
RESEARCH ARTICLE

Reduction of Campylobacter jejuni in
Broiler Chicken by Successive Application
of Group II and Group III Phages
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Abstract

Background: Bacteriophage treatment is a promising tool to reduce

Campylobacter in chickens. Several studies have been published where group II or

group III phages were successfully applied. However, these two groups of phages

are different regarding their host ranges and host cell receptors. Therefore, a

concerted activity of group II and group III phages might enhance the efficacy of a

treatment and decrease the number of resistant bacteria.

Results: In this study we have compared the lytic properties of some group II and

group III phages and analysed the suitability of various phages for a reduction of C.

jejuni in broiler chickens. We show that group II and group III phages exhibit

different kinetics of infection. Two group III and one group II phage were selected for

animal experiments and administered in different combinations to three groups of

chickens, each containing ten birds. While group III phage CP14 alone reduced

Campylobacter counts by more than 1 log10 unit, the concomitant administration of

a second group III phage (CP81) did not yield any reduction, probably due to the

development of resistance induced by this phage. One group of chickens received

phage CP14 and, 24 hours later, group II phage CP68. In this group of animals,

Campylobacter counts were reduced by more than 3 log10 units.

Conclusion: The experiments illustrated that Campylobacter phage cocktails have

to be carefully composed to achieve the best results.

Introduction

Campylobacteriosis is a worldwide zoonosis and the most frequent cause of

bacterial enteritis in the EU [1]. In the United States campylobacteriosis is
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estimated to affect more than two million persons every year at great expenses of

approximately $1.2 billion annually [2]. Typical symptoms of the disease are

diarrhea, cramping, abdominal pain, and fever. Even though a number of

pathogenic Campylobacter (C.) species have been identified, the thermophilic C.

jejuni and, to a lesser extent, also C. coli are responsible for the majority of cases of

campylobacterosis [3]. The infection is mainly caused by the consumption and

handling of contaminated, undercooked meats, especially poultry [4, 5].

Campylobacter is a common commensal of the gastrointestinal tract of various

mammals and birds [6]. It is frequently found in chicken farms where the bacteria

may spread rapidly [7]. Contaminated birds are shedding up to 108 Campylobacter

per gram of cecal contents. Hitherto implemented intervention strategies mainly

focus on on-farm biosecurity measures and post-slaughter decontamination of

poultry carcasses [8, 9]. It has been calculated that a reduction of Campylobacter

counts on carcasses by two orders of magnitudes could lead to a 30-fold decrease

in human campylobacteriosis [10]. However, measures to combat the agent are

expensive and not always efficient [11]. Moreover, suitable vaccines have not been

made available until now. For these reasons, bacteriophages (phages) have been

proposed to reduce the Campylobacter counts in chicken [12].

To date several small-scale studies have been performed to evaluate the

potential of phages for a reduction of Campylobacter in the broiler gut and on

chicken skin [9, 13–18]. In addition, the first field trial with Campylobacter phages

(campylophages) has recently been carried out in commercial broiler flocks [19].

In most of these studies, Campylobacter counts in cecal content could be reduced

by an average of two log10 units. In all these studies single phages or cocktails

composed of several phages belonging to the same group have been tested. On the

basis of their morphology, genome size and endonuclease restriction profile, the

currently known lytic Campylobacter phages are divided into three groups [20] of

which members of group II and group III have yet been used for applications.

Group II phages have generally a broader host range than phages of group III

since they frequently infect both C. jejuni and C. coli strains. On the other hand,

some group III phages isolated from poultry sources showed a strong lytic activity

on certain C. jejuni strains [17]. As phage resistance has been perceived as a

potential drawback to phage application, it is of great importance that group II

and group III phages apparently use multiple host cell receptors for binding

[21, 22]. Hence, to overcome the problem of phage resistance in Campylobacter, it

may be advisable to apply phages belonging to different groups.

