Zusammenhänge zwischen pulmonaler Obstruktion und metabolischem Syndrom bei selbstständig und zu Hause lebenden Senioren

Eine Analyse im Rahmen der Berliner Altersstudie II (BASE II)

zur Erlangung des akademischen Grades
Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät
Charité – Universitätsmedizin Berlin

von

Nikolaus Buchmann
aus Memmingen

Datum der Promotion: 14.02.2014
Inhaltsverzeichnis
1 Einleitung ... 1
2 Theoretische Grundlagen .. 4
 2.1 Die Berliner Altersstudie und die Berliner Altersstudie II .. 4
 2.2 Pulmonale Obstruktion ... 5
 2.2.1 Allgemeine Hintergründe ... 5
 2.2.2 Prävalenz der pulmonalen Obstruktion ... 6
 2.2.3 Pathomechanismus der pulmonalen Obstruktion ... 7
 2.2.4 Pulmonal obstruktive Erkrankungen ... 8
 2.2.5 Lungenveränderung im Alter ... 17
 2.3 Das metabolische Syndrom ... 20
 2.3.1 Allgemeine Hintergründe ... 20
 2.3.2 Prävalenz des metabolischen Syndroms ... 22
 2.3.3 Pathomechanismus des metabolischen Syndroms ... 23
 2.3.4 Das metabolische Syndrom als Krankheitsbild .. 25
 2.3.5 Das metabolische Syndrom im Alter .. 25
3 Fragestellung ... 27
4 Material und Methoden ... 29
 4.1 Beschreibung der Stichprobe ... 29
 4.1.1 Alters- und Geschlechtsverteilung ... 30
 4.1.2 Raucherstatus ... 32
 4.1.3 Statintherapie .. 32
 4.2 Berliner Altersstudie II .. 33
 4.2.1 Rekrutierung der Studienteilnehmer .. 33
 4.2.2 Ablauf der Berliner Altersstudie II .. 33
 4.3 Spirometrie .. 35
 4.3.1 Allgemeine Hintergründe ... 35
 4.3.2 Messmethode ... 37
 4.3.3 Messparameter .. 38
 4.3.4 Durchführung der Spirometrie ... 39
4.3.5 Auswertung der Spirometrie ... 40

4.4 Das metabolische Syndrom ... 42

4.4.1 Laboruntersuchungen ... 42
4.4.2 Bestimmung des Taillenumfangs .. 43
4.4.3 Blutdruckmessungen ... 43
4.4.4 Definition der Diagnosekriterien des metabolischen Syndroms
innerhalb der Berliner Altersstudie II .. 44
4.4.5 Statistische Verfahren ... 44

5 Ergebnisse .. 46

5.1 Pulmonale Obstruktion .. 46

5.1.1 Verteilung der spirometrischen Qualitätsgrade 46
5.1.2 Verteilung der Lungenvolumina .. 49
5.1.3 Prävalenz von pulmonaler Obstruktion .. 52
5.1.4 Häufigkeit neu diagnostizierter pulmonaler Obstruktion und
Häufigkeit antiobstruktiver Therapie .. 54

5.2 Das metabolische Syndrom ... 57

5.2.1 Prävalenz des metabolischen Syndroms .. 57
5.2.2 Ergebnisse der Taillenumfangsmessung .. 58
5.2.3 Ergebnisse der Blutdruckmessungen ... 59
5.2.4 Verteilung der Triglycerid-Werte .. 60
5.2.5 Verteilung der Nüchternglukosespiegel .. 60
5.2.6 Verteilung der HDL-Werte .. 61
5.2.7 Abhängigkeit von Faktoren des metabolischen Syndroms
untereinander ... 63

5.3 Kovariablen .. 66

5.3.1 Raucherstatus ... 66
5.3.2 Statintherapie ... 67
5.3.3 Lungenvolumina in Abhängigkeit von Simvastatintherapie und
Raucherstatus ... 68

5.4 Zusammenhänge zwischen metabolischem Syndrom und pulmonaler
Obstruktion ... 70

5.4.1 Obstruktion nach den GOLD-Richtlinien und metabolisches Syndrom........... 70
5.4.2 Obstruktion nach Hardie et al. und metabolisches Syndrom

5.4.3 Obstruktion nach DAL-Kriterien und metabolisches Syndrom

5.4.4 Zusammenhänge zwischen Lungenvolumina und Faktoren des metabolischen Syndroms

5.4.5 Multivariante Regressionsanalyse zwischen Faktoren des metabolischen Syndroms und Obstruktion nach GOLD, Hardie et al. und DAL

6 Diskussion

6.1 Probandenkollektiv der Berliner Altersstudie

6.1.1 Bewertung des Gesundheitszustandes des Probandenkollektivs der Berliner Altersstudie II

6.1.2 Raucherstatus im Vergleich zur Normalbevölkerung

6.1.3 Bewertung der Ausschlusskriterien vorangegangener Studien

6.1.4 Bewertung der Stichprobenauswahl innerhalb des Probandenkollektives der Berliner Altersstudie II anhand des spirometrischen Qualitätsgrades

6.2 Pulmonale Obstruktion

6.2.1 Diskussion über Spirometrie als Messmethode für pulmonale Obstruktion im Alter

6.2.2 Diskussion über die verschiedenen Definitions止めり einer pulmonalen Obstruktion

6.2.3 Prävalenz von pulmonaler Obstruktion nach verschiedenen Definitions止めり

6.2.4 Diskussion über die Aussage bezüglich COPD

6.2.5 Über- bzw. Unterdagnostiziertheit im internationalen Vergleich

6.2.6 Zusammenhang zwischen pulmonaler Obstruktion und Statintherapie

6.2.7 Diskussion über die Sinnhaftigkeit eines spirometrischen Screenings der Bevölkerung

6.3 Das metabolische Syndrom

6.3.1 Diskussion über das Konzept des metabolischen Syndroms

6.3.2 Prävalenz des metabolischen Syndroms im nationalen und internationalen Vergleich
6.3.3 Faktoren des metabolischen Syndroms im internationalen und nationalen Vergleich ... 94

6.4 Zusammenhang zwischen Lungenfunktion und dem metabolischen Syndrom 95

6.4.1 Zusammenhang zwischen pulmonaler Obstruktion nach GOLD, Hardie und DAL mit dem metabolischen Syndrom ... 95

6.4.2 Zusammenhang zwischen Lungenvolumina und dem metabolischen Syndrom .. 96

6.4.3 Abhängigkeit der pulmonalen Obstruktion von Faktoren des metabolischen Syndroms .. 97

6.4.4 Zusammenfassung der Verknüpfungspunkte zwischen Lungenfunktion und metabolischem Syndrom ... 99

6.5 Zusammenfassung ... 100

7 Abkürzungsverzeichnis .. 103

8 Abbildungsverzeichnis .. 109

9 Tabellenverzeichnis ... 111

10 Literaturverzeichnis ... 114

11 Anhang .. 124
Relation between metabolic syndrome and its components with airflow obstruction - an investigation within the Berlin Aging Study-II (BASE-II).

Buchmann Nikolaus

Introduction: Earlier studies suggested a common pathomechanism for the metabolic syndrome (MetS) and airflow obstruction (AO). One of several causal links is systemic inflammation. One of the aims within the Berlin Aging Study II was to detect common aspects of the MetS and AO.

Method: A total of 1075 subjects were analyzed (women= 57%, men=43%, 218 young, 857 old). AO was detected by pre-bronchodilator spirometry and diagnosed according to the LLN-criteria (FEV1/FVC<LLN), GOLD-criteria (FEV1/FVC<70%) and the age-adjusted Hardie-criteria. MetS was diagnosed according to the IDF/AHA/NHLB criteria (2009).

Results: 43.5% of our measurements met the GOLD spirometry quality criteria. The prevalence of AO within the older group was between 7.3% and 21.3% depending on the criteria used and 5% within the younger group (criteria independent). The prevalence of MetS was 29.7% in older women and 37.2% in older men, and 13.3% in younger men (0% in women). The prevalence of MetS was nearly 40% in older subjects with AO. Several characteristics of MetS such as triglyceride levels, fasting glucose levels and abdominal obesity were found to be significantly associated with the diagnosis of AO in men.

Conclusion: Prevalence of MetS and AO was high in subjects of the Berlin Aging Study II. Determinants of the MetS could be shown to be also associated with AO. Screening subjects with AO for MetS could be a sufficient tool to prevent cardiac disease. In the longitudinal view changes in lungfunction and metabolic parameters will be interesting topics.
Zusammenhänge zwischen pulmonaler Obstruktion und metabolischem Syndrom bei selbstständig und zu Hause lebenden Senioren - Eine Analyse im Rahmen der Berliner Altersstudie II (BASEII)

Buchmann Nikolaus

Ergebnisse: 43,5% unserer spirometrischer Messungen erfüllten die GOLD-Kriterien eines guten Qualitätsgrades. Die Prävalenz einer pulmonalen Obstruktion war je nach angewandter Definition zwischen 7,3-21,3% bei den älteren Probanden, 5% bei den jüngeren Probanden, unabhängig von der jeweiligen Definition. Die Prävalenz des metabolischen Syndroms befand sich bei älteren Probanden im Bereich zwischen 29,7% bei Frauen, 37,2% bei Männern und 13,3% bei Männern in der jungen Probandengruppe (0% in der Gruppe der jungen Frauen).

