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Functionalized graphene in quantizing magnetic field: The case of bunched impurities
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Resonant scattering at the atomic absorbates in graphene was investigated recently in relation with the transport
and gap opening problems. Attaching an impurity atom to graphene is believed to lead to the creation of unusual
zero-energy localized electron states. This paper aims to describe the behavior of the localized impurity-induced
levels in graphene in a quantizing magnetic field. It is shown that in the magnetic field the impurity level effectively
hybridizes with one of the n = 0 Landau level states and splits into two opposite-energy states. The new hybridized
state is doubly occupied, forming a spin singlet and reducing the polarization of a quantum Hall ferromagnet in
undoped graphene. Taking into account the electron-electron interaction changes radically the spectrum of the
electrons surrounding the impurity, which should be seen experimentally. While existing publications investigate
graphene uniformly covered by adatoms, here we address a possibly even more experimentally relevant case of
the clusterized impurity distribution. The limit of a dense bunch of the impurity atoms is considered, and it is
shown how such a bunch changes the spectrum and spin polarization of a large dense electron droplet surrounding

it. The droplet is encircled by an edge state carrying a persistent current.
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I. INTRODUCTION

First theoretical works following the discovery of graphene
almost a decade ago [1,2] were concentrated on the relativistic
character of its electronic spectrum. It was, however, quickly
realized that this two-dimensional material can offer a plethora
of interesting effects, going far beyond the quasirelativistic
behavior of the bulk electrons [3]. One class of such effects
comes from the investigation of the graphene edges, where
for example in the case of zigzag edge one finds a band
of dispersionless zero-energy edge states. Remarkably, as
was shown already in the early work [4], even the shortest
possible edge in graphene, which is the closed edge of the
hole created by removing a single carbon atom, is sufficient
to create a single localized zero-energy electron state with
the algebraic wave function iy ~ 1/(x + iy). The existence of
such localized low-energy states with a power-law coordinate
dependence of the density is an indication of the resonant
scattering at the Dirac point in graphene.

A number of theoretical papers have addressed the proper-
ties of graphene with resonant impurities [5—19]. Experimen-
tally, a way to create the strong atom-size small impurities is by
chemical functionalization of graphene by impurity adatoms
(see, e.g., Refs. [20-23]). Mobility inherent for adatoms
allowed to put forward theoretical proposals, suggesting the
impurities sublattice ordering caused by their Casimir-type
interaction [5—10]. This ordering would lead to the controllable
opening of the gap in the electron’s spectrum, highly desired
for the graphene electronics. Resonance at the Dirac point in
this case is necessary in order to make the Casimir interaction
sufficiently long ranged.

The choice of the theoretical model describing the impurity
requires a special attention. Adding a large potential at a certain
carbon atom, a scheme assumed by most of the authors, does
not work [18] since this requires the use of unrealistically large
impurity potential (hundreds of eV!). A more realistic model,
which is adopted in this paper, was suggested in Refs. [12,13],
where the adatom is treated not as a potential scatterer, but as
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a quantum level tunnel coupled to one of the carbon sites. The
tunnelling amplitude between the adatom and carbon atom
is of order ~1 eV, but the energy of the electron’s level at
the impurity turns out to be very close to the Dirac point,
thus leading to the resonance scattering in undoped graphene.
Density functional theory analysis [12—14] indicates that this
situation may indeed be realized for several kinds of impurity
atoms.

In this paper, we consider graphene functionalized by
the impurity atoms in a strong perpendicular magnetic field
with the special emphasis on the investigation of interaction
between electrons surrounding the impurities, a combination
of problems never touched in the existing literature. Several
interesting and potentially experimentally relevant results for
both the electron spectrum and the spin density caused by the
joint effect of the impurity and magnetic field will be presented.

A peculiar feature of graphene in a magnetic field is the
existence of zero-energy Landau levels with fully isospin
(sublattice) polarized electron states [24]. Thus, in the presence
of impurity one needs to analyze the coexistence of two kinds
of zero-energy states, localized due to the impurity and due to
the quantum cyclotron motion.

We use the model of Ref. [12] to describe the impurity
atoms and assume that the energy of the impurity level is small
compared to the Landau level splitting, which means a particle-
hole-symmetric limit. Both single- and many-impurities prob-
lems, with and without electron-electron interaction, will be
considered.

The paper starts with the investigation of the zero-energy
state induced by a single impurity in the magnetic field in
case of noninteracting electrons. Remarkably in this case
we found a simple analytical solution for the wave function
and energy. The solution is approximate, with the small
parameter being the inverted large logarithm (of the Larmor
radius divided by the graphene lattice spacing), but it is
sufficient to describe the wave functions and the occupation
of the eigenstates. The important properties of the result
are as follows: First, the new resonant states are indeed
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impurity-induced states in the graphene layer and not the states
localized on the impurity. The probability to find the electron
in this state in graphene plane increases in the vicinity of the
impurity, but the probability to stay exactly on the impurity
atom is parametrically small. Second, both the » = 0 Landau
level states and the impurity states without magnetic field have
exactly zero energies. That was the reason to expect both kinds
of states in undoped graphene to be half occupied and spin po-
larized [25-27]. Now, when both the impurity and the magnetic
field are present, the impurity-induced states acquire a finite
energy and their number is doubled since the non-zero-energy
states may only appear in pairs in the particle-hole-symmetric
limit. Doubling the number of levels becomes possible because
the impurity level in the magnetic field gets hybridized
with the n = 0 Landau level electron state most coupled to
the impurity. The negative-energy impurity-induced level is
doubly occupied, thus reducing the total polarization of the
quantum Hall ferromagnetic state of graphene in a magnetic
field.

A realistic description of the spin-polarization effects in
quantum Hall regime is impossible without taking into account
interaction between electrons. That is why, after solving the
noninteracting problem, we proceed with the calculation of
the spectrum, taking into account the exchange electronic
interaction in the Hartree-Fock approximation. As expected,
adding the exchange interaction increases the Zeeman splitting
of the n =0 Landau level in graphene by 1 to 2 orders
of magnitude. What is new and interesting, we found that
for the states surrounding the impurity the splitting of up-
and down-spin states depends on the angular momentum
number m. The electron with m = 1, which is not directly
connected to the impurity, gets the smallest interaction-
induced Zeeman splitting and thus the smallest excitation
energy.

In this paper, we treat the electron-electron interaction in
the Hartree-Fock approximation in the Hilbert space restricted
to the n = 0 Landau level. Strictly speaking, this approach
accounts fully for the electron’s interaction only in the
first order. This is justified because the electron-electron
interaction in graphene effectively is not very strong (and
even may be further suppressed by covering the sample by
the material with large dielectric constant [28-31]). Moreover,
all the interaction-related predictions of this paper are of
qualitative nature and should remain intact after taking into
account higher-order corrections in case of moderately strong
interaction.