In this study, we compared the host ranges and lytic properties of group II and

group III phages and used a new approach to achieve a reduction of C. jejuni in

broiler chicken. The efficacy of a combination of two phages belonging to group II

and group III was compared to that of an individual phage. Furthermore, we

determined the reduction of Campylobacter counts after simultaneous and

successive administration of different phages. Finally, resistance frequencies of

in vitro- and in vivo-infected bacteria were determined.

Successive Phage Application for Efficient Reduction of C. jejuni
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Materials and Methods

Bacterial strains and growth conditions

Bacterial strains used in this study were obtained from the strain collection of the

National Collection of Type Cultures (NCTC, Health Protection Agency, UK) and

the National Reference Laboratory for Campylobacter of the Federal Institute for

Risk Assessment (BfR, Berlin, Germany) (Table 1). Most of the C. jejuni and C.

coli strains originated from the Campynet (CNET) strain collection hosted by the

Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures,

Braunschweig, Germany, (search term ‘‘campynet’’). Campylobacter spp. strains

were stored at 280 C̊ in 10% glycerol stocks. Cultivation of the bacteria was

performed on sheep blood agar (blood agar base No. 1, Oxoid, Dassel, Germany)

with 5% [vol/vol] defibrinated sheep blood under microaerobic conditions (5%

O2, 10% CO2, and rest N2) at 42 C̊ for 24 to 48 h [23]. Further cultivation was

performed on Mueller Hinton sheep blood (MH) agar (Oxoid) or in NZCYM

broth (Roth, St. Leon-Roth, Germany) [14, 24].

Isolation, propagation and purification of campylophages

Data on the campylophages used in this study are summarized in Table 1. The

majority of the phages (CP1, CP7, CP14, CP21, CP68) was isolated from chicken

faecal samples of organic farms in Berlin (Germany) and surroundings. To recover

phage particles, faecal samples were suspended in 10 ml SM-buffer (100 mM

NaCl, 8 mM MgSO4 7H2O, 50 mM Tris-Cl (1 M, pH 7.5)) on a stirrer.

Thereafter, the solution was centrifuged at 10,0006g followed by filtration

through a 0.2 mm nitrocellulose membrane (VWR International, Darmstadt,

Germany). Phage activity was detected by spotting dilutions of the filtrate onto

lawns of the C. jejuni reference strains NCTC11168, NCTC12662 and C. coli

NCTC12668 [25].

Some other group II and group III phages of this study have already been

described. Group III phage CP81 was recovered from a retail chicken portion

purchased from a supermarket in Bavaria (Germany). This phage has been

characterized in detail [23]. F14 and CP32 were obtained from phage typing sets

of Denmark [24] and the UK [26], respectively. The previously characterized

group II phages NCTC12675, NCTC12683 and NCTC12684 obtained from the

NCTC were included in the study [25]. All phages were purified by a three-fold

recovery of single plaques. High-titre lysates (.108 pfu/ml) of the phages were

obtained by infecting 1,000 ml cultures of the host strain (A600 of ,0.3) with

phages at a MOI of ,0.01. After 24 h, lysates were centrifuged for 30 min at

10,0006g to remove debris and then filtrated. Phages were concentrated by

ultracentrifugation and purified by CsCl step gradients [27]. Plaque assays, single

plaque isolations, and propagation of the phages were performed as previously

described [24]. The C. coli strain NCTC12668 and C. jejuni strain NCTC11168

were used for phage propagation and plaque assays of group II and group III

campylophages, respectively [25]. All phages used in this study were analysed by
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PFGE, restriction analysis and Southern hybridization demonstrating that the

members of each group were closely related (data not shown).

Host range determination

A total of 255 Campylobacter spp. strains (C. jejuni, 227 isolates; C. coli, 18 isolates;

C. lari, five isolates; C. fetus, two isolates; C. sputorum, two isolates and C.

hyointestinales, one isolate) of diverse environmental and clinical origin were used

for host range studies. The strains represented more that 20 different MLST types.