1 Einleitung

Mit der Fragestellung, ob eine pulmonale Obstruktion bzw. die Verringerung der Lungenvolumina FEV1 und FVC in Verbindung mit kardiovaskulären Erkrankungen steht, beschäftigte sich in den letzten Jahren eine Vielzahl von Forschungsgruppen. Einen gesonderten Stellenwert nimmt dabei das metabolische Syndrom als Symptomkomplex kardiovaskulärer Risikofaktoren ein. Mittlerweile gilt als anerkannt, dass ein erhöhter Funktionsverlust der Lunge sowohl mit kardiovaskulären Erkrankungen als auch mit einer allgemeinen Mortalitäts erhöhung assoziiert ist.1-3

Eine systematische Analyse von Hansell et al. zeigte, dass die Hälfte aller Studienteilnehmer mit einer bekannten COPD auf Grund eines kardialen Geschehens ver stirbt.4 In einer epidemiologischen Metaanalyse von 1861 Studienteilnehmern zwischen dem 40. und 60. Lebensjahr im Rahmen der NHANES-Studie durch Sin et al. konnte ein verringrigerter FEV1-Wert unabhängig von Alter, Geschlecht oder Raucherstatus als Prädiktor für kardiovaskuläre Ereignisse gesehen werden.5 Weiter zählt das Verhältnis FEV1/FVC bzw. FEV1/FEV6 als Marker für kardiovaskuläres Risiko.6 Durch diesen Index können obstruktive und restriktive Lungenfunktionseinschränkungen erkannt und voneinander abgegrenzt werden. Auch einzelne kardiovaskuläre Risikofaktoren stehen sowohl bei Rauchern als auch bei Nichtrauchern in Verbindung mit Veränderungen der Lungenfunktion. So geht die gestörte Glukosetoleranz ebenso wie der Typ II Diabetes mit einer pulmonalen Funktionseinschränkung einher.7,8 Die ebenfalls mit kardiovaskulärem Risiko assoziierte abdominelle Adipositas findet sich gehäuft bei Studienteilnehmern mit verminderten Lungenvolumina.9 Uneinheitlich stellt sich die Datenlage bezüglich arterieller Hypertonie und Lungenfunktionsparametern in der Literatur dar. Eine Analyse von 375 Männern ohne antihypertensive Medikation zwischen dem 55. und 68. Lebensjahr durch Engström et al. registrierte einen inversen Zusammenhang zwischen systolischem bzw. diastolischem Blutdruck und Parametern der Lungenfunktion.10 Andere Studien sahen hier keine signifikanten Interaktionen.11

Einleitung

HDL-Cholesterin Serumspiegel (HDL) mit einer Verschlechterung der Lungenfunktion her und bestätigte somit Daten der bestehenden Literatur.12,13

Die pathomechanistische Interaktion zwischen Herz-Kreislauf Erkrankungen und eingeschränkter Lungenfunktion wird in Verbindung mit einer systemischen Inflammation gesehen. Es konnte unter anderem an Probanden mit einer leichten oder mittelschweren Obstruktion bei COPD nachgewiesen werden, dass CRP, Fibrinogen und weitere Marker einer systemischen Inflammation ebenso wie das Risiko für kardiovaskuläre Ereignisse erhöht waren.14,15

Neue Arbeitshypothesen gehen davon aus, dass dieser systemische Entzündungsprozess langfristig zu einer Schädigung der Gefäße führt. Eickhoff et al. wiesen eine signifikante Verringerung der Fähigkeit zur Vasodilatation der Brachialarterie bei Studienteilnehmern mit einer chronisch pulmonalen Obstruktion nach. Sowohl ein niedriger FEV1-Wert als auch erhöhte Entzündungsparameter wurden als unabhängige Prädiktoren für eine eingeschränkte Vasodilatation aufgefunden.16

Man geht davon aus, dass das metabolische Syndrom, also die Kombination aus den Risikofaktoren erniedriger HDL-Spiegel, erhöhter Triglycerid-Spiegel, erhöhter systolischer und diastolischer Blutdruck, abdominelle Adipositas und Insulinresistenz einen besonderen Einfluss auf die Lungenfunktion haben könnte.17,18

Hierbei stehen nicht nur Verringerungen der einzelnen Lungenvolumina, sondern auch obstruktive oder restriktive Veränderungen im Vordergrund.19

Unklar bleibt, ob neben den Berührungspunkten zwischen kardiovaskulären Risikofaktoren und Lungenfunktionseinschränkungen ein gemeinsamer Pathomechanismus speziell mit dem Krankheitsbild metabolisches Syndrom besteht. Watz et al. sahen in ihrer Studie von 2009 einen deutlichen Zusammenhang zwischen COPD und dem metabolischen Syndrom. Hier erkannten die Autoren erhöhte Werte der systemischen Inflammation bei Studienteilnehmern mit metabolischem Syndrom und COPD, so dass diese Inflammation als Grundlage für die Entstehung beider Erkrankungen angenommen werden könnte.20

Andere Studien fanden in der abdominellen Adipositas das Bindeglied zwischen dem metabolischen Syndrom und der pulmonalen Funktionseinschränkung.21,22

Mit der Insulinresistenz ergibt sich ein weiterer gemeinsamer Verknüpfungspunkt, der ein gehäuftes Auftreten von pulmonaler Funktionseinschränkung und dem metabolischen Syndrom erklären könnte.23,24

Insbesondere gelang der Nachweis, dass Diabetes mellitus mit einer Erniedrigung von FEV1 und FVC einhergehen sowie mit einer Verminderung der Alveolarwandintegrität assoziiert sein kann.25

Abbildung 1 gibt einen Überblick über mögliche Zusammenhänge zwischen dem metabolischen Syndrom, der pulmonalen Funktionseinschränkung und Arteriosklerose. Hier wird auch die Regulation von zirkulierenden endothelialen Progenitorzellen („Vorläuferzellen“, die aus

Abbildung 1: Möglicher pathomechanistischer Zusammenhang zwischen metabolischem Syndrom, kardiovaskulärem Risiko und Lungenfunktion angelehnt an Tiengo et al. Das metabolische Syndrom als Symptomkomplex aus Dyslipidämie, abdominaler Adipositas, Insulinresistenz und arterieller Hypertonie kann ebenso wie die pulmonale Obstruktion über Inflammation und Herunterregulierung von Progenitorzellen zu kardiovaskulären Ereignissen führen. Diese Mechanismen könnten auch als Bindeglieder zwischen diesen beiden Erkrankungen darstellen.
2 Theoretische Grundlagen

2.1 Die Berliner Altersstudie und die Berliner Altersstudie II

Die Berliner Altersstudie II legt nun den Schwerpunkt auf das Thema Krankheitsentstehung und setzt hierzu eine Gruppe älterer Studienteilnehmer (Probanden ab dem 60. Lebensjahr) in Relation zu einer jungen Kontrollgruppe (20-36 Jahre alt). Inhaltliche Schwerpunkte bilden kognitive Veränderungen im Alter, die sozioökonomische und biologische Lebenssituation, Gesundheit sowie genetische Aspekte. Um dieses umfassende Ziel zu erreichen, sind neben der Forschungsgruppe Geriatrie der Charité, die sich insbesondere den Themengebieten objektive Gesundheit, funktionelle Kapazität und subjektive Gesundheit widmet, die in Abbildung 2 aufgeführten Projektgruppen beteiligt.

Die insgesamt 2200 eingeladenen Studienteilnehmer sollen im Rahmen einer follow-up Analyse später erneut untersucht werden. BASE II ist so als multidisziplinäre Längsschnittstudie angesetzt, die breite Interdisziplinarität soll dabei verschiedene Sichtweisen miteinander in Verbindung setzen. Die jeweiligen Untersuchungen können so auch in verschiedenen Altersstadien der Studienteilnehmer vorgenommen werden. Ein Vergleich zu den Untersuchungsergebnissen der Berliner Altersstudie und somit eine Gegenüberstellung heutiger und damaliger Gesundheit ist ebenfalls geplant.