In addition to the single impurity, we consider the group of
several (many) impurity atoms attached to the graphene sheet
in a strong magnetic field. Existing publications investigate
multiple impurities distributed with a uniform density over the
graphene sample, leaving aside the potentially experimentally
relevant case of bunched impurities. To fill this gap, we
consider several adatoms forming a dense bunch, such that
the distance between any two adatoms is small compared
to the Larmor radius (but still large compared to the lattice
spacing). The Casimir interaction between impurities [5]
favors the configurations with the impurities coupled to the
same sublattice of graphene (Kekule ordering). Consequently,
we investigate the bunch of impurities coupled all to the
same sublattice of graphene. The main result in this case is
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that a dense bunch of many impurities/adatoms changes the
electronic structure within a large area of a graphene flake
around it. As was written above, an impurity in the magnetic
field creates a couple of localized states by hybridizing the
singular ~1/(x + iy) state of Ref. [4] with the » = 0 Landau
level state mostly connected to the impurity. In the case of
many impurities, each of them tends to create such a couple of
hybridized levels, for which it needs the n = 0 Landau level
state. Thus, many n = 0 states with the angular momentum
m > 0 become hybridized, leading to the formation of a
spin-unpolarized circular droplet of electrons residing on one
of the graphene sublattices around the bunch of impurities. The
energies of electrons, forming the droplet, although nonzero,
unlike the energies of other n = 0 electrons, decrease fast with
the increasing angular momentum. Namely, increasing m by
one leads to a decrease of the energy by a small factor ~(r,;) /[,
where (r,p) is the typical distance between impurity atoms in
the bunch and / is the Larmor radius.

Taking into account the exchange electron-electron interac-
tion changes the properties of the unpolarized electron droplet
surrounding the bunch of impurities in two important ways.
First, the energies of electrons forming the droplet now become
all of the same order of magnitude ~e?/I. (The energies of
electrons with larger angular momentum m are still smaller.
But, the smallness is due to a pure numerical factor in the
energy &,,.) The second feature is that after the exchange inter-
action is taken into account, electrons surrounding the droplet
start to feel the existence of electrons inside the droplet. More
precisely, as we will show, the electrons from the n = 0 Landau
level staying outside the droplet interact via the exchange
interaction with each other, but not with the electrons from
the droplet. Thus, the circumference of the droplet serves as
an edge for the outside electrons, leading to a circular edge
current.

Resonant impurities in graphene in a magnetic field were
considered recently in Ref. [19]. However, this paper is
concentrated on transport properties and does not investigate
the electronic spectrum and spin structure. What is more
important, authors of Ref. [19] do not consider electrons’
interaction in graphene.

The paper is organized as follows. In Sec. II, we introduce
the Hamiltonian for graphene and the attached impurity atom
and solve the single-impurity problem in the magnetic field
for noninteracting electrons. To do this, we first present the
solution for Landau level states in graphene in the polar
gauge. The important supplementary information for Sec. Il is
included in Appendix A. In Sec. III, we consider the single-
impurity problem with the electron-electron interaction taken
into account. The main part of the section is devoted to the
explanation of the structure of exchange interaction in the case
of the particle-hole-symmetric Dirac equation in graphene and
to the discussion of how differently the states with zero-energy
and non-zero-energy experience the exchange interaction in
this case. Details of calculations for this section are given
explicitly in Appendix B. In Sec. IV, we consider the problem
of many close (closer than the Larmor radius) impurity atoms.
Section IV A deals with the exchange Coulomb interaction in
case of a bunch of impurities. Calculational details for Sec. IV
are given in the Appendices C and D. Section V presents the
conclusions.
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II. SINGLE IMPURITY

A graphene plane with an impurity atom chemically bonded
to it is described by the Hamiltonian

H =1 (alb; +bla) + Ulald + dlag) + eqd'd, (1)
(i, J)

where operators a];, b]; create an electron on the jth site of
the triangular sublattices A and B of the honeycomb lattice
of graphene, and d' creates an electron at the impurity atom
attached to the carbon atom of the sublattice A with j = 0.
Electrons hop from a site of one sublattice to the nearest sites of
another sublattice with the matrix element ¢ ~ 2.7 eV. Hopping
matrix element between the impurity and the carbon atom
nearest to it has the same order of magnitude U ~ ¢. Crucial
for us is the prediction of Refs. [12,13] that the energy of
the electron at the impurity may be anomalously small, ¢; <
t,U, for several popular choices of the impurity atom. Only
in the case of the impurity level being very close to the Dirac
point, the model (1) leads to resonant scattering of low-energy
electrons, which is a necessary ingredient for Refs. [5-19].
That is why in this paper we will always assume a negligibly
small impurity level energy ¢, = 0.

Single-particle eigenstates of the Hamiltonian (1) are
created by the operator

& = fud + > UL B =D wyal +vgbh). @)
n j

Here, f; is a probability amplitude to find the electron on
the impurity atom and f, are the probability amplitudes to
find the electron in the nth eigenstate of the pure graphene
Hamiltonian. These eigenstates are determined by two com-
plex amplitudes u,; and v,; describing the electron residing
on one of the graphene sublattices A or B in the unit cell j. As
usual, the same unit-cell amplitudes u,; and v,; are combined
into a (pseudo)spinor W, (r;). The low-energy behavior of the
wave function W, is captured by two spinor envelope functions

Yy, and ¢,

W (r)) = (ZZ;) = M0y + Ky )
where vectors K and K" = —K are directed to two inequivalent
corners of the Brillouin zone.

In order to proceed with solving the impurity problem in
Egs. (1) and (2), one first needs to find the eigenfunctions
of the clean graphene Hamiltonian in a magnetic field. The
latter may be added into the Hamiltonian (1) by introducing
the coordinate-dependent hopping matrix elements #; with
properly chosen phases. We, however, will be interested only
in the low-energy limit, when the two envelope functions
¥, ¥’ become the eigenfunctions of two decoupled massless
Dirac Hamiltonians [3] with the magnetic field entering via
the covariant derivative p — p — (e/c)A. In the polar gauge,
A = (By/2, —Bx/2, 0) the two Dirac Hamiltonians for K
and K’ valleys become

H=ieg(t-Q —7.0"), H =ieg(t-Q" —7:.0). 4

Here, 74 = (1, & i7,)/2 and 7, , are the Pauli matrices in the
pseudospin space, and e = hvp /1, where | = \/hc/eB is the
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Larmor radius. The Fermi velocity in graphene is determined
by the hopping matrix element ¢ in Eq. (1) and the carbon-
carbon distance d, hvy = 3dt /2. The creation and annihilation
operators O and Q, in terms of the dimensionless complex
coordinate z = (x 4+ iy)/l, have the form

o L ,0 2 _ Lo
Q _ﬁ< 2292,*+2)’ Q‘ﬁ(28z+z>' )

They satisfy the “oscillator” commutation relations [Q, Q"] =
1. To find the eigenfunctions of { and H’ we introduce a set
of (normalized) functions, n,m > 0,

(_ Q+)nz*mefzz*/4
N 2mn!2"m!

Here, the second index is responsible for the angular behavior
&nx ~ (z*/|z])F and may be both positive and negative. The
two sets of eigenfunctions are now for n > 0 (the n = 0 case
should be considered separately)

«/Li(bn,k , \/Li¢l‘l—l,k+l
Vink = Fi ’ win.k = Fi - (D
ﬁ¢n—l,k+l ﬁ(pn,k
The corresponding energies €, and ¢/, coincide and depend
only on the Landau level number n:

e4n = €, = £/nep. 8)

For each value of n, only two of the solutions (7), ¥+, o(z =
0) = Win,q(z =0)= (1/«/%,0), have nonzero upper com-
ponent at the origin and can be coupled to the impurity attached
to the carbon atom A withr; = 0.