The host range of the phages was determined by activity assays. 400 ml of the

respective indicator strains were mixed with 6 ml prewarmed NZCYM softagar

(0.6%) and poured onto a LB agar plate. 10 ml aliquots of the diluted lysates were

spotted onto the solid overlay agar. Plates were incubated overnight at 42 C̊ for

24 h under microaerobic conditions [24].

Stability assays

The stability of the campylophages was investigated at pH values between 4 and 11

and at temperatures between 4 C̊ and 70 C̊. All stability assays were performed in

triplicate.

Phage lysates with adjusted titers of 108 pfu/ml were added to buffer having the

respective pH value. The pH of the phage lysate was adjusted at 20 C̊ with glycine

Table 1. Campylobacter strains and phages used in this study.

Strain Description Origin Reference

C. jejuni NCTC11168 Group III phage indicator and propagation strain Chicken NCTC [25]

C. jejuni NCTC12662 Propagation strain of group II phages CP7 and CP75 Unknown NCTC [25]

C. coli NCTC12668 Group II phage indicator and propagation strain Unknown NCTC [25]

C. jejuni BfR-CA-3871 Susceptible to group II and -III phages Sheep (CNET60) BfR (NRL Campylobacter)

C. jejuni BfR-CA-4014 Susceptible to group II and -III phages Wild bird (CNET28) BfR (NRL Campylobacter)

Group II phages

CP07 Myovirus, active on C. jejuni, C. coli Faecal sample, poultry, Germany This work

CP21 Myovirus, active on C. jejuni, C. coli Faecal sample, poultry, Germany [35]

CP68 Myovirus, active on C. jejuni, C. coli Faecal sample, poultry, Germany This work

CP75 (NCTC12675) Myovirus, active on C. jejuni, C. coli UK NCTC [25]

CP83 (NCTC12683) Myovirus, active on C. jejuni, C. coli UK NCTC [25]

CP84 (NCTC12684) Myovirus, active on C. jejuni, C. coli UK NCTC [25]

Group III phages

CP1 Myovirus, active on C. jejuni Faecal sample, poultry, Germany This work

CP14 Myovirus, active on C. jejuni Faecal sample, poultry, Germany This work

F14 Myovirus, active on C. jejuni Denmark [24]

CP32 Myovirus, active on C. jejuni UK [26]

CP81 Myovirus, active on C. jejuni Poultry skin, Germany [23]

NCTC; National Collection of Type Cultures, Health Protection Agency, UK.

doi:10.1371/journal.pone.0114785.t001
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hydrochloride (to pH 4.0); citric acid-(di) sodium hydrogen phosphate buffer (to

pH 5.0 and 6.0), Tris-HCl (to pH 7.0) or glycine-sodium hydroxide (to pH 8.0 to

11.0). For the test, 900 ml of the adjusted buffer solutions were supplemented with

100 ml of phage lysate, mixed and incubated at 20 C̊ for 24 h and 48 h. Thereafter,

aliquots of the buffered lysates were used to determine phage activity. To

minimize effects of the pH on the adsorption of phages, only 1021 to 1026

dilutions of the lysates were used for the analysis.

For temperature stability assays, phage lysates (108 pfu/ml) were incubated in a

thermomixer at time intervals as indicated. Stability of the phages at 220 C̊ was

determined by incubation of lysates (NZCYM broth without cryoprotectant) in a

freezer. Thereafter, the phage titer was determined by spotting dilutions onto

NZCYM softagar overlay plates.

Reduction of Campylobacter in vitro

For the experiments on in vitro reduction of Campylobacter, C. jejuni strain BfR-

CA-3871 (designated as 3871 throughout this manuscript) was used. Bacteria were

cultivated for 24 h as stated above. The cultures were adjusted with NZCYM broth

to an adsorption (A600) of 0.3 corresponding ,56107 cells/ml) and incubated

under microaerobic atmosphere. Single phages or cocktails of campylophages

were added to the cultures at MOIs (multiplicities of infection) as given in the

manuscript. The bacterial titer was determined in time intervals as stated by

plating 100 ml aliquots of a ten-fold dilution series on Mueller Hinton sheep blood

agar plates.