Abbildung 2: An der Berliner Altersstudie II (BASE II) beteiligte Institutionen, und deren Aufgabenschwerpunkte

2.2 Pulmonale Obstruktion

2.2.1 Allgemeine Hintergründe

Bei ca. 90 Prozent aller Lungenfunktionsstörungen handelt es sich um obstruktive Veränderungen. In den Leitlinien der Deutschen Atemwegsliga und Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin (DAL) ist die pulmonale Obstruktion als eine Einengung bzw. Verlegung der Atemwege, die im Rahmen verschiedener Lungenerkrankungen auftritt, definiert. Der Luftstrom vermindert sich hierbei insbesondere auf Grund einer Abnahme der Lungenelastizität und damit einhergehender Verringerung des endexspiratorischen Drucks innerhalb der Lunge oder durch eine Erhöhung des Atemwegswiderstandes. Die wesentlichen Erkrankungen, die mit einer Obstruktion der Lunge einhergehen, sind dabei das Lungenemphysem, Asthma bronchiale, die chronische obstruktive Bronchitis und die Bronchiektasie. Häufig treten diese Lungenveränderungen als gemischtes Krankheitsbild auf. Deshalb werden im Allgemeinen die chronisch obstruktive Bronchitis, das Lungenemphysem und deren...

2.2.2 Prävalenz der pulmonalen Obstruktion

Die Prävalenz der pulmonalen Obstruktion in der Bevölkerung ist nicht genau bekannt. Aktuelle Schätzungen der WHO besagen, dass weltweit ca. 64 Millionen Menschen an COPD und weitere 235 Millionen an Asthma bronchiale erkrankt sind34,35 In der BOLD-Studie von 2007 wurden weltweit Prävalenzdaten der COPD ermittelt. Diese schwanken je nach Region, Alter und
Geschlecht zwischen ca. 6% und 33%. Damit gehört die COPD zu den häufigsten chronischen Erkrankungen überhaupt. Prävalenzschätzungen für Deutschland vermuten, dass 10-15% der erwachsenen Bevölkerung unter einer COPD und ca. 5% unter Asthma leiden. Genaue Daten bzw. Prävalenzangaben für das höhere Alter sind nur unzureichend verfügbar.

2.2.3 Pathomechanismus der pulmonalen Obstruktion

Pathomechanismen, die zu einer intermittierenden oder chronischen Obstruktion der Atemwege führen, unterscheiden sich dabei, was insbesondere in der Gegenüberstellung von Asthma und COPD ersichtlich ist. Ebenso variiert die klinische Ausprägung stark. Eine vereinfachte Darstellung der Entstehungsmechanismen pulmonaler Obstruktion zeigt Abbildung 4. Grundlegend bewirkt stets eine auslösende Noxe eine Zunahme des Atemwegswiderstandes und infolgedessen eine direkte Obstruktion (Allergene, etc.) oder eine permanente Obstruktion, die sich über Jahre entwickeln kann (Zigarettenkonsum, etc.). Es konnte gezeigt werden, dass trotz der klinischen und pathophysiologischen Unterschiede Asthma als Risikofaktor für die Entstehung einer COPD gesehen werden kann.

Abbildung 4: Grundlegender Pathomechanismus pulmonaler Obstruktion und dessen Folgen. Durch eine auslösende Noxe kommt es unter anderem zu Schleimhautödem, Schleimsekretion, Muskelkontraktion, Entzündung, Fibrose und daraus resultierend zur Atemwegsobstruktion, die wiederum zu erhöhter Atemarbeit und Ventilationsstörung führen kann und somit zu Dyspnoe, Hypoxie und Emphysem.
2.2.4 Pulmonal obstruktive Erkrankungen

2.2.4.1 COPD

2.2.4.1.1 Allgemeine Hintergründe

Tabelle 1: Überblick über Risikofaktoren für die Entwicklung einer pulmonalen Obструкtion

<table>
<thead>
<tr>
<th>- Nikotinkonsum</th>
<th>- Genetische Komponenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Luftverschmutzung</td>
<td>- Pulmonale Infekte im Kindesalter</td>
</tr>
<tr>
<td>- Organische und anorganische Stäube</td>
<td>- Vorangegangene Tuberkuloseinfection</td>
</tr>
<tr>
<td>- Weibliches Geschlecht</td>
<td>- Alter (physiologische Obstruktion)</td>
</tr>
<tr>
<td>- Mangelernährung</td>
<td>- Verlangsamtes Lungenwachstum</td>
</tr>
</tbody>
</table>

2.2.4.1.2 Pathophysiologie

Pathophysiologisch handelt es sich bei der COPD um eine durch eine Entzündung der Atemwege und der pulmonalen Blutgefäße bedingte mukozilliäre Dysfunktion mit daraus resultierender struktureller Lungenveränderung. In Abbildung 5 ist der Pathomechanismus vereinfacht dargestellt. Durch exogene Noxen wie Zigarettenrauch werden zum einen Makrophagen aktiviert (1) und setzen Proteasen bzw. oxidativen Stress frei (2). Dies führt zu parenchymalen Umbauprozessen (3). Zum anderen wird die Einwanderung von Fibroblasten in das

Abbildung 5: Pathogenese der COPD angelehnt an Wood et al. 41
2.2.4.1.3 Diagnostik und Klinik

_Tabelle 2: Spirometrische Kriterien zur Schweregradeinteilung der COPD nach den GOLD-Leitlinien_39

<table>
<thead>
<tr>
<th>Schweregrad</th>
<th>Kriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (leicht)</td>
<td>FEV1/FVC<70% und FEV1≥80% Soll</td>
</tr>
<tr>
<td></td>
<td>Mit/ohne Symptomatik (Husten, Auswurf)</td>
</tr>
<tr>
<td>II (mittel)</td>
<td>FEV1/FVC<70% und 50%≤FEV1<80% Soll</td>
</tr>
<tr>
<td></td>
<td>Mit/ohne chronische Symptomatik (Husten, Auswurf, Dyspnoe)</td>
</tr>
<tr>
<td>III (schwer)</td>
<td>FEV1/FVC<70% und 30%<FEV1<50% Soll</td>
</tr>
<tr>
<td></td>
<td>Mit/ohne chronische Symptomatik (Husten, Auswurf, Dyspnoe)</td>
</tr>
<tr>
<td>IV (sehr schwer)</td>
<td>FEV1/FVC<70% und FEV1≤30% Soll oder FEV1/FVC<70% und</td>
</tr>
<tr>
<td></td>
<td>FEV1≤50% Soll und chronische respiratorische Insuffizienz</td>
</tr>
</tbody>
</table>

FEV1 = Einsekundenkapazität; FVC = forcierte Vitalkapazität; FEV1/FVC = Tiffeneau-Index; Soll = spezifischer Sollwert

Zur weiteren Differenzierung sollten bei pathologischem Befund im Folgenden eine Ganzkörperplethysmographie und eine Blutgasanalyse durchgeführt werden. Ggf. kann im Anschluss weitere Diagnostik erfolgen. Abzugrenzen von der chronisch obstruktiven

Bei den meisten COPD-Patienten handelt es sich um Raucher oder Exraucher. Bei vielen lassen sich vor Diagnosestellung anamnestisch Gewichtsverluste oder Komorbiditäten eruieren.

2.2.4.1.4 Therapie

Tabelle 3: Stufenschema zur Therapie bei COPD nach den Leitlinien der Deutschen Atemwegsliga (DAL)

<table>
<thead>
<tr>
<th>Therapiestufe</th>
<th>Medikamentöse Maßnahmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stufe 1</td>
<td>bei Bedarf: kurz wirksame β2-Mimetika</td>
</tr>
<tr>
<td>Stufe 2</td>
<td>Stufe 1 + Dauertherapie mit einem oder mehreren langwirksamen Bronchodilatatoren</td>
</tr>
<tr>
<td>Stufe 3</td>
<td>Stufe 2 + ICS</td>
</tr>
<tr>
<td>Stufe 4</td>
<td>Stufe 3 + Langzeitsauerstofftherapie bei respiratorischer Insuffizienz, chirurgische Therapieoptionen evaluieren</td>
</tr>
<tr>
<td>allgemein</td>
<td>Vermeidung von Risikofaktoren, Grippeschutzimpfung, Pneumokokkenimpfung</td>
</tr>
</tbody>
</table>

ICS = inhalatives Kortikosteroid
2.2.4.2 Chronische (obstruktive) Bronchitis

Nach der WHO-Definition liegt eine chronische Bronchitis vor, wenn Husten, Auswurf und vermehrte Schleimsekretion über jeweils 3 Monate in 2 aufeinanderfolgenden Jahren zu verzeichnen sind. Die Prävalenz der chronischen Bronchitis wird in Deutschland auf ca. 10-15\% geschätzt.\(^{37}\) Männer sind in etwa dreimal so häufig betroffen wie Frauen. Daten über die chronisch obstruktive Bronchitis, also eine chronische Bronchitis, die mit einer Atemwegsobstruktion einhergeht, sind kaum verfügbar. Die Diagnose kann durch die sie definierenden Symptome erfolgen. Eine spirometrische Untersuchung erbringt zusätzlich eine Differenzierungsmöglichkeit in obstruktive und nicht-obstruktive Bronchitis sowie eine Möglichkeit zur Schweregradbeurteilung. Zur genaueren Diagnostik können im Weiteren nach der klinischen Untersuchung die Bestimmung von entzündungsspezifischen Laborparametern sowie eine Röntgenuntersuchung zum Ausschluss eines Lungenemphysems oder eines Bronchialkarzinoms erfolgen.