The most interesting for us will be the zero-energy states
from the n» = 0 Landau level. In undoped graphene, one spin
component of this level is fully occupied by electrons and the
other spin component remains empty, leading to a strongly
spin-polarized state often called a quantum Hall ferromagnet.
Wave functions for the n = 0 Landau level have also a very
special form, with electrons from the K valley residing solely
on the sublattice A and electrons from the K’ valley on the
sublattice B. Corresponding envelope functions are

m / 0
IpO,m = <¢% ) s Wo,m = (¢O,m> . (9)

Only one state from the n = 0 level, ¥ o, has a nonvanishing
upper component at r = 0 and can be coupled to the impurity.
All the other zeroth Landau level states are decoupled from
the carbon site connected to the impurity and thus remain the
exact zero-energy eigenstates of the full Hamiltonian (1).

Similarly, for each of the other Landau levels, n # 0, one
may choose a basis with only one state having nonvanishing
probability amplitude at the impurity. This single coupled state
has to be a superposition of solutions belonging to different
valleys [Eq. (4)], each being nonzero at the carbon atom
coupled to the impurity. Explicitly, the subset of eigenmodes
of the graphene hopping Hamiltonian in the magnetic field
coupled to the impurity is, for n # 0,

iKr iK'r
v = ) Pnl.0 Le 35|n|—1,0 o)
2\ ®Pmi-1.1 2 \ B

¢n,m—n = (6)
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This set is completed by adding the n = 0 solution W, =
eiKr%,o [Eq. (9)]. [Another combination of two spinor
functions from Eq. (10) with opposite relative sign vanishes at
the carbon site coupled to the impurity atom.]

All wave functions W, [Eq. (10)] are equally coupled
to the impurity ¥, (0) = (1/ V27,0). Thus, the problem of
describing the effect of resonant impurity in graphene reduces
to solving the problem with a single-impurity level equally
coupled to a discrete ladder of special graphene states in
magnetic field. The sum over n in Eq. (2) now includes only
the ladder states W,,. The energy and the complex amplitudes
fns fa satisfy the equations

E—efo=Vafs, (—edfa=Va) fu. (1)

Here, V,; = 3iUd / (271%1). When deriving V; one should
remember that the Hamiltonian (1) acts in the lattice space,
while the ladder states (10) are the normalized functions of
the continuous coordinates. Equations (11) may be rewritten
as an algebraic equation for the energy and expression for all
amplitudes f, through a single-“impurity” amplitude f;:

V2 Vv,
d d
8—84=E s =

— & —¢&

e —eg,
The probability to find the electron on the impurity is found
from the normalization condition, yielding

£ = 1
T VI /(e — )

A graphical solution of the energy equation (12) is shown in
Fig. 1. Energy levels are the energies at which the straight solid
line representing the left-hand side of the equation crosses the
multiple solid lines showing the sum of hyperbolae 1/(¢ — ¢,)
in the right-hand side. The impurity-induced states correspond
to the two crossings most close to zero energy.

Details of the explicit analytical solution of Egs. (12) are
given in the Appendix A. Here, we show only the results for
the in-plane wave function ¥g = > f, ¥, and energy of the
singular impurity-induced state

fa - 12)

13)

iKr % /4

e 27 :l:SB
Vs, = ) Ke it , &5, = . (14)
+i Im[ < ]m 2L

The analytical solution is found in the large logarithm
limit L = In(//d) > 1, i.e., in case of Larmor radius / very
much exceeding the carbon-carbon distance d. However, the
resulting approximate wave function allows us to extract many
qualitative features of the exact solution. As it should be for the
eigenfunctions of the particle-hole-symmetric Hamiltonian (1)
for vanishing &4, there are two solutions Wg, with opposite
signs of energy. Electron in the state described by Eq. (14)
can hop to the impurity attached at r =0 to the carbon
atom from the sublattice A. However, the probability to find
an electron on the impurity, found via Eq. (13), is small
fd2 = \/gntz/(4U2L) « 1, and most of the time the electron
spends in the graphene plane (remember that U ~ t). The
electronic density corresponding to Eq. (14) is shown in
Fig. 2.
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FIG. 1. Finding graphically the energy from the first equa-
tion (12). (Energy in units of &g and V, = 1.) Straight solid line
with small positive slope shows the left-hand side of the equation.
Other solid lines show the right-hand side of Eq. (12), having a
pole at ¢ = 0 and other poles at each & = +./nep. Each crossing
of two solid lines corresponds to an energy level. Impurity-induced
localized states Wg, correspond to two crossings closest to the zero
energy. In addition, there are two crossings far to the right and far to
the left from the energy segment shown in the figure (well outside the
energy band of graphene). These crossings correspond to the bonding
and antibonding states of the impurity atom and a single carbon atom
closest to it. They are responsible for the creation of the true chemical
bond between the two atoms. Thick dashed line with a single pole
at ¢ = 0 shows the approximate form of the energy equation (12)
right-hand side described in Appendix A.

The wave functions W, [Eq. (14)] have a clear physical

interpretation. The two states Wg, may be thought of as equal
weight superpositions of two simple states, which contribute

25

2

1.5

p(r)

1

0.5

FIG. 2. Radial dependence of the electron density at two sub-
lattices p4 and pp for the impurity-induced state Vg [Eq. (14)].
The density is doubled due to two spin components and normalized
such that a single occupied Landau level has p = 1. For drawing
we choose L = In(//d) = 5. The thick dashed line shows the density
pn=o of the n = 0 Landau level from sublattice A, valley K, with one
spin orientation and having angular momenta m = 1,2,3, ... (the
states not affected by the impurity). Thin dashed lines show how this
density is built by adding one by one electrons withm =1, m = 2,
etc. Together p4 and p,—o give a constant charge density of a fully
occupied Landau level. However, these constant density electrons
have a very nontrivial exchange interaction, discussed in Sec. III. The
singular increase of density in state Wy at sublattice B, pp ~ 1/ r2, is
fully compensated by the decrease of density in Landau levels with
n > 0, as follows from the particle-hole symmetry.
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to their upper and lower components, respectively. First is the
n = 0 Landau state ¥ o [Eq. (9)], having only one nonvan-
ishing component (upper). The lower component of Eq. (14)
comes from the zero-energy localized state found in Ref. [4]
with the large-distance cutoff at the Larmor radius » ~ . Note
that the lower component of W, contains similar contributions
from both the K and K’ valleys.

The energies of the states Wg, in Eq. (14) are also small
compared to the Landau level splitting ep, but only as
an inverse square root of the large logarithm. A chemical
potential in undoped graphene coincides with the Dirac point.
This suggests that both spin components of the level eg
are occupied and form a spin singlet, thus preserving the
particle-hole symmetry and electrical neutrality of the system,
graphene plus impurity. Taking into account spin of the
electron leads also to a small Zeeman splitting of all energy
levels introduced in this section. Without the impurity, the
simplest choice of occupation of Landau levels in graphene
is to fully occupy both K and K’ valley components of
the n = 0 level with spin down while keeping empty their
spin-up counterpart. This quantum Hall ferromagnetic state
minimizes the Zeeman energy of half-occupied n = 0 Landau
level in neutral undoped graphene. Thus, according to Eq. (14)
each adatom tends to lower the polarization of the quantum
Hall ferromagnet by one electron spin, i.e., by % As will be
shown in the following section, this scheme of occupying the
n = 0 Landau level remains intact after taking into account
electron-electron interactions.