Based on their in vitro reduction efficacy on C. jejuni 3871, two group III

(CP14 and CP81) and one group II (CP68) phage were selected for the animal

trial (second trial, see below).

Ethics statement

The animal study (short title: Campylobacter reduction) was approved by the local

ethic commitee of the state Berlin (Landesamt für Gesundheit und Soziales,

Berlin, Germany) under the accession number G 0269/10.

Animal experiments

For both animal trials, one-day old male Vrolix chicks provided by Aviagen

GmbH (Hilbersdorf, Germany) from a Campylobacter-free hatchery were

transferred to the animal facility of the Federal Institute for Risk Assessment

(BfR). After ten days, chickens were randomly allocated to groups according to

the study design. It has been reported that transmission of infectious agents

between co-housed animals can modify the observed dose-response relationship

with implications for the estimation of the infectious dose and the comparison

between different agents and treatments [28]. However, in our study the chicken

were inoculated with 107 cfu of Campylobacter, which much exceeds the minimal

infectious dose and led to 100% colonized chicken before phage treatment.

Successive Phage Application for Efficient Reduction of C. jejuni
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Moreover, group housing better reflects real conditions in industrial chicken

farms, where coprophagy causes repeated exchange of infectious agents between

individual birds. Each group was kept in a room (4.86 m2) with a solid floor

bedded with wood shavings, provided with red light and a light regime of 13 h day

and 11 h night. Feed and water were provided ad libitum. Cloacal smears were

taken from all animals one week after arrival to confirm that they were

Campylobacter-free. This was carried out by incubation of the swabs in Preston

broth (Oxoid) for 24 h at 42 C̊ under microaerobic conditions. Following this,

bacteria were plated on mccDA agar (Oxoid) and incubated for 48 h under the

conditions described above. At day 20 of life, the birds were orally inoculated with

C. jejuni.

In the first animal trial, the colonization efficacy of two selected C. jejuni strains

(3871 and 4014, Table 1) was determined in two groups (A and B), each of which

comprising three birds. Chickens were orally inoculated with 107 cfu of C. jejuni

3871 (group A) and 4014 (group B). The colonization efficacy was determined by

Campylobacter enumeration in fecal samples after five, six and seven days of

infection.

The second animal trial was conducted to determine the potential of three

application strategies for the reduction of C. jejuni 3871. To ensure that the

experiment provides statistically reliable data, four groups (A to D) with ten

animals each were analysed. At day 20 of life, all birds were orally inoculated with

109 cfu/ml of C. jejuni 3871 suspended in CaCO3 to avoid inactivation of the

phages by the very low pH of the chicken digestive system [29]. On day 27, the

chicken from group B and D received orally a suspension of phage CP14

(5.06108 pfu), whereas group A remained untreated (control). The chicken of

group C received a suspension of the phages CP14 and CP81, each 5.06108 pfu.

On day 28, the animals of group D received a suspension of phage CP68

(5.061010 pfu).

Fecal samples were collected before phage application and then every 12 h,

starting on day 28 (24 h after administration). For this, chickens were separated in

cages for 30–60 minutes. When no faeces could be collected, chickens were

released and followed until defecation occurred. At day 31, all chickens were killed

by decapitation after exposition to electric current. Both ceca were dissected from

each animal. During the animal trials, all chickens were observed each day to

exclude any unnecessary suffering according to the guidelines of the German law

(TierSchG).