2.2.4.3 Lungenemphysem

2.2.4.4 Bronchiektasie

Als Bronchiektasie wird eine Ausweitung des Bronchus bezeichnet. Dieser irreversible Umbau ist entweder mit sackförmiger oder zylindrischer Erweiterung der Bronchien vergesellschaftet. Epidemiologische Daten schätzen, dass die Inzidenz ca. 10 auf 100000 Einwohner/Jahr beträgt. Auch bei dieser Erkrankung kommt es infolge einer (chronischen) Entzündung, die im Verlauf die gesamte Bronchialwand und das umliegende Lungengewebe erfasst, zum narbigen Umbau

2.2.4.5 Asthma bronchiale

2.2.4.5.1 Allgemeine Hintergründe

Abbildung 6: Gegenüberstellung histologischer Veränderungen kleiner Atemwege bei COPD und Asthma bronchiale nach Barnes et al. Asthma: Im Gegensatz zu COPD verdickte Basalmembran und glatte Muskulatur mit subepithelialer Fibrose. COPD: Inflammationszeichen ähnlich denen bei Asthma bronchiale, jedoch mit peribronchialer Fibrose. Ebenfalls hier zu erkennen ist die Zerstörung der Alveolarwände nur bei COPD.
2.2.4.5.2 Pathophysiologie

Durch Allergene werden inflammatorische Zellen aktiviert, was im Folgenden zu einer akuten und chronischen Entzündungsreaktion mit Bronchokonstriktion, Mukushypersekretion, Fibrosierung und Plasmaleckage führt.
2.2.4.5.3 Diagnostik und Klinik

Tabelle 4: Unterscheidungsmerkmale zwischen COPD und Asthma bronchiale angelehnt an Buhl et al.45

<table>
<thead>
<tr>
<th>Kennzeichen</th>
<th>Asthma bronchiale</th>
<th>COPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter bei Erstdiagnose</td>
<td>eher Kindheits- oder Jugendarter</td>
<td>meist ab der 6. Lebensdekade</td>
</tr>
<tr>
<td>Atemnot</td>
<td>anfallsartig</td>
<td>bei Belastung oder permanent</td>
</tr>
<tr>
<td>Husten</td>
<td>eher trocken, oft nachts</td>
<td>eher produktiv, oft morgens</td>
</tr>
<tr>
<td>Auswurf</td>
<td>eher wenig</td>
<td>eher viel</td>
</tr>
<tr>
<td>Obstruktion</td>
<td>episodisch</td>
<td>progradient</td>
</tr>
<tr>
<td>Sputum</td>
<td>eosinophile Zellen</td>
<td>Makrophagen, neutrophe Granulozyten</td>
</tr>
<tr>
<td>Ansprechen auf Kortison</td>
<td>ja</td>
<td>gelegentlich</td>
</tr>
<tr>
<td>Allergien</td>
<td>häufiger</td>
<td>seltener</td>
</tr>
<tr>
<td>Spirometrie</td>
<td>meist reversible Obstruktion nach Bronchodilatator-Gabe</td>
<td>irreversible Obstruktion nach Bronchodilatator-Gabe</td>
</tr>
</tbody>
</table>

Obstruktion: Einengung der Atemwege; Bronchodilatator: Medikament zur Erweiterung der Atemwege

Die Diagnostik des Asthma bronchiale besteht in erster Linie in Anamnese, klinischem Erscheinungsbild und körperlicher Untersuchung. Durch Inspektion, Auskultation und Perkussion können typische Merkmale wie eine Zyanose, Atemgeräusche (Giemen, Brummen

_Tabelle 5: Schweregradeinteilung bei Asthma bronchiale nach GINA (Global INitiative for Asthma) 2010_46

<table>
<thead>
<tr>
<th>Schweregrad</th>
<th>Symptome (Tag)</th>
<th>Symptome (Nacht)</th>
<th>FEV1% vom Sollwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (intermittierend)</td>
<td>≤ 1x/Woche</td>
<td>≤2x/Monat</td>
<td>>80%</td>
</tr>
<tr>
<td>II (geringgradig)</td>
<td><1x/Tag aber >1x/Woche</td>
<td>>2x/Monat</td>
<td>≥80%</td>
</tr>
<tr>
<td>III (mittelgradig)</td>
<td>täglich</td>
<td>>1x/Woche</td>
<td>>60% und < 80%</td>
</tr>
<tr>
<td>IV (schwergradig)</td>
<td>täglich</td>
<td>häufig</td>
<td>≤60%</td>
</tr>
</tbody>
</table>

FEV1 = Einsekundenkapazität; Sollwert = spezifischer Sollwert

2.2.4.5.4 Therapie

Tabelle 6: Medikamentöse Stufentherapie bei Asthma bronchiale nach GINA (Global INitiative for Asthma) 2010

<table>
<thead>
<tr>
<th>Stufe</th>
<th>Therapiemaßnahmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stufe 1</td>
<td>bei Bedarf: kurzwirksame β2-Mimetika</td>
</tr>
<tr>
<td>Stufe 2</td>
<td>Stufe 1 + low-dose inhalatives Steroid oder Leukotrienantagonist</td>
</tr>
<tr>
<td>Stufe 3</td>
<td>Stufe 1 + Medium-dose ICS oder langwirksames β2-Mimetikum + low-dose ICS</td>
</tr>
<tr>
<td></td>
<td>oder low-dose ICS + Leukotrienantagonist</td>
</tr>
<tr>
<td></td>
<td>oder low-dose ICS + Theophyllin-Retardpräparat</td>
</tr>
<tr>
<td>Stufe 4</td>
<td>Stufe 1 + langwirksames β2-Mimetikum und medium-dose ICS/high-dose ICS ggf. + Leukotrienantagonist oder + Theophyllin-Retardpräparat</td>
</tr>
<tr>
<td>Stufe 5</td>
<td>Stufe 4 + orale Steroide / + Omalizumab</td>
</tr>
<tr>
<td>Allgemein-</td>
<td>Minimierung der exogenen Auslöser (z.B. Allergene, Schadstoffe), Asthmaschulung</td>
</tr>
<tr>
<td>maßnahmen</td>
<td></td>
</tr>
</tbody>
</table>

ICS: inhalatives Kortikosteroid; low-dose: niedrig dosiert; medium-dose: mittlere Dosierung; high-dose: hohe Dosierung

2.2.5 Lungenveränderung im Alter

TLC: Totale Lungenkapazität; VC: Vitalkapazität; IRV: Inspiratorisches Reservevolumen; ERV: Exspiratorisches Reservevolumen; RV: Residuovolumenn; Soll: spezifischer Sollwert; FEV1: Einsekundenkapazität

Abbildung 8: Veränderungen von Lungenvolumina in Abhängigkeit von Alter und Raucherstatus. A: Verlust von FEV1 im Alter in Abhängigkeit vom Raucherstatus nach Fletcher et al. 48; B: Lungenvoluminaänderung über die Lebensspanne nach Crapo et al. 49

Tabelle 7: Überblick über die Veränderung der Lungenfunktion im Alter

<table>
<thead>
<tr>
<th>vermindert</th>
<th>erhöht</th>
<th>unverändert</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV1</td>
<td>RV</td>
<td>TLC</td>
</tr>
<tr>
<td>FVC</td>
<td></td>
<td>Atemwegswiderstand</td>
</tr>
<tr>
<td>ERV</td>
<td></td>
<td>pulmonalarterieller Widerstand</td>
</tr>
<tr>
<td>Lungenelastizität</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atemmuskulatur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thoraxwandmobilität</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diffusionskapazität</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FEV1 = forcierte Einsekundenkapazität; FVC = forcierte Vitalkapazität; RV = Residualvolumen; TLC = totale Lungenkapazität; Diffusionskapazität = Fähigkeit der Lunge zum Gasaustausch; ERV = exspiratorisches Reservevolumen
2.3 Das metabolische Syndrom