III. SINGLE IMPURITY WITH INTERACTION

A bare Zeeman splitting for electrons in graphene is linear
in magnetic field E; = gup B. The splitting of Landau levels
ep o +/B scales as the square root of the magnetic field and
formally grows much slower with the increasing field than
E,. However, for any realistic values of the magnetic field,
the Zeeman splitting is negligibly small compared to the
interlevel distance. For example, for the magnetic field 10 T,
ep/Ez ~ 70 [32], while the typical interaction energy e/ ~
(e?/hvrp)eg ~ ep. Thus, similarly to what happens in the
conventional semiconductor heterostructures, the spin physics
in magnetic field in graphene is dominated by the electronic
interaction. The strong renormalization of the Zeeman splitting
is seen already in the Hartree-Fock approximation and is due
to the exchange interaction. Direct interaction, i.e. Hartree, is
trivial even in the presence of the impurity atom since we are
working in the particle-hole-symmetric limit (see Fig. 2 and
discussion in the caption).

We begin this section with showing that due to the particle-
hole symmetry of the Dirac equation, the exchange interaction
acts very differently on the electrons fromthen = Oandn # 0
Landau levels in graphene. To calculate the exchange energy
of the electron in a state W,

Eexch = _/lIJT(r) ;
[r—r|

one needs to find the projection operator onto the occupied
states

o, YW@ )drdr, (15)

o(r,r) = Z v W (W), (16)
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FIG. 3. Diagrammatic presentation of the exchange energy. Wavy
line shows the Coulomb interaction ¢?/|r — r'|. Summation over the
complete set of states in the first term in the right-hand side gives
unity, or § function.

where v, is the occupation number for the state n, taking
values 0 or 1 (we consider only the zero-temperature limit in
this paper). In the case of undoped graphene with e = 0, it is
convenient to split the summation in Eq. (16) into a sum over
the complete set of all states and a difference of two sums over
occupied and empty states, leading to

p(rr)——+22”’ vmw/a). a7

The unity operator I ~ §(r — r’) here causes the uniform shift
of all onsite energies in the Hamiltonian (1) (see Fig. 3) and
may be ignored.

Since the signs of two sublattice components of the
graphene Hamiltonian eigenfunctions may always be chosen
as u, = u_, and v, = —v_,, the nonzero energy contribution
to the right-hand side of Eq. (17) takes the form

2v;, — 1 . 0 Au:v¥
i v = ) Y
> S Y, Z(U,u, 0 ) (18)

&i#0 £ <0

On the other hand, the zero-energy eigenfunctions (9) of the
clean graphene Hamiltonian reside solely on one sublattice
and their contribution to the projection operator can only be a
diagonal matrix

2v; — 1 2v; — 1 (u;u? 0
i T i it
2 ] = E o
2 L 2 ( 0, vv*) (19

i
£=0 &i=0 l

For each state i here only one component u; or v; differs from
zero [Eq. (9)]. Now, one easily sees that electrons with ¢ = 0
interact via exchange only with other ¢ = 0 electrons. On the
contrary, electrons with ¢ # 0 interact via exchange with the
states with any energy.

Equations (9) and (19) allow us to reproduce the known
result [33,34] for the exchange-dominated Zeeman splitting of
the n = 0 Landau level (see Appendix B)

ez T
Ep=0 = :l:<2l\/7+ EZ) (20)

This exchange renormalized Zeeman energy is of the order of
the Landau level interval e since in graphene e?/(hvp) ~ 1.
The two signs of ¢,-¢ correspond to two spin projections on
the magnetic field axis. We keep the small E; in Eq. (20) to
compare with Eq. (21) below.

Due to their nonzero energy, the exchange interaction for the
impurity-induced localized states W, [Eq. (14)] is calculated
completely differently, even though they contain a one-half
admixture of the n = 0 Landau level state v o [Eq. (9)]. In the
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large logarithm limit L = In(//d) > 1, after the subtraction
of the uniform energy shift due to the unity operator in
Eq. (17), the impurity states W, interact via exchange only
with themselves via the nondiagonal density operator (18).
The energies of two lowest (occupied) of these levels are

2
EB e 3

8 _C T ,E, 21

s 2L 2V 2 z 21

The first term here is the noninteracting energy [Eq. (14)],
which is suppressed by the inverse square root of the large
logarithm. The largest second term is the exchange energy,
which occasionally turns out to be the same as the exchange
energy for the n = 0 Landau levels without impurity [Eq. (20)].
For undoped graphene, both spin/Zeeman components of the
level Eq. (21) are occupied, thus forming a singlet and reducing
the total spin of the quantum Hall ferromagnet state.

The Zeeman splitting of the n = 0 Landau level enhanced
by the exchange interaction [Eq. (20)] does not depend on the
angular momentum quantum number m. This is very natural
since our special choice of the vector potential, which made m
a good quantum number, introduces only a spurious breaking
of the translational invariance in physically homogeneous
systems. Adding the impurity atom breaks the translational
invariance and the electron energy may now depend on
angular momentum. This, however, does not happen in the
noninteracting case of the previous section, where only the
electrons with m = 0 were affected by the point impurity.
The actual dependence on the angular momentum appears
only after taking into account the exchange interaction.

The mechanism leading to the m dependence of the energy
levels is also interesting and relies on the difference between
zero-energy and non-zero-energy eigenstates of the particle-
hole-symmetric Dirac equation discussed above. As we have
shown, electrons from the n = 0 Landau level interact only
with themselves via the exchange interaction. For example,
any n =0 electron from the K’ valley [y, in Eq. (9)]
interacts with the fully occupied n = 0 level for the electron
with spin down, or with the completely empty n = 0 level for
the electron with spin up. This leads to the energy Eq. (20).
Note that after the subtraction of the constant energy shift due
to a contact term in Eq. (17), there is a nontrivial interaction
with both occupied and empty states.

On the other hand, the electron with spin down from the
K valley and with m # 0 does not see the exchange attraction
from the same level with m = 0, which was taken to build
the finite-energy states Ws, [Eq. (14)]. Thus, the missing level
pushes up the energies of levels around it (see Fig. 4). This
effect is strongest for the closest to the adatom electron with
m = 1, which becomes the easiest electron to excite. The
upward shift of the levels becomes smaller with increasing
angular momentum. Similarly, for the empty subband of the
n = 0 Landau level from the K valley and with spin up,
the absence of the level with m =0 in the sum for the
projection operator (19) lowers the energies of the states with
m = 1,2,.... Explicit calculation of the energy levels with
m 2> 1, leading to

w=t R 22
- 8 (m!)? ¢

N (1

fz(zmﬂ)
2/21 ’
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FIG. 4. (Color online) Energies (schematic) of the n = 0 Landau
level states around the impurity with and without electrons interac-
tion. Small rhombuses: show the energy levels for the noninteracting
problem, filled red rhombuses for filled and empty blue rhombuses
for empty states. For each m > O there are two valley degenerate
states (K and K’), each with two spin components, split due to
the small Zeeman energy +E,. For m = 0 there are total of six
low-energy states. A pair of levels: spin splitn = 0,m = 0, K'-valley
level behaves exactly the same way as its m # 0 companions. In
addition, there are a pair of spin-split low-energy levels Ws_, &g,
[Eq. (14)]. Both spin components of g are occupied, forming a
singlet. Big circles: show the energy levels for interacting electrons.
Again, filled red circles show occupied states and empty blue circles
show unoccupied states. States from the K’ valley are not affected
by the impurity independent on the value of m. Their energies are
given by Eq. (20), which is shown by two dashed lines. Occasionally,
the exchange interaction causes the same shift of the €5, levels, as it
did for n = 0 Landau level states in the absence of impurity. These
states are shown by the two lowest red circles and by the two highest
empty blue circles at m = 0. The most interesting are the states with
small, but finite values of the angular momentum number m from the
K valley. Due to their reduced exchange interaction, these states fall
inside the gap between the usual spin-up and -down » = 0 Landau
levels shown in Eq. (20).

is given in Appendix B. Energies of electron states at and
around the impurity are depicted on Fig. 4.