Enumeration of Campylobacter and isolation of cells for the

determination of phage resistance in vivo

Fecal samples of each chicken were used for the enumeration of Campylobacter at

different time points during the animal trial. One gram of sample was added to

9 ml of phosphate buffered saline (PBS) and used for the preparation of ten-fold

dilutions. 100 ml aliquots of each suspension were plated on Karmali agar

containing a Campylobacter selective supplement (Oxoid). Plates were incubated
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at 42 C̊ for 48 h under microaerobic conditions. After incubation, the number of

characteristic Campylobacter colonies was determined. Ten representative colonies

of each chicken were isolated and tested for phage-resistance. Each colony was

cultivated in NZCYM broth as stated above, mixed with 5 ml NZCYM softagar

(0.6%) and poured on LB agar. Ten-fold dilutions of CP14, CP81 and CP68

lysates were spotted onto the softagar to determine the phage susceptibility of the

isolates.

Statistical analyses

All statistical analyses were performed using the software Stata 13 (StatCorp.,

College Station, TX, USA). Statistical differences between the application groups

of the animal experiments were determined by use of the Wilcoxon Mann-

Whitney test, with a Bonferroni corrected alpha level of 0.05/350.0167 for

pairwise comparisons between the control group and the treatment groups (n53).

Results and Discussion

Selection of phages for the reduction of C. jejuni

To select phages that may be suitable for application, eleven group II (n56) and

group III (n55) phages (Table 1) were analysed in terms of their ability to lyse

255 Campylobacter spp. strains. In addition, the lytic properties of the phages were

determined. As shown in Table 2, all group III phages showed a similar host range

by lysing 21 to 26% out of 227 tested C. jejuni strains. Other Campylobacter

species were not infected. Within group II, two subgroups (A and B) disclosing

different host specificities were identified. Even though all group II phages were

able to infect both C. jejuni and C. coli strains, subgroup A phages CP68, CP75

and CP84 lysed nearly twice as many strains as the subgroup B phages CP7, CP21

and CP83 (Table 2). Some other authors reported higher percentages of

Campylobacter strains infected by single phages [14, 15, 17, 24]. However, in none

of these studies has such a high number of Campylobacter strains been

investigated. The obtained data demonstrate the importance of carefully

composed phage cocktails. To combat a broad range of C. jejuni and C. coli

strains, cocktails should contain group II as well as group III phages. While group

III phages infected higher numbers of C. jejuni strains than group II phages, C. coli

strains were exclusively lysed by phages belonging to group II. In addition, it has

to be taken into account that particularly group II phages can be very different

with respect to their host specificity. Thus, notably group II phages exhibiting a

broader host range (see subgroup A in Table 2) should be used for applications.

Infection of C. jejuni under in vitro conditions revealed a diverse lytic potential

of the investigated group III phages. Compared with the non-phage-treated

control, CP14 most efficiently (by approximately 3 log10 units) reduced the C.

jejuni 3871 counts at both applied MOIs of 0.1 and 10 after 24 h of incubation

(Fig. 1), whereas a reduction of only 1 log10 unit was achieved with the remaining
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group III phages. A combined application of CP14 with other group III phages

(e.g. CP81) did not result in higher reductions (data not shown). The group II (A)

phages CP68, CP75 and CP84 showed very similar reduction rates and there were

no striking differences discernible at different MOIs or after (simultaneous or

successive) infection of the bacteria with two phages. In general, group II phages

caused slightly lower reductions than group III phages. However, cell lysis

occurred earlier (after 9 h) and remained constant for at least further 15 hours.

The data on group II and group III-induced cell lysis are in good agreement with

quantitative models of in vitro bacteriophage-host dynamics created by Cairns

et al. (2009) [30]. Similar to the published results obtained with group III phage

Table 2. Host range of group II and group III campylophages.