2.3.1 Allgemeine Hintergründe
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosekriterien, die erfüllt sein müssen</td>
<td>Diabetes mellitus, gestörte Glukosetoleranz, Insulinresistenz und 2 weitere Faktoren</td>
<td>mindestens 3 von 5 Symptomen</td>
<td>mindestens 3 von 5 Symptomen</td>
<td>abdominelle Adipositas und mindestens 2 weitere Symptome</td>
<td>mindestens 3 von 5 Symptomen</td>
</tr>
<tr>
<td>abdominelle Adipositas</td>
<td>Verhältnis von Taillen- zu Hüftumfang > 0,9 (Männer) bzw. > 0,85 (Frauen) und/oder ein BMI > 30 kg/m²</td>
<td>Taillenumfang > 102 cm bei Männern oder > 88 cm bei Frauen</td>
<td>Taillenumfang > 102 cm bei Männern oder > 88 cm bei Frauen</td>
<td>Taillenumfang ≥ 94 cm (Männer) ≥ 80 cm (Frauen)</td>
<td>ethnenspezifische Grenzwerte empfohlen, für Europäer z.B. IDF Richtlinien</td>
</tr>
<tr>
<td>Triglyceride</td>
<td>> 1,7 mmol/L</td>
<td>> 150 mg/dl</td>
<td>> 150 mg/dl oder bereits eingeleitete Therapie zur Senkung der Triglyceride</td>
<td>> 150 mg/dl oder bereits eingeleitete Therapie zur Senkung der Triglyceride</td>
<td>> 150 mg/dl oder bereits eingeleitete Therapie zur Senkung der Triglyceride</td>
</tr>
<tr>
<td>HDL-Cholesterin</td>
<td>≤ 0,9 mmol/L (Männer) ≤ 1,0 mmol/L (Frauen)</td>
<td>< 40 mg/dl (Männer) < 50 mg/dl (Frauen)</td>
<td>< 40 mg/dl (Männer) < 50 mg/dl (Frauen) oder Therapie zur Erhöhung des HDL</td>
<td>< 40 mg/dl (Männer) < 50 mg/dl (Frauen) oder Therapie zur Erhöhung des HDL</td>
<td>< 40 mg/dl (Männer) < 50 mg/dl (Frauen) oder Therapie zur Erhöhung des HDL</td>
</tr>
<tr>
<td>Blutdruck</td>
<td>≥140/90 mmHg oder antihypertensive Therapie</td>
<td>≥ 130 mmHg systolisch und > 85 mmHg diastolisch</td>
<td>≥ 130 mmHg systolisch und > 85 mmHg diastolisch oder bereits behandelte Hypertonie</td>
<td>≥ 130 mmHg systolisch und > 85 mmHg diastolisch oder bereits behandelte Hypertonie</td>
<td>≥ 130 mmHg systolisch und > 85 mmHg diastolisch oder bereits behandelte Hypertonie</td>
</tr>
<tr>
<td>Nüchtern-Plasmaglucose</td>
<td>muss erfüllt sein</td>
<td>>110 mg/dl</td>
<td>> 100 mg/dl oder Therapie</td>
<td>> 100 mg/dl oder diagnostizierter Diabetes mellitus</td>
<td>> 100 mg/dl oder Therapie</td>
</tr>
</tbody>
</table>

WHO: “World Health Organisation”; AHA/NHLBI: “American Heart Association”/ “National Heart, Lung, and Blood Institute”; IDF: International Diabetes Foundation; NCEP: National Cholesterol Education Program; HDL: high-density lipoprotein; Nüchternglucose: Blutentnahme > 8 Stunden nach der letzten Nahrungsaufnahme; * als zusätzliches Kriterium nach der WHO-Definition gilt die in der Tabelle nicht aufgeführte Albuminurie (≥ 20g/min oder Albumin/Kreatinin-Ratio ≥ 30 mg/g)
2.3.2 Prävalenz des metabolischen Syndroms

57Abbildung 9: Häufigkeit des metabolischen Syndroms in Abhängigkeit von Definition und Geschlecht nach Koehler et al.
2.3.3 Pathomechanismus des metabolischen Syndroms

Die Rolle von Komponenten wie Resistin bleibt bislang noch unklar. Utzschneider et al. sahen in ihrer Analyse von 177 Studienteilnehmern ohne Diabetes mellitus keine Korrelationen zwischen Resistin, abdomineller Adipositas oder Insulinresistenz. Andere Studien jedoch erkannten bei Probanden mit metabolischem Syndrom eine bis zu 1,2-fache Erhöhung dieses Faktors.

Abbildung 1 fasst die pathogenetischen Mechanismen, die bei einem metabolischen Syndrom zum Tragen kommen, zusammen. Ebenfalls spielt hier die Sympathikusaktivierung eine Rolle, die eine besondere Beziehung zu den kardiovaskulären Manifestationen des metabolischen Syndroms hat.
Adiponektin: Peptidhormon, das in den Fettzellen gebildet wird.

2.3.4 Das metabolische Syndrom als Krankheitsbild

2.3.5 Das metabolische Syndrom im Alter

In Rahmen der NHANES-III Untersuchung wurden epidemiologische Daten zur Häufigkeitsverteilung des metabolischen Syndroms bei Kindern und Jugendlichen in den USA erhoben. Hier zeigte sich, dass 5-10 Prozent der Jugendlichen zwischen dem 20.-29.Lj. an einem metabolischen Syndrom leiden.71 Im Alter wird die Prävalenz je nach Definitions kriterien in Deutschland schon auf ca. 20-40% geschätzt.72 Eine Ursache für die steigende Zahl der Personen, die an einem metabolischen Syndrom leiden, liegt in der Zunahme der Übergewichtigen in der Bevölkerung. Im Alter steigt die Prävalenz hierbei bis zum 60. Lebensjahr erheblich. Die vermehrte Insulinresistenz im Alter ist dabei auch auf den Körperfettanteil und die veränderte Fettverteilung zurückzuführen. Der kontinuierliche Gewichtsanstieg im Alter kann in Verbindung zur Anzahl kardiovaskulärer Risikofaktoren
gebracht werden.73 So war in der Nurses’-Health-Studie eine Gewichtszunahme von 8-11 kg ab einem Lebensalter von 18 Jahren mit einem 50 % höheren KHK-Risiko und 3-fach höherem Diabetes-Risiko assoziiert sowie mit einer erhöhten Gesamtmortalität.74 Auch wurde bereits in mehreren Studien gezeigt, dass der Blutdruck, der ebenfalls Teil des Konzeptes des metabolischen Syndroms darstellt, im Alter stetig, insbesondere systolisch zunimmt.

Der Grundstein für die Entstehung eines metabolischen Syndroms kann so dennoch bereits in jungen Jahren gelegt werden. Hauptursache hierfür sind mangelnde körperliche Aktivität und Fehlernährung. Folgen des metabolischen Syndroms im hohen und höheren Alter können dann neben der erhöhten Inzidenz für kardiovaskuläre Erkrankungen Immobilität und ein früherer bzw. erhöhter Pflegebedarf sein.
3 Fragestellung

In der Berliner Altersstudie II soll unter anderem geklärt werden, inwiefern das metabolische Syndrom mit pulmonaler Obstruktion assoziiert ist. In den vorangegangenen Kapiteln wurden mögliche gemeinsame Pathomechanismen wie systemische Inflammation, Regulierung endothelialer Progenitorzellen sowie Bindeglieder zwischen diesen Erkrankungen wie abdominelle Adipositas oder Insulinresistenz dargelegt. Hieraus ergab sich die Hypothese, dass Studienteilnehmer mit eingeschränkten Lungenfunktionsparametern bzw. pulmonaler Obstruktion gehäuft auch ein metabolisches Syndrom aufweisen. Dies legt nahe, dass bestimmte Einflussgrößen sowohl die Entstehung einer pulmonalen Obstruktion als auch eines metabolischen Syndroms begünstigen.

Um dem nachzugehen, wurden 1187 Studienteilnehmer einer Lungenfunktionsprüfung unterzogen. Weiter erfolgte die Messung aller relevanten Parameter für die Definition oder den Ausschluss eines metabolischen Syndroms.

Abbildung 11: Mögliche Zusammenhänge zwischen pulmonaler Obstruktion und dem metabolischen Syndrom

Zusammenfassung der zu untersuchenden Themengebiete innerhalb der Analyse:

1. Wie hoch ist die Prävalenz des metabolischen Syndroms innerhalb der Studienteilnehmer der Berliner Altersstudie II?

2. Wie hoch ist die Prävalenz der pulmonalen Obstruktion innerhalb der Studienteilnehmer der Berliner Altersstudie II?

3. Gibt es einen Zusammenhang zwischen dem Auftreten einer pulmonalen Obstruktion und dem metabolischen Syndrom innerhalb der Studienteilnehmer der Berliner Altersstudie II?