IV. BUNCH OF IMPURITIES

In this section, we consider a bunch of many closely spaced
impurity atoms coupled all to the carbon atoms from the same
sublattice A. The choice of fully sublattice-polarized bunch
is motivated by Refs. [5-10], where it was shown that the
Casimir interaction between impurities, caused by electrons in
graphene, favors the sublattice ordering.

By closely spaced impurities we mean close compared to
the Larmor radius /, but not as close as the carbon-carbon
distance on the hexagonal lattice d. Instead of Eq. (11), we
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now write

(‘9 - Sn)fn = Z Vnafa, (8 - Sa)fa = Z Vanﬁr (23)

Here, f, are the probability amplitudes to find the electron on
the impurity a and f, is the amplitude to find the electron in
state n in graphene plane [compare to Eq. (2)]. The impurity
onsite energies &, are assumed to be negligibly small.

In the case of one impurity we were able to choose a
single state W, [Eq. (10)] from each Landau level, coupled
to the impurity by a uniform matrix element V; [Eq. (11)].
For several impurities, summation over z in Eq. (23) includes
both summation over the Landau levels and over the many
individual states at each Landau level. Matrix elements V,, =
V¥, are now proportional to the value of the upper component
of the particular electron’s wave function at the carbon site
coupled to the individual impurity.

Let N > 1 be the number of the impurity atoms. First,
Eq. (23) expresses an infinite number of in-plane states
amplitudes f, through the N impurity amplitudes f,:

L S h 24)

& — &y

o=

a

The energy ¢ and impurity amplitudes f, should then be found
from the set of N linear equations

Van an
— &) fa = G fo, Gap = . (25
(€ — &)/, ; vfor Ga ;8_n (25)
Equations (23) and (25) are exact. Explicit compact formula
for the matrix G, at low energies ¢ is found in Eq. (C4) of
Appendix C. The energies of impurity-induced states are then

estimated as (each energy comes in a plus and minus pair)

5 (r2)

IR
(26)

Here, L = In({|r,])/1) > 1, (|rap|) is a typical distance
between adatoms in a bunch, (r?,) is a typical squared
distance between adatoms, and so on. As we see, only one
eigenvalue sg) remains (almost) the same as it was in case
of a single impurity [Eq. (14)]. Each next energy is by a
factor (|r,p|) /1 < 1 smaller than the previous one. The reason
for such hierarchy of energy eigenvalues will be clear after
considering the corresponding wave functions.

Equations (12) and (24) show that the electron wave
function in graphene plane in case of multiple impurities is
a superposition of N single-impurity solutions Wg [Eq. (14)].
Since the impurities are very close, the resulting sum of the
wave functions may differ strongly (and is different due to the
severe cancellations) from any individual contribution. Among
N wave functions described by Eq. (25) only one having the
largest energy looks close to the single-impurity solution (14)
[see Eq. (C13)]. Wave functions of other impurity-induced
states, having smaller energies €@, ¢, etc., in Eq. (26), far
away from the small bunch of impurities have the form

(Irap|)

€B
1 _ @ g =,

& - ’
N 2ﬁ S

3
ey ~¢€

iKr $o.n
(m) _ V2
U WPWRPIIpE @7
e ¥ 2wl
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Here, o is some unknown unimportant constant. Details of
calculation of \Ilgm) are given in Appendix C.

The accuracy of the wave function (27) is much better than
the accuracy of the individual energies (26). The energies 8(5'")
are known only by the order of magnitude. The overall normal-
ization of the components of Eq. (27) is found with ~1/log
accuracy, but the accuracy of, e.g., the upper component itself
is much better, being determined by the small ratio of the size
of the bunch and the Larmor radius.

The lower components of the wave functions \Iffgm)
[Eq. (27)] are similar for any m. As was already mentioned,
Eq. (27) appears as a result of strong cancellations between the
single-impurity solutions generated by very close impurities.
This cancellation suppresses the upper component of v,
but also a part of the lower component oscillating in unison
with the upper one oe’®". The part of the lower component
behaving like /¥ /z* survives and is shown in Eq. (27).

More interesting is the upper component of the impurity-
induced state \IJ(Sm). As was discussed in Sec. II, effectively
the impurity state Wg [Eq. (14)] is a superposition of the
n = 0 Landau level state ¥ o [Eq. (9)] and the ~1/z localized
state of Ref. [4]. Each of them has only one nonvanishing
component, up or down. Consequently, the upper component
of the N-impurities solution \Ilém) represents a superposition
of N such zeroth Landau level solutions, each centered at
individual impurity. However, these spatially slightly offset
eigenfunctions of the graphene Hamiltonian in the magnetic
field are very similar. As is shown in Appendix C, the upper
components of the true solutions of the many impurities
problem [Eq. (25)] became the orthogonalized combinations
of the n = 0 Landau level states generated by the individual
impurities and these new orthogonal states have an (almost)
well-defined value of the angular momentum quantum number
m. It is not surprising that the states \Ilém) [Eq. (27)] with large
m have small energies [Eq. (26)] since their coupling to the
impurity atom upper component vanishes at small distances as
¢0,m ~ Z*m~

Electrons described by Eq. (27) have a probability % to
be found in the n = 0 Landau level state in the K valley.
To preserve the electroneutrality of undoped graphene, each
such n = 0 state should be on average occupied by a one
electron, which is achieved if both spin components of the
negative-energy states \Ilém) [Eq. (27)] are occupied. Thus, we
expect the electrons from the K valley n = 0 Landau level
surrounding bunch of impurities to form a large (radius R =
V/2N1) unpolarized droplet inside the spin-polarized quantum
Hall ferromagnet, as is shown in Fig. 5. The n = 0 Landau
level electrons from the K’ valley remain fully spin polarized.

A. Many impurities with interaction

As was shown in Sec. 111, energies of electrons surrounding
the single-impurity atom are strongly modified by the electron-
electron interaction. The same is true in case of multiple
impurities. The simple calculation sketched in Appendix D
gives the energies of impurity-induced states (27):

m _ o 2m)! 7 &2 28)
¢ =Xt——5 /= .
§ (m!)222m\ 2 21
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FIG. 5. (Color online) Right: a large droplet of reduced spin
polarization surrounding a bunch of impurities. Left: schematic
angular momentum dependence of the energy of impurity-induced
states (red circles) and the energy of the n =0 sublattice A
electron states surrounding the droplet (blue rhombuses). Due to their
nonuniform exchange energy, these latter states carry an edge current
around the droplet.

Unlike the noninteracting result (26), all energies (28) are of
the same formal order of magnitude ~e?/1. The decrease of
s(s'") with increasing m is now due to a pure numerical factor.
Although the electronic interaction renormalizes strongly
the energy eigenvalues, wave functions (27) are intact and
determine the dynamics of electrons surrounding the bunch of
adatoms.

The particle-hole symmetry ensures that the occupied elec-
tron states \Ilém) [Eq. (27)] with 0 < m < N and the Landau
level states v, [Eq. (9)] with m > N create a constant
charge density around the bunch of adatoms. This means that
the direct electrons interaction is trivial. However, as follows
from Egs. (15), (18), and (19), the states \Ilém) and v, do
not interact via the exchange interaction. Consequently, the
electrons with m > N see the weaker exchange interaction
since they are missing the interaction with the electrons from
inside the circle r < [+/2N. Energies of these states, occupied
or empty, may be written as

e [n
E0,m>N = :FZ 7 g(m — N), (29)

where the function g(x) increases smoothly from g(0) = % to

glx > VN ) = 1. Explicit form of g(x) could not be found
in a compact form, but some steps towards its evaluation are
given in Appendix D.