Group III phages Group II (A) phages Group II (B) phages

CP1 CP14 F14 CP32 CP81 CP68 CP75 CP84 CP7 CP83 CP21

Campylobacter spp. strains 1 255 255 255 255 255 255 255 255 255 255 255

Positive 56 51 59 50 47 31 30 34 19 15 17

% positive 22.0 20.0 23.1 19.6 18.4 12.2 11.8 13.3 7.5 5.9 6.7

C. jejuni 227 227 227 227 227 227 227 227 227 227 227

Positive 56 51 59 50 47 21 20 24 14 13 13

% positive 24.7 22.5 26.0 22.9 20.7 9.3 8.8 10.6 6.2 5.7 5.7

C. coli 18 18 18 18 18 18 18 18 18 18 18

Positive 0 0 0 0 0 10 10 10 5 2 4

% positive 0 0 0 0 0 55.6 55.6 55.6 27.8 11.1 22.2

1None of the other Campylobacter species: C. lari (n55), C. fetus (n52), C. sputorum (n52) and C. hyointestinales (n51) was lysed by the phages.

doi:10.1371/journal.pone.0114785.t002

Fig. 1. Reduction of C. jejuni 3871 by group III phages in vitro. Each experiment was performed in triplicate. For better clarity, only mean values without
standard deviations are shown.

doi:10.1371/journal.pone.0114785.g001
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CP8, no significant differences in the kinetics of cell lysis were observed with our

phages at MOIs of 0.1 and 10. Using an initial cell concentration of 56104 cfu/

ml, the required proliferation threshold of bacteria was exceeded while the

inundation threshold of phages was at maximum 56103 pfu/ml (Fig. 1).

In the last set of in vitro experiments, we compared CP14-induced C. jejuni

3871 cell lysis with the lytic activity of a combination of CP14 with a group II

phage (CP68 or CP75). Since group II phages cleared the host cell culture

significantly faster than group III phages (see above), they might be better suited

for a reduction of the bacteria shortly before slaughtering. For that reason, the

phages were added to the culture successively by adding the respective group II

phage at a high MOI of 10 18 h later than CP14. Similar to the experiments

before, CP14 lysed the bacteria efficiently (Fig. 2). The strongest reduction, related

to the control culture, was observed after 18 to 24 h of incubation. However,

while in the presence of CP14 alone, the cell number increased again by

approximately 1.3 log10 units between these time points, the addition of group II

phage CP68 resulted in an approximately 0.5 log10 units lower cell number after

24 h (Fig. 2). By contrast, neither a cocktail composed of CP14 and CP75 nor the

simultaneous application of CP14 and CP68 led to a higher reduction than those

achieved with CP14 alone. The reason for this result remains unknown. While

phage-induced lysis of Campylobacter under in vitro conditions has already been

reported by other authors [31, 32], this is the first study in which the kinetics of

host cell lysis induced by group II and group III phages has been compared.

Moreover, a combined action of a group II and a group III phage has not been

demonstrated before. The obtained data indicate that it might be conducive to use

low numbers of group III phages for longer incubation times allowing phage

replication while group II phages applied at high MOIs might be better suited for

‘‘lysis from without’’, the phenomenon of lysis caused by adsorption of numerous

phages to each cell. To elucidate whether the period needed for DNA replication,

packaging and virion assembly or the number of released particles account for the

different lysis times, the latent period and burst size of some of the phages was

determined. All of them revealed a similar latent period between 67 and 82 min,

which corresponds well with data determined for some other group II phages

[14]. Though, the burst size of group II phage CP68 was more than twice as large

(14 to 20 pfu) than those of the group III phages CP14 (6 to 7 pfu) and CP81 (4

to 6 pfu) (data not shown). Values between 9 and 24 pfu have also been reported

for group II phages in the study cited above. The data suggest that the fast lysis of

bacterial cultures induced by group II phages is mainly caused by their high burst

size.

Stability of the phages

Incubation of the eleven tested phages at temperatures between 4 C̊ and 70 C̊ for

8 h revealed that they are similarly stable. At temperatures up to 40 C̊, the phages

remained fully active while higher temperatures caused a gradual loss of activity

(Fig. 3). The long-term stability of the phages was studied for up to three years.