5. Was sind zentrale und gemeinsame Faktoren, die das Auftreten sowohl eines metabolischen Syndroms als auch pulmonaler Obstruktion begünstigen könnten?
4 Material und Methoden

4.1 Beschreibung der Stichprobe

Abbildung 12: Auswahl der Studienteilnehmer innerhalb des Probandenkollektives und Aufteilung in Gruppen anhand des Alters, des Asthmastatus und des Qualitätsgrades der Spirometrie
4.1.1 Alters- und Geschlechtsverteilung

Tabelle 9: Deskriptiv-statistische Kennwerte des Alters der Studienteilnehmer in Jahren

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>Altersgruppe</th>
<th>n</th>
<th>Mittelwert</th>
<th>Median</th>
<th>SD</th>
<th>Min-Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frauen</td>
<td>23.-34. Lj.</td>
<td>120</td>
<td>27,88</td>
<td>28</td>
<td>3,06</td>
<td>23-34</td>
</tr>
<tr>
<td></td>
<td>61.-84. Lj.</td>
<td>493</td>
<td>67,69</td>
<td>68</td>
<td>3,68</td>
<td>61-84</td>
</tr>
<tr>
<td>Männer</td>
<td>23.-34. Lj.</td>
<td>98</td>
<td>28,77</td>
<td>29</td>
<td>2,71</td>
<td>23-34</td>
</tr>
<tr>
<td></td>
<td>60.-82. Lj.</td>
<td>364</td>
<td>69,93</td>
<td>69</td>
<td>3,68</td>
<td>60-82</td>
</tr>
<tr>
<td>Gesamt</td>
<td>1075</td>
<td>60,12</td>
<td>67</td>
<td>16,46</td>
<td>23-84</td>
<td></td>
</tr>
</tbody>
</table>

n: Anzahl der Teilnehmer; SD: Standardabweichung; Min-Max: minimales und maximales Alter; Median = Mittelwert der Verteilung
Abbildung 13: Kennwerte der Altersverteilung in der jungen Probandengruppe für Männer (A) und Frauen (B)

Abbildung 14: Kennwerte der Altersverteilung in der alten Probandengruppe für Männer (A) und Frauen (B)
4.1.2 Raucherstatus

Bezüglich der unter anderem für die Lungenfunktion relevanten Anamneseparameter ist in Tabelle 10 der Anteil an Rauchern, Ex-Rauchern und Nichtrauchern für die jeweilige Probandengruppe aufgezeigt. Den höchsten Anteil der Probanden sowohl in der Gruppe der jungen Studienteilnehmer als auch in jener der älteren bildeten die Nichtraucher. In der gesamten Stichprobe fanden sich 11,3% Raucher, 25,3% ehemalige Raucher, 63,4% der Probanden gaben an, niemals geraucht zu haben. Im Vergleich zwischen der alten und der jungen Studienpopulation sank der Anteil der aktiven Raucher im höheren Alter deutlich, der Anteil der ehemaligen Raucher und derer, die nie geraucht haben, überwiegte.

Tabelle 10: Deskriptiv-statistische Darstellung des Raucherstatus in den jeweiligen Altersgruppen

<table>
<thead>
<tr>
<th>Raucherstatus</th>
<th>Altersgruppe</th>
<th>n</th>
<th>Männer</th>
<th>Frauen</th>
<th>% Altersgruppe</th>
<th>% gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raucher</td>
<td>23.-34. Lj.</td>
<td>55</td>
<td>29</td>
<td>26</td>
<td>25,2</td>
<td>11,3</td>
</tr>
<tr>
<td></td>
<td>60.-84. Lj.</td>
<td>67</td>
<td>31</td>
<td>36</td>
<td>7,8</td>
<td></td>
</tr>
<tr>
<td>Ex-Raucher</td>
<td>23.-34. Lj.</td>
<td>33</td>
<td>13</td>
<td>20</td>
<td>15,1</td>
<td>25,2</td>
</tr>
<tr>
<td></td>
<td>60.-84. Lj.</td>
<td>238</td>
<td>129</td>
<td>109</td>
<td>27,8</td>
<td></td>
</tr>
<tr>
<td>Nichtraucher</td>
<td>23.-34. Lj.</td>
<td>130</td>
<td>56</td>
<td>74</td>
<td>59,6</td>
<td>63,4</td>
</tr>
<tr>
<td></td>
<td>60.-84. Lj.</td>
<td>552</td>
<td>204</td>
<td>348</td>
<td>64,4</td>
<td></td>
</tr>
</tbody>
</table>

n = Anzahl

4.1.3 Statintherapie

Die Probanden wurden innerhalb der Analyse nach ihrer Medikation befragt. Keiner der 89 jungen Probanden war zum Zeitpunkt der Untersuchung mit einem CSE-Hemmer therapiert. In der alten Kontrollgruppe hatten insgesamt 48 der 339 untersuchten Probanden (14,2%) eine solche Therapie. 37 Probanden wurden dabei mit Simvastatin behandelt. Die minimale
Simvastatin-Dosierung betrug 5 mg/Tag, die maximale 80 mg/Tag. Im Mittel lag die Dosierung bei 21,25 mg/Tag.

4.2 Berliner Altersstudie II

4.2.1 Rekrutierung der Studienteilnehmer

4.2.2 Ablauf der Berliner Altersstudie II

4.2.2.1 Erster Studientag

Tabelle 11: Ablauf des ersten Untersuchungstages der Berliner Altersstudie II

<table>
<thead>
<tr>
<th>Ablauf</th>
<th>Inhalt/Themenschwerpunkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufklärungsgespräch</td>
<td>Allgemeine Studieninformationen</td>
</tr>
<tr>
<td>Neuropsychologische Testung</td>
<td>Dem Tect, MMSE, CES-D, GDS, erweitertes Assessment, Uhr-Ergänzungstest</td>
</tr>
<tr>
<td>Erhebung der Krankengeschichte</td>
<td>Befragung nach aktuellen Beschwerden und Erkrankungen gegliedert nach Organsystemen</td>
</tr>
<tr>
<td>Anamnese bezüglich Drogen-, Alkohol- und Nikotinabusus</td>
<td></td>
</tr>
<tr>
<td>Familienanamnese</td>
<td>Stammbaum, Erkrankungen bzw. Todesursache der nächsten Angehörigen</td>
</tr>
<tr>
<td>Therapien</td>
<td>Medikamentenanamnese, Operationen, Impfungen, Hilfsmittelversorgung</td>
</tr>
<tr>
<td>Arztkontakte</td>
<td>Arztkontakte, Krankenhausaufenthalte, Versicherungsstatus, sozialrechtliche Items</td>
</tr>
<tr>
<td>Geriatrische Assessments</td>
<td>Barthel-Index, IADL nach Lawton/Brody, Tinetti-Test, Timed Up & Go, 4-Meter Gehstest, MNA</td>
</tr>
<tr>
<td>Körperliche Untersuchung</td>
<td>Umfassende internistische und neurologische Untersuchung inklusive Blutdruckmessungen und Pulswellenanalyse</td>
</tr>
<tr>
<td>Fragebögen</td>
<td>RAPA, SF-36, Soziale Situation nach Nikolaus, 5-Tage Ernährungsprotokoll, Sexualfragebogen</td>
</tr>
</tbody>
</table>

MMSE: Mini-Mental-State-Examination; GDS: Geriatric Depression Scale; CES-D: Center for Epidemiologic Studies Depression Scale; Dem Tect: Demenz Detection; RAPA: Fragebogen zur körperlichen Aktivität; SF-36: Gesundheitsfragebogen; MNA: Mini Nutritional Assessment; Timed Up & Go-Test: Mobilitätstest; IADL: Instrumentelle Aktivität des täglichen Lebens; Barthel-Index: Assessmentinstrument zur Bestimmung der Selbstständigkeit im täglichen Leben

4.2.2.2 Zweiter Studientag

Tabelle 12: Ablauf des zweiten Untersuchungstages der Berliner Altersstudie II

<table>
<thead>
<tr>
<th>Themengebiet</th>
<th>Medizinisch-technische Untersuchungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>muskuloskeletales System</td>
<td>Greifkraftmessung, Feinmotorik, Bewegungsgurt</td>
</tr>
<tr>
<td>anthropometrische Messungen</td>
<td>Calipermessungen, Körperumfangsbestimmung, Digitometrie, Fotografie</td>
</tr>
<tr>
<td>pulmonales System</td>
<td>Spirometrie, Pulsoxymetrie</td>
</tr>
<tr>
<td>kardiovaskuläres System</td>
<td>Ruhe- und Langzeitelektrokardiogramm (2 Stunden), oraler Glukosetoleranztest, Orthostasetest</td>
</tr>
<tr>
<td>Körperanalyse</td>
<td>DXA-Messung, BIA</td>
</tr>
<tr>
<td>Labordiagnostik</td>
<td>Blutentnahme (8 Uhr und 10 Uhr), Urinprobe</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>Subjektive Selbsteinschätzung, subjektiver Gesundheitszustand, Hörfähigkeit des Teilnehmers, Schlafempfinden, körperliche Aktivität, Bewegungsgurt</td>
</tr>
</tbody>
</table>

DXA: Dual energy X-ray Absorptiometry; BIA: Bioelektrische Impedanzmessung; Spirometrie: kleine Lungenfunktion; Calipermessung: Körperfettbestimmung; Digitometrie: Messung der Fingerlänge; Pulsoxymetrie: Messung der arteriellen Sauerstoffsättigung

4.3 Spirometrie

4.3.1 Allgemeine Hintergründe

Heute stehen eine Reihe von Messmethoden zur Verfügung, um Lungenvolumina, aber auch deren Flussstärke, genau zu bestimmen. In den aktuellen, internationalen GOLD Richtlinien (Global Initiative for chronic Obstructive Lung Disease) wird heute ebenso wie in nationalen Leitlinien (Deutsche Atemwegsliga und Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin) die Spirometrie als Goldstandard für die Diagnostik der Lungenfunktion angesehen.