The electron density for each state 1 ,, has a form of the
narrow ring with the radius R, =1 2m. The m dependence
of the energies &g ,,~n [Eq. (29)] of these ring states means
that there is an edge state carrying a persistent current around
the spinless electron droplet.

V. CONCLUSIONS

The aim of this paper was to investigate the effect of
resonant adatom impurities on the spectrum and electronic
wave functions in graphene in quantizing magnetic field.
Despite the broad interest in properties of graphene with
resonant impurities [5—19], almost nobody up to now (except
for Ref. [19] in our list) has considered their role in the quantum
Hall regime. This gap needed to be closed simply because of
the experiments in magnetic field are much easier in graphene
than in other two-dimensional materials [1,2]. Luckily, we
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also found several interesting effects, especially related to the
electrons’ interaction, which may potentially be observed in
functionalized graphene in this regime.

The resonance condition requires the impurity atom having
an electron level with the energy very close to the Dirac point
in graphene and the belief in the existence of such impurities
is based on the theoretical calculations of Refs. [12-14].
Experimental confirmation of these predictions, or even a
direct search for the materials having the proper resonant levels
is thus highly desired. Consequently, the direct measurement of
the spectrum of electrons surrounding the impurity [Eq. (22)]
may serve as a proof of the resonance. The apparatus necessary
for such experiments was already developed in Ref. [35],
where the redistribution of the Landau levels occupation
around the charged impurity was measured with the scanning
tunneling microscope.

One may also consider the same model with the impurity
energy &4 shifted away from the neutrality point. The sym-
metry between the positive- and negative-energy solutions
of the Dirac equation will then be broken, leading to the
in-plane charge redistribution and broken charge neutrality.
The induced charges, however, will create the electrostatic
potential pushing the impurity level back to the Dirac
point. Investigation of such self-consistent stabilization of the
model (1) with zero &; is an interesting problem for a future
investigation.

In this paper, we were able to successfully describe not only
graphene with a single impurity, but also made a considerable
progress in solving the problem with many impurities forming
a small bunch. Such a strongly inhomogeneous distribution of
atomic impurities, which was never considered theoretically, is
the (likely) possible outcome of experimental functionalization
of graphene. According to our prediction, the bunch of
impurities creates a large droplet of reduced spin inside a
quantum Hall ferromagnet, encircled by a current carrying
edge state. Similarly to the electron states induced by the
single impurity, such droplets should be measurable by the
scanning tunneling microscope. In addition, due to its large
size, even a single such droplet may affect the transport in
graphene mesoscopic devices.
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APPENDIX A: SOLVING THE DIRAC EQUATION
WITH A SINGLE IMPURITY

In this Appendix we present the solution of Eq. (12) for
the energy of the impurity-induced localized state in magnetic
field. We will then find the explicit shape of the localized state
in the coordinate representation Eq. (14).

Impurity-induced localized states, which are the solutions
of Eq. (12) most close to the Dirac point, have |¢| K 5.
Therefore, it is convenient to consider separately the n = 0
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and n # 0 contributions to the sum in the right-hand side of
Eq. (12). For n # 0, the contributions with n > 0 and n < 0
almost cancel each other. It is enough to consider the result
of this cancellation in the linear in & approximation. With the
energies ¢, found in Eq. (8) one has

2 Mima
" Z

The sum over n here diverges only logarithmically and in
the large logarithm approximation it is enough to get only a
rough estimate of the upper cutoff np,,. Assuming that the
solutions of the continuous Dirac equation (8) may be used
only for energies small compared to the bandwidth (~¢) gives

Mmax€B ~ I, Or

(AD)

£E—&g=——

V:oE 2eV? V2
, Z -

2 2
&, &
=1

Nmax ~ (1/d)%.

The carbon-to-impurity coupling and the carbon-carbon hop-
ping matrix element are expected to be of the same order
of magnitude U ~ ¢. This means that in the large logarithm
approximation, the left-hand side of Eq. (Al) should be
neglected and the energies of two impurity-induced levels
become

(A2)

€B
NI

where L = In(//d) > 1. In the leading approximation, the two
energies €5, do not depend on the strength of the coupling to
the impurity U.

The normalization condition (13) gives the probability for
the electron to stay at the impurity atom

\/_ 37
UL
Since U/t ~ 1, the probability to find electron at the adatom
is small like the inverse of a large logarithm.
Now, one may find explicitly the impurity-induced state
wave function (14)
= Z fi’l \Ill’l k]

using the Landau level states W, coupled to the impurity
[Eq. (10)] and the amplitudes f, = V, f;/(e — &,) [Eq. (12)].
In the leading approximation, the energy ¢ in the denominator
in f, ~ 1/(¢ — ¢,) may be neglected for all n £ 0. After that,
the contribution to the upper component of W, from the
Landau level states with n # 0 vanishes, leading to

eiKr ¢00
W, ~ ? ( 0

+

85}::&

(A3)

fix ™ (Ad)

(A5)

Mmax

i 0
— ep/n <€’Kr¢n1,1 + K7,

This formula should be compared with the final result for the
wave function [Eq. (14)]. At first sight, it seems surprising:
How the lower component of the impurity state (14) may be
singular at small distances, if it is built from the functions
¢n—1.1 and ¢, _;, which all vanish at z — 0? To understand
this, let us consider the small-distance behavior of these

+ ) . (A6)
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functions
b~ (1 nlel (A7)
L 4 2

and
doy o — [ (1M (A8)
=1 4 © 2 '

For large n even near the origin both ¢,_;; and ¢, _; are
oscillating functions of |z|. We keep the second term of
the expansion at small |z| in Egs. (A7) and (AS8) to show
that the period of these oscillations scales like A|z| ~ 1//n.
Thus, the short-distance behavior, for example, of a first sum
in Eq. (A6) is

1 1/lz? 1
— @, ~ Z* dn ~ — .
Zn: ﬁ¢ 11 /0 -

This simple estimate does not yet allow us to find an overall
numerical factor at the 1/z*(1/z) term. This factor may be
found from the condition of orthogonality of Ws, and Ws_,
leading to Eq. (14).

More complicated is finding the enveloping function e lI/4
of the lower component of Wg, in Eq. (14). Derivation of this
long-distance behavior is given in the following.

(A9)

1. Large-distance asymptotics of the singular state

First, let us write the spinor wave function (A6) in a form
Wy = 'Ky 4+ /KTy’ where the two smooth spinor functions
have a form

u(r) / i(r)
V= <iei¢v(r)> Y= <iei¢l7(r))’

and we introduced the polar coordinates x = rcos¢, y =
rsin¢. The four functions u,v,i, v satisfy two systems of
equations

(A10)

e du n 1 e dv v n 1
V= —+ -ru, u=————+—-rv
V2ep dr 2 V2ep dr r 2
(A11)
and
g dii +1 B e _ dv U +1 B
—VV=——4=-rii, —i=—+—+=rb
\/EEB dr 2 \/583 dr r 2
(A12)

Since the energy ¢ < ep is small, one may solve these
equations iteratively: First find the solution for ¢ = 0 and then
look for the corrections ~¢&, ~&2, etc.