Successive Phage Application for Efficient Reduction of C. jejuni
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Storage at 4 C̊ and 25 C̊ resulted in a decrease of activity by approximately 1 log10

unit after one year and by two to three log10 units at the end of the experiment

(after three years). Freezing at 220 C̊ decreased the phage titer by four and seven

log10 units after one and two years of incubation, respectively, whereas no activity

was detectable after three years.

The phages remained fully active for at least 2 h at pH values between pH 5 and

pH 9 (data not shown) and for at least 48 h at pH values between pH 7 and pH 9

at room temperature (Fig. 3). For group II phage CP220, an extended pH stability

has been reported [15]. To ensure protection from the low pH of the chicken

digestive system, the birds were fed with 1 ml of 30% CaCO3 solution before

phages were administered.

Animal experiments

In the first experiment (pre-trial), the capability of two C. jejuni strains (3871 and

4014, Table 1) to colonize the chicken gut was investigated (see Material and

Methods). The strains had previously shown sensitivity to group II and group III

phages under in vitro conditions. In addition, the in vivo stability of phages in the

absence of Campylobacter was studied after administration to two other groups of

animals (data not shown). Both Campylobacter strains colonized the chickens

efficiently. After administration of 107 cfu to 20 day-old birds, bacteria were

identified in excreta of all animals. While cell numbers between 3 and 5.3 log10

cfu/g of intestinal content were determined at 48 h, the numbers increased up to

7.7 log10 cfu/g at day 26. On day 27, the chickens were killed and Campylobacter

counts between 7.6 and 8.5 log10 cfu/g were determined in the caecum. Strain

Fig. 2. Reduction of C. jejuni 3871 in vitro by simultaneous and successive application of group II and group III phages. Each experiment was
performed in triplicate. For better clarity, only mean values without standard deviations are shown.

doi:10.1371/journal.pone.0114785.g002

Successive Phage Application for Efficient Reduction of C. jejuni

PLOS ONE | DOI:10.1371/journal.pone.0114785 December 9, 2014 10 / 17



Fig. 3. pH and temperature stability of the phages CP14, CP81 and CP68. Each experiment was performed in triplicate. Bars indicate standard
deviations. pH stability was tested at 20˚C. As indicator strain for phage activity (quantified as PFU/ml), C. jejuni 3871 was used. Arrows indicate the initial
phage titers.

doi:10.1371/journal.pone.0114785.g003
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3871 generally showed slightly higher rates of colonization than strain 4014 and

was therefore selected for the phage treatment. Unlike the bacterial strains, the

administered phages could not be identified in excreta and in the caecum of the

birds. It can be surmised that the number of applied phages (107 pfu) was too low

to detect them. Moreover, phage propagation within the chicken intestine could

not occur due to the absence of a suitable host. A strong decrease of phage titer by

several orders of magnitude has also been observed in an experiment where 1010

phages were administered to Campylobacter-free chickens [18].

Based on the in vitro data and the results achieved in the pre-trial, the main

animal experiment was designed. The following questions should be answered (i)

Is a simultaneous application of two group III phages more efficient than the

administration of a single (group III) phage? (ii) How is the efficacy of a

successive application of a group III and a group II phage? To answer these

questions, C. jejuni strain 3871 (107 cfu) was administered to four groups (A to

D) of 20 days old chickens (A: 9 animals, B to D: 10 animals each) (Fig. 4A). On

day 27 group B and group D received a dose of phage CP14 (MOI 0.1) while

group C got a cocktail comprising the phages CP14 and CP81, both of which

administered at a MOI of 0.1. Even though this cocktail did not perform better

than CP14 alone under in vitro conditions, the combined activity of two phages

might be beneficial in the chicken gut. On day 28, group D received an additional

dose of phage CP68 at a MOI of 10. The last group (A) of animals served as

control and did not get any phage. From day 27 to day 31 excreta of the birds were

collected in time intervals of 12 h and Campylobacter and phage counts were

determined. On day 31 all chickens were killed and caecal contents were analysed.

