correspond to a lifting

[25] of the CHSH inequalities and are given by

= | + = |
+ = | + ≠ | ⩽

P a b P a b

P a b P a b

( 000) ( 011)

( 100) ( 111) 3. (A2)
1 2 1 2

1 2 1 1

and its symmetries.
Secondly, there are facets involving also conditional probability distributions of the kind

|P a b x y b y( )1 2 1 2 1 1
. These facets are again equivalent to the CHSH inequality, but now conditioned

on a certain input and output y b( , )
1 1 . For example

= | + = |
+ = | + ≠ | ⩽

P a b b y P a b b y

P a b b y P a b b y

( 00, ) ( 01, )

( 10, ) ( 11, ) 3 (A3)
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

for all possible combinations of b y( , )1 1
and also all symmetries.

Lastly, there is a third kind of facets that involve the whole probability distribution
|P a b b x yy( )1 1 2 1 1 2

. Note that the inequalities of the first kind are essentially conditions ensuring
standard bipartite locality (20), those of the second kind ensuring that there is no hidden
nonlocality. The inequalities of the third group, however, are related to a different notion of
nonlocality that arises in the sequential scenario. A representative of this third class of
inequalities is given by (51).
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