Tabelle 13: Indikationen und Kontraindikationen einer spirometrischen Untersuchung.

<table>
<thead>
<tr>
<th>Indikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktionelle Diagnostik bronchopulmonaler Erkrankungen</td>
</tr>
<tr>
<td>Beurteilung von Schweregrad bzw. Progression einer bekannten Lungenfunktionsstörung</td>
</tr>
<tr>
<td>Differentialdiagnose obstruktive/restriktive Funktionsstörung</td>
</tr>
<tr>
<td>Beurteilung der Therapieeffektivität</td>
</tr>
<tr>
<td>Beurteilung des Grades der körperlichen Beeinträchtigung (Erwerbsunfähigkeit etc.)</td>
</tr>
<tr>
<td>Einschätzung perioperativer Komplikationen</td>
</tr>
<tr>
<td>Screeningmethode im Rahmen einer Gesundheitsuntersuchung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kontraindikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlechte Zusammenarbeit</td>
</tr>
<tr>
<td>Pneumothorax</td>
</tr>
<tr>
<td>Aneurysma</td>
</tr>
<tr>
<td>Hernien</td>
</tr>
<tr>
<td>Angina pectoris oder kürzlich erlittener Herzinfarkt</td>
</tr>
<tr>
<td>Vor kurzem durchgeführte Operationen am Auge, abdominale oder thorakale Eingriffe</td>
</tr>
<tr>
<td>Ansteckende Erkrankung (z.B. Tuberkulose)</td>
</tr>
</tbody>
</table>
4.3.2 Messmethode

Abbildung 15: Funktionsweise moderner Spirometer.
Darstellung des Funktionsmechanismus eines Ultraschall-Flussaufnehmers (b). Durch Flussunterschiede, die an 2 verschiedenen Ultraschallwandlern registriert werden, kann eine Aussage zu Atemströmen getroffen werden.
4.3.3 Messparameter

Die in der Spirometrie erhobenen Lungen- und Atemvolumina lassen sich in dynamische und statische Lungenvolumina untergliedern (Tabelle 14). Abbildung 16 gibt eine Übersicht über die Zeitpunkte, in denen während des Atemvorgangs die jeweiligen Volumina gemessen werden können. Zur Beurteilung einer obstruktiven oder restriktiven Ventilationsstörung sind dabei insbesondere FVC (Volumen, das nach maximaler Inspiration maximal ausgeatmet werden kann), FEV1 (Volumen, das nach maximaler Inspiration innerhalb der ersten Sekunde maximal ausgeatmet werden kann) und deren Quotient FEV1/FVC von Bedeutung. Weiter werden Flüsse und Volumina der Atmung aber auch nach anderen definierten Zeitpunkten der Exspiration gemessen (z.B. MEF 25, MEF 50). Bis auf die nach maximaler Exspiration noch vorhandene Gasmenge innerhalb der Lunge (Residualvolumen) und die Totalkapazität (TC) der Lunge können so alle relevanten Lungenvolumina bestimmt werden. In der Auswertung der Berliner Altersstudie II wurde der Schwerpunkt auf die Lungenvolumina FEV1 und FVC bzw. deren Quotienten gelegt.

Abbildung 16: Lungenvolumina aus Harrison Innere Medizin, 18. Auflage
Tabelle 14: Differenzierung von dynamischen und statischen Lungenvolumina

<table>
<thead>
<tr>
<th>dynamische Volumina</th>
<th>statische Volumina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erstsekundenkapazität (FEV1) Tiffeneau-Wert</td>
<td>Vitalkapazität (VC)</td>
</tr>
<tr>
<td>forcierte Vitalkapazität (FVC)</td>
<td>Residualvolumen (RV)</td>
</tr>
<tr>
<td>Peak-Flow (PEF, l/s)</td>
<td>Funktionelle Residualkapazität (FRC)</td>
</tr>
<tr>
<td>PEF oder MEF 25, 50, 75</td>
<td>totale Lungenkapazität (TC)</td>
</tr>
</tbody>
</table>

PEF: exspiratorischer Spitzenfluss; MEF: maximaler exspiratorischer Fluss

4.3.4 Durchführung der Spirometrie

4.3.5 Auswertung der Spirometrie

Material und Methoden

Beginn der Spirometrie
• nach Aufklärung
• intermittierende Anweisungen

Beurteilung des Qualitätsgrades
• guter Qualitätsgrad -> Interpretation
• schlechter Qualitätsgrad -> Wiederholung bzw. keine Interpretation

Abbildung 17: Fluss-Volumen-Kurven.
A. Normale Lungenfunktion; B. Obstruktive Ventilationsstörung; C. Fixierte zentrale Obstruktion aus Harrisons Innere Medizin, 18. Auflage

TLC = Totale Lungenkapazität; RV = Residualvolumen

Abbildung 18: Auswertungsalgorithmus zur Beurteilung der Spirometrie.
Nach Vorbereitung des Spirometers und Aufklärung wird unter intermittierender Anleitung die Spirometrie durchgeführt und anhand des erreichten Qualitätsgrades und des Verhältnisses FEV1/FVC interpretiert.

FEV1 = Einsekundenkapazität; FVC = forcierte Vitalkapazität; FEV1/FVC = Tiffeneau-Index
4.4 Das metabolische Syndrom

4.4.1 Laboruntersuchungen

4.4.1.1 Enzymatischer Farbtest zur Bestimmung von Triglyceriden und HDL-Cholesterin

\[
\begin{align*}
\text{Triglyceride} + 3 \text{H}_2\text{O} & \xrightarrow{\text{LPL}} \text{Glycerin} + 3 \text{Fettsäuren} \\
\text{Glycerin} + \text{ATP} & \xrightarrow{\text{GK, Mg}^2+} \text{Glycerin-3-Phosphat} + \text{ADP} \\
\text{Glycerin-3-Phosphat} + \text{O}_2 & \xrightarrow{\text{GPO}} \text{Dihydroxyacetonphosphat} + \text{H}_2\text{O}_2 \\
\text{H}_2\text{O}_2 + 4\text{-Aminophenazon} + 4\text{-chlorphenol} & \xrightarrow{\text{Peroxidase}} 4\text{-}(\text{p-Benzochinon-monoimino})-\text{Phenazon} + 2\text{H}_2\text{O} + \text{HCl}
\end{align*}
\]
4.4.1.2 Photometrische Konzentrationsbestimmung des Glukosespiegels

Die photometrische Konzentrationsbestimmung zur Erfassung des Glukosespiegels beruht darauf, dass das Monosaccharid Glucose durch das Enzym Hexokinase (HK) in Gegenwart von ATP zu Glucose-6-Phosphat unter Bildung von ADP phosphoryliert wird. Im weiteren Reaktionsschritt wird wie im Folgenden aufgezeigt durch Glucose-6-Phosphat Dehydrogenase gebildetes Glucose-6-phosphat in einer enzymatischen Reaktion in D-Gluconat-6-Phosphat und NADPH umgewandelt. Die hieraus entstehende Menge an NADPH+H⁺ ist der an D-Glucose im initialen Reaktionsschritt äquimolar. NADPH kann dann bei einer Wellenlänge von 340 nm zur photometrischen Konzentrationsbestimmung herangezogen werden.

\[
\begin{align*}
\text{D-Glucose} & \xrightarrow{\text{Hexokinase}} \text{Glucose-6-Phosphat + ADP} \\
\text{Glucose-6-Phosphat} & \xrightarrow{\text{Glucose-6-Phosphat-Dehydrogenase}} \text{D-Gluconat-6-Phosphat + NADPH + H⁺}
\end{align*}
\]