Fig. 4 summarizes the results on Campylobacter reduction. The data show that,

compared to the control, group III phage CP14 (experimental group B) caused a

statistically significant reduction from 48 h onwards with a maximal

Campylobacter decline (more than one log10 unit) after 72 h (p50.0137). In some

other studies with group III phages, the highest reduction was already observed

after 24 to 48 h [14, 15, 17, 18]. However, the collected data can be hardly

compared since the numbers of administered bacteria, phages and the resulting

MOIs were not the same. The concurrent administration of a second group III

phage (CP81, experimental group B) did not yield a significant reduction of

Campylobacter (p50.121). It is conceivable that there was a yet unknown

interference between CP14 and CP81 which inhibited phage propagation or that

CP81 induced resistance which also affected CP14 (see below). In the in vitro

experiments a cocktail of both phages significantly reduced Campylobacter counts

by up to 3 log10 units (data not shown). Hence it remains open why no reduction

was attained in chickens. Consistently, Wagenaar et al. (2005) reported that an

application of two group III phages led to a similar reduction (1.5 log10 units) of

C. jejuni as a single phage [18]. The authors could not detect any antagonistic

effect under in vitro conditions.

In our study the by far highest reduction was achieved by a combined action of

group III phage CP14 and group II phage CP68 that had been administered

successively (Fig. 4B). 48 h after application of the second phage CP68, a more
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than 3 log10 units lower number of Campylobacter was determined compared to

the untreated control (p50.0111). Even though bacterial counts increased again

until the end of the experiment, they remained significantly lower than in the

control group and in group B which had been exclusively treated with CP14. We

suspect that the fast cell lysis and high burst size of CP68 in conjunction with its

from CP14 divergent host cell receptor were mainly responsible for the increased

lytic activity observed in experimental group D.

Fig. 4. Design and outcome of the animal experiment. A. Time scale of the experiment. B. Reduction of C. jejuni in the chickens. Mean values of
Campylobacter counts (CFU/g feces) and standard deviations are shown.

doi:10.1371/journal.pone.0114785.g004
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Phage resistance of C. jejuni 3871 in vivo and in vitro

As resistance is of great importance for the outcome of phage application, we

analysed both the susceptibility of the bacteria under in vivo and under in vitro

conditions. Therefore, ten colonies isolated from the caecum of each bird were

analysed in terms of their susceptibility to CP14, CP81 and CP68. Table 3

illustrates that resistance of all isolates against group II phage CP68 was rather low

with frequencies between 1.0 and 2.0%. By contrast, the group III phages

provoked higher rates of resistance against themselves. Most notably, frequencies

of 7 and 8% were determined in group C, in which both group III phages were

applied. As the administration of CP14 alone (group B) yielded resistance

frequencies of only 5% (CP14) and 4% (CP81), it might be concluded that the

elevated levels of resistance observed in group C were mainly caused by CP81.

This could explain why Campylobacter counts were not reduced in group C. The

in vivo data on phage resistance were corroborated by in vitro experiments (see

Materials and Methods). Colonies that were resistant to a particular phage showed

also resistance to all other phages of the same group but not to phages belonging

to the other group. In addition, resistance to group II phages was much more

stable than resistance to phages of group III, which in some cases quickly reverted

to susceptibility, as already reported by Fischer et al. (2013) and Scott et al. (2007)

[33, 34]. Reversion to phage susceptibility can be caused by phase variable

capsular polysaccharide structures [22]. Even though several group III phages

investigated in the cited study were highly specific in the recognition of a

particular combination of capsular modifications, they caused cross-resistance.

Thus, it is advantageous to analyse resistance of all phages of a cocktail thoroughly

and to compose phages belonging to different groups, which differ in their host

ranges, lytic properties and resistance mechanisms.
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