Fore = 0, Egs. (Al1) and (A12) become a set of decoupled
first-order differential equations, leading to four independent
(in general non-normalizable) solutions

(Hu=e""

1
Quv=-e"*
" (A13)
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Using only the zero-energy solutions which are regular at large
distances 1 and 4, we find three of the functions introduced in
Eq. (A10)
u=e ", G=0, b= e (A14)

where the coefficient c is found from Eq. (14).

To find the last function v, we take finite energy & and
substitute u [Eq. (A14)] into the second equation (A11),

elp 67'02/4

v = s 1 e’ /4/Ooxe_x2/2dx = —
th P P th P

(A15)

APPENDIX B: CALCULATING THE EXCHANGE ENERGY

This section describes the derivation of the exchange
interaction matrix elements presented in the main text. Using
Egs. (9) and (19), the exchange energy of the electron with the
orbital quantum number M is written in the form

em = :FZ / 2= P90 ()
m=0
X 5 (X )po.u (r)dr dr’. (B1)

The energy is negative for occupied states and positive for
empty ones. Summation over m in Eq. (B1) gives the projection
operator onto the occupied n = 0 Landau level, which may be
found exactly

pEE) =" do (D],

m=0
0 * ./ m
=3 /D" epjanierys
— 2nwm!
{ 2|2 + |Z/|* — 22*7 }
= —expq—
2 4

1 ox |Z_Z/|2 N Z*Z,_ZZ/*
27 OF 4 4
Note that the second term in the argument of the exponent in

the last line here is pure imaginary (a phase). The energies are
found from the generating function /(«),

}. (B2)

L2 MI( ) (B3)
& - I B s
M :FM' £y o o
where
2 d2 d2 /
(@) =/ ¢ S
21z — 7| 4m?
2 N2 _ ok _ 1%
y exp{_lzl + 11" =77 —azz } (B4)
2
Introducing new variables u = 7 — z/, v = z + 7’ one finds
2
I(@) = i’ (BS)
2V2(1 — )l

leading to Eq. (20).
Exchange-dominated Zeeman splitting of the singular
impurity level (14) is calculated with the help of the density
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operator (18). The exchange energy in this case is dominated
by the interaction of the impurity level with itself,

2
£ = T2 / |ri—rf||%‘ ®)’|Ws, () *drar.  (B6)

Here, W, and Wg, are the upper and lower components of the
spinor function Wg [Eq. (14)]. The energy [Eq. (B6)] formally
coincides with the Coulomb interaction energy of two charge
densities | W, (r)|? and | W, (r')|?. The calculation of the energy
is greatly simplified after one notices that the density |Ws, (r')|?
is mostly concentrated at distances small compared to the
Larmor radius » < [, and the total charge in each component
of the wave function is l. Thus, for In(l/d) > 1,

62\/3 (B7)
21 2

The exchange-dominated splitting of n =0 Landau level
[Eq. (20)] does not depend on the angular quantum number
M, as it should be for the translationally invariant system.
The M dependence appears in the case of impurity adatom
considered in this paper. As was discussed in the main text
of the paper, the electron states with M # 0 from the n = 0
Landau level effectively know about the impurity because
of missing the exchange interaction with the n =0, m =0
electron. Corresponding correction to the energy is given by
the same formula (B1), where one leaves only the m = 0 term
in the sum, i.e.,

s =F /—|\Dsl(r)’ dr =

1 /a\™
Aey = = rvrl Brye J(a) s
M!\ da a=0
2 d2 ,d2 /
J() = / ¢ <z
2z — 7| 4m?
{ Iz + Iz’lz—azz’*}
X expq —
2
2 2
=1 (B8)

This leads to Eq. (22).

APPENDIX C: SOLVING THE DIRAC EQUATION WITH
SEVERAL IMPURITIES

In order to find the energies of impurity-induced states
from Eq. (25) one needs to know the matrix G, describing
the electron’s hopping between the impurity sites. In the case
of an atom placed at the origin z, = (x, + iy,)/! = 0, and for
the vector potential in a polar gauge A = (By/2, —Bx/2,0),
the matrix element G, was already found in Eq. (A1):

G = Vil 48l (C1)
=-%|1—-4—1In—|.
aa & 8% d

We will see in a moment that this formula works for any
diagonal element of the matrix G ;.

Equation (C1) is valid in the limit In(//d) > 1. To reach
the better accuracy, one would need to go beyond the Dirac
equation approximation and to find the electron wave functions
on the hexagonal lattice in magnetic field. Consequently,
corrections of higher orders in small energy ~¢&> are also
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neglected in Eq. (C1). [The same holds for the accuracy of
Egs. (C2) and (C4).]

Suppose now that the atom b is placed at the origin (z;, = 0)
and the atom « is not. Calculation of the element of the matrix
G, now formally coincides with the calculation of the upper
component of the singular impurity state wave function (A6),
which gives

2 2
Gup = V—d[l 45 i|e_z“”|2/4. (C2)
&p |Zas |

Here, z., = 2o — zp» and |zup| = rap/ [, Where r,, is the true
distance between the atoms a and b.

The value of the matrix element G,; [Eq. (C2)] depends
only on the distance between two atoms |z,5|. Thus, one is
tempted to use this formula in case of arbitrary positions of
both atoms. However, for the equation (C2) to be valid, it is
also important that the vector potential A also vanishes at the
position of one of the atoms a or b. The shift of the position of
vanishing of (the both components of) the vector potential is
achieved by the simple gauge transformation, adding a factor

.XaYb — YaXb
exp i ———— C3
p {z e } (C3)
to the equation (C2). After taking into account this phase, the
formula for the element of the matrix may be written in a
simple form

V2 e 1
Gop = —L|1—4—In—
& &g |Zas|

4

where now the “coordinates” z, and z; are measured from the
point of vanishing of the vector potential, which is chosen to
be somewhere in the middle of the bunch of impurities.

It is convenient to introduce the new variables ¢,,

po = e g, (C5)

and rewrite Eq. (25) in a form

{ |2a|* + |251* — 2242}
X exp| —

} N (e))

2
(e — ga)e\zfil /2¢a

v? g2 1 7
B [ ey — a . (C6
p [ 5 In ]CXP{ 5 ¢p.  (C6)

&g [Zab|

In the large logarithm approximation since ¢, < € and
Vi ~ ep, the left-hand side of this equation should be omitted,
leading to

¥4} &?
Zexp{ }¢b=4—221n
> 2 £ 5

This is the final equation, written in the most compact form,
which one needs to solve in order to find the energies and
wave functions of the impurity-induced localized states. There
is certain freedom in the choice of positions of the origin z = 0,
which may be (but do not necessarily have to) fixed by, e.g.,
requiring vanishing of the average distance ) _, z, = 0.
Equation (C7) is an eigenvalue problem of the form
A¢p = e>B¢, where A and B are two Hermitian matrices.
What makes this problem tractable is that in case of all

1 *
exp { SaZh }¢b. C7)
|Zab | 2
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|z4] < 1, the matrix in the left-hand side of the equation
Agp = €%/ has eigenvalues of a very different magnitude.
Indeed, one may expand the exponent e%%/? in a power series
and find (for a bunch of impurities centered as )z, = 0) the
three first largest eigenvalues N, 13 |z,]%, and §[> |za|* —
VI 222 =12 zalzaP1?/(X 1za/%)]. Bach next eigenvalue
(having more and more complicated explicit form) will contain
higher powers of small |z, |>.

We will show now that this property of the matrix e%?/2
leads to a hierarchical structure of the eigenvalues of Eq. (25):

leD] > [e@] > e .- . (C8)

We use superscript indices to enumerate the energies ) to
avoid confusion with the Landau level and impurity atom
energies &,, &,. As always, in the particle-hole-symmetric
limit, ¢, — 0, the eigenvalues appear in &+ pairs, as is obvious
from Eq. (C7).

To investigate the properties of the solutions of Eq. (C7), let
us consider the series of several consecutive approximations
to this equation.

First iteration. At first step, we neglect completely all the
small arguments in the exponent e%“/2 both in the left- and
right-hand sides of Eq. (C7), leading to

2
Z¢b:4z—221n L.
b B p

b
|Zab|

(€9

Remarkably, this equation has N — 1 exact zero-energy
solutions ¢, satisfying a single constraint

Z@?) =0, ¢Y=0.
b

The last and only nontrivial solution in the limit of all large
logarithms has the energy

(C10)

e~ B (C11)

2¢/In(1/{[zap )
where (|z,5|) is some average distance between impurities.
The corresponding eigenfunction has a simple form

¢. ~ 1/V/N,

only if not only all the logarithms in the right-hand side of
Eq. (C9) are large, but also if there are only two different large
logarithms L = In(a/d) (incase a = b) and L, = In(1/|z4p!)
(in case a # b). This means that the distance between any
two impurities in the bunch is of the same (close) order of
magnitude.

Each amplitude ¢, via Egs. (C5) and (24) generates a
contribution of the form (14) to the electrons wave function in
graphene, centered at the impurity a. Even though Egs. (C11)
and (C12) have a rather poor (at best ~1/log) accuracy, they
are enough to make strong conclusions about the wave function
of the largest energy impurity state. The upper component
of the wave function consists of the sum of many m =0
functions with slightly offset centers and slightly different
phases [as in Eq. (C3)], which however due to |z,| < 1 form
an almost unperturbed joint m = 0 state. The lower component
consists of many singular ~1/z states [4] centered at individual
adatoms in the lower component. Exactly as it was in the case
of single adatom, due to the orthogonality of “+” and “—”

(C12)

235130-11



P. G. SILVESTROV

states [Eq. (C11)], both of them should have equal probability
to find electron in upper and lower components. Outside the
compact bunch of impurities, the electron wave function for
the highest-energy impurity state has the form [compare to
Eq. (14)]

piKr e/
Wyump = S A (C13)
:l:( + /3 z* ) ZF

Here, o and § are two complex numbers, le)?> + 18> = 1, and
we remind that K’ = —K. Also, the large logarithm here is L =
In(1/(|zap|)) > 1, where (|zqp|) < 1 is the typical distance
between impurities.

Even more interesting are the other N — 1 low-energy states
described by Eq. (C10). The constraint ) _, ¢,§’) = O means that
the amplitude of n = 0, m = O states in their upper component
(almost) vanish. Thus, these states are the superpositions of
other than m = 0 states in the upper component (i.e., m =
1,2,...,N —1).

Second iteration. Our next step will be to expand the
exponent e%/2 in the left-hand side of Eq. (C7) to the first
order in a small argument 2}z, /2, leading to

* 2
Xb:¢h+ %Xb:zmb 242_129 Xb:l

Keeping the same ~z}z;, terms in the right-hand side of
Eq. (C7) would not add any new qualitative features to the
solution.

Instead of Eq. (C10), now any vector ¢\ satisfying two
simple constraints would be an exact zero-energy solution of
the system of equations (C14):

Yooy =0, > ¢y =0,
b b

Thus, there are N — 2 exact zero-energy solutions.

Among the remaining two nontrivial solutions one, with
the larger energy, was described by Egs. (C11) and (C12). The
second solution for a center of the bunch chosen to satisfy
>z, = 0 has the form

(C14)

e = 0. (C15)

> lzl?

eR tep | ———,
8(Ly — L)

ba ~ 75, (C16)
where L; and L, are two large logarithms defined below
Eq. (C12).

One may continue expanding the matrix exponent e%/2 in
the left-hand side of Eq. (C7) to higher orders in the small
argument, to find the finite values of smaller and smaller
eigenvalues. The resulting estimate of the energy values is
given by Eq. (26). The wave function for the mth state
outside the small bunch of impurities is given by Eq. (27).
As we told, the in-plane wave function for many impurities
is built as a sum of single-impurity solutions (14), centered at
individual impurities and with a gauge factor accounting for
the center displacement. Since for m > 0 these single-impurity
contributions strongly cancel each other, there is no ~e'%¥/z
contribution in the lower component of Eq. (14). Contributions
~e®T /7% in the lower component of the pseudospinor come
with the phase which is not synchronized with the phase of
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the the upper component and thus are not suppressed. The
upper components of different impurity states each acquire
an (almost) well-defined and different value of the angular
momentum 1.

APPENDIX D: EXCHANGE INTERACTION IN CASE
OF MANY ADATOMS

Since the lower component of all states [Eq. (27)] is
similar, but their upper components have different angular
behavior, it follows from Eq. (18) that these states may
interact via exchange only with themselves. Calculation of
the exchange energy essentially repeats that performed in
Egs. (B6) and (B7). In the final result (B7), one simply need

to replace Wg, by ¢on/ V2,
(Zm)!

1 e? ! T e?

(m) 212
oy PdPr = £ [EE
qE2/ ;1 PonldTr = 20y 2 30

This formula includes Eq. (B7) as the m = 0 case.
The exchange energy for the electrons outside the unpolar-
ized droplet is given by the modified Eq. (B1):

]szm

X 5 (X oy (x))dr dr’,

where the summation over m excludes the electrons from the
n = 0 Landau level from inside the large droplet N > 1. This
exclusion of states withm < N leads to the projection operator

DD

(bo M (I‘)¢0 m(T)

(D2)

PNy =" Gom()s ()

m=N

_ Z (Z*Z//Z')m e—|Z|2/4_‘1,‘2/4_ (D3)

= 2m!
Since the function |¢y ,(r)| has a very pronounced maximum
at r & +/2m, the modified projection operator (D3) coincides
with Eq. (B2) in case of both arguments larger than the droplet
size r,r’ > +/2N, and vanishes fast if one argument falls
inside the droplet. The simple calculation helps to quantify this
observation. Consider a complex variable v with Re v > 0. For
N > 1, one finds

o m S —(v—m)?/2m l N —
v v
e~ — — erfc , (D4)
m=N m! ; 2 < 2N )
where a complementary error function erfc(z) =

(2//m) fz e~ dr. Combining this with Eq. (B2) gives

(r,r) = Lex — e =<1 +iImZ*Z,
,ON ’ - 27_[ p 4 2

erfc(zl\;:/i < )

The first exponential factor here shows that the exchange
interaction is effective only at distances of the order of Larmor
radius |r —r’| ~ 1. The second factor, the error function,
guaranties vanishing of the interaction inside the droplet, at
Ir| < +/2N.

(D5)
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After calculating the sum over m in Eq. (D2) one still needs
to perform the integration over two coordinates r,r’. We do
not see an easy way to perform these integrations in a compact
form. However, the resulting behavior of the energy &) is
clear. For large angular momentum, the electron stays at the
circle larger than the droplet radius and has the same energy
the electrons at the n = 0 Landau level have in clean graphene
without impurities [Eq. (20)]. Exactly at the border of the
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droplet the exchange-dominated Zeeman splitting drops by

half:
e [n 1
EM>SN = :FE 57 EM=N = §3M>>N .

For M slightly bigger than N, the Zeeman splitting increases
continuously between the two values, reaching the asymptotic
value at M — N > +/N.

(D6)
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