4.4.2 Bestimmung des Taillenumfangs

4.4.3 Blutdruckmessungen

4.4.4 Definition der Diagnosekriterien des metabolischen Syndroms innerhalb der Berliner Altersstudie II

Die Definition des metabolischen Syndroms erfolgte anhand der IDF/AHA/NHLBI Kriterien von 2009. Das Merkmal eines erhöhten Blutdruckes erfüllte ein Proband, falls die Blutdruckmessungen im Sitzen am linken Arm einen Wert von 130 mmHg systolisch und 85 mmHg diastolisch überschritten, eine arterielle Hypertonie bekannt war oder eine antihypertensive Therapie bestand. Ein erhöhter Taillenumfang definierte sich durch die vorgegebenen ethnienspezifischen Grenzwerte der IDF (Männer > 94 cm, Frauen > 80 cm). Das Kriterium einer Insulinresistenz wurde durch einen Nüchternglukosespiegel > 100 mg/dl, einen pathologischen oGTT (2-Stunden Wert > 200 mg/dl), die Diagnose Diabetes mellitus oder eine bereits eingeleitete Therapie definiert. Bezüglich der Serenspiegel an HDL und Triglyceriden lief einaloges Vorgehen ab. Waren die Triglyceridwerte > 150 mg/dl oder wurde bereits eine Therapie zur Senkung der Triglyceride eingeleitet, so galt dieses Kriterium als erfüllt. HDL-Werte wurden geschlechtsspezifisch bewertet. Bei einem Serumspiegel von < 50 mg/dl bei Frauen oder < 40 mg/dl bei Männern bzw. einer bereits eingeleiteten Therapie zur Erhöhung von HDL erfüllte der Studienteilnehmer das Kriterium für einen pathologischen bzw. zu niedrigen HDL-Spiegel.

4.4.5 Statistische Verfahren

Material und Methoden

Um den Zusammenhang zwischen metabolischem Syndrom, dessen Definitions faktoren und pulmonaler Obstruktion in der Gruppe der älteren Probanden nach den verschiedenen Definitions kriterien zu untersuchen, fand jeweils ein geschlechtsgetrennter Vergleich dieser Gruppen mittels exaktem Test nach Fisher Anwendung.

5 Ergebnisse

5.1 Pulmonale Obstruktion

5.1.1 Verteilung der spirometrischen Qualitätsgrade

5.1.1.1 Häufigkeit von gutem oder schlechtem Qualitätsgrad

Abbildung 19: Verteilung der Qualitätsgrade in der Spirometrie im Geschlechtsvergleich in der junge Altersgruppe (A) und in der alte Altersgruppe (B).
5.1.1.2 Test auf Standardnormalverteilung

Die Gruppen der Probanden mit schlechtem und gutem Qualitätsgrad in der Spirometrie wurden hinsichtlich ihrer Vergleichbarkeit überprüft. Hierfür erfolgte zunächst ein Test auf Normalverteilung nach Kolmogrov-Smirnov, der hier nicht im Einzelnen dargestellt ist. Die Verteilung des Gewichts war in der Gruppe der jungen Männer mit gutem Qualitätsgrad \((p = 0,05)\), in der Gruppe der jungen Frauen mit schlechtem Qualitätsgrad \((p = 0,047)\) sowie bei Frauen in der alten Stichprobe mit schlechtem Qualitätsgrad \((p = 0,006)\) nicht normalverteilt. Ebenso konnte keine Normalverteilung in Hinblick auf das Alter bei den Frauen in der alten Studienteilnehmergruppe sowohl in der Gruppe derer mit gutem Qualitätsgrad \((p = 0,001)\) als auch derer mit schlechtem Qualitätsgrad in der Spirometrie \((p = 0,014)\) gesehen werden. Für normalverteilte Variablen wurde für die folgenden Gruppenvergleiche der t-Test, für nicht normalverteilte Variablen der nicht-parametrische Mann-Whitney U Test angewandt.

5.1.1.3 Verteilung von Größe, Gewicht, Alter und Geschlecht in Bezug auf den in der Spirometrie erreichten Qualitätsgrad

Bezüglich des Altersdurchschnittes und des Gewichtes konnten keine signifikanten Verteilungsunterschiede gesehen werden. Im Größenvergleich zeigte sich ein Unterschied von absolut 1,7 cm in der Gruppe der älteren Frauen. Dies wird im t-Test als signifikanter Unterschied erkannt wie in Tabelle 15 und 16 aufgeführt. Die Effektstärke dieses Ergebnisses ist dabei gering (Cohens \(d = 0,27; r = 0,14\)). Weder in der jungen noch in der älteren Probandengruppe fanden sich signifikante Geschlechtsunterschiede für das Erreichen eines guten oder schlechten Qualitätsgrades. Auch im Vergleich der jungen Teilnehmergruppe gesamt zur älteren konnte kein signifikanter Unterschied in der Verteilung der Qualitätsgrade in Hinblick auf die Geschlechtsverteilung gesehen werden.

Insgesamt erreichten 202 von 462 Männer und 266 von 613 Frauen einen ausreichenden Qualitätsgrad.
Tabelle 15: Vergleich von Größe, Gewicht und Alter in Jahren in Hinblick auf den spirometrischen Qualitätsgrad bei Frauen

<table>
<thead>
<tr>
<th>Testvariable</th>
<th>Qualitätsgrad</th>
<th>n</th>
<th>Median</th>
<th>Mittelwert</th>
<th>Min-Max</th>
<th>SD</th>
<th>Signifikanz (2-Seitig)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Größe [cm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.-34. Lj.</td>
<td>A-C</td>
<td>50</td>
<td>168,5</td>
<td>168,5</td>
<td>157-183</td>
<td>5,35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D-F</td>
<td>70</td>
<td>168,5</td>
<td>168,8</td>
<td>154-191</td>
<td>6,26</td>
<td>p = n.s.</td>
</tr>
<tr>
<td>60.-84. Lj.</td>
<td>A-C</td>
<td>216</td>
<td>162</td>
<td>162,4</td>
<td>146-185</td>
<td>6,47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D-F</td>
<td>277</td>
<td>164</td>
<td>164,1</td>
<td>145-186</td>
<td>6,01</td>
<td>p = 0,003</td>
</tr>
<tr>
<td>Gewicht [kg]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.-34. Lj.</td>
<td>A-C</td>
<td>50</td>
<td>62</td>
<td>64,5</td>
<td>49-115</td>
<td>12,91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D-F</td>
<td>70</td>
<td>60</td>
<td>62,5</td>
<td>46-199</td>
<td>11,17</td>
<td>p = n.s.</td>
</tr>
<tr>
<td>60.-84. Lj.</td>
<td>A-C</td>
<td>216</td>
<td>69</td>
<td>69,3</td>
<td>48-115</td>
<td>11,79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D-F</td>
<td>277</td>
<td>67</td>
<td>69,3</td>
<td>45-110</td>
<td>12,22</td>
<td>p = n.s.</td>
</tr>
<tr>
<td>Alter [Jahre]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.-34. Lj.</td>
<td>A-C</td>
<td>50</td>
<td>29</td>
<td>28,3</td>
<td>23-32</td>
<td>2,77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D-F</td>
<td>70</td>
<td>27,5</td>
<td>27,5</td>
<td>23-34</td>
<td>3,22</td>
<td>p = n.s.</td>
</tr>
<tr>
<td>60.-84. Lj.</td>
<td>A-C</td>
<td>216</td>
<td>67</td>
<td>67,9</td>
<td>61-83</td>
<td>4,14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D-F</td>
<td>277</td>
<td>68</td>
<td>67,5</td>
<td>62-84</td>
<td>3,27</td>
<td>p = n.s.</td>
</tr>
</tbody>
</table>

Vergleich zwischen den Geschlechtern in den jeweiligen Altersgruppen; n: Anzahl der Teilnehmer; SD: Standardabweichung; Min-Max: minimale und maximale Werte für Alter, Größe und Gewicht; Median = Mittelwert der Verteilung; A-C: guter Qualitätsgrad; D-F: schlechter Qualitätsgrad
Tabelle 16: Vergleich von Größe, Gewicht und Alter in Jahren in Hinblick auf den spirometrischen Qualitätsgrad bei Männern

<table>
<thead>
<tr>
<th>Testvariable</th>
<th>Qualitätsgrad</th>
<th>n</th>
<th>Median</th>
<th>Mittelwert</th>
<th>Min-Max</th>
<th>SD</th>
<th>Signifikanz (2-Seitig)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Größe [cm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.-34. Lj.</td>
<td>A-C</td>
<td>47</td>
<td>179</td>
<td>180,1</td>
<td>155-191</td>
<td>6,13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D-F</td>
<td>51</td>
<td>181</td>
<td>181</td>
<td>169-198</td>
<td>6,26</td>
<td></td>
</tr>
<tr>
<td>60.-84. Lj.</td>
<td>A-C</td>
<td>155</td>
<td>175</td>
<td>175,5</td>
<td>159-195</td>
<td>6,12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D-F</td>
<td>209</td>
<td>176</td>
<td>176,6</td>
<td>159-197</td>
<td>6,84</td>
<td></td>
</tr>
<tr>
<td>Gewicht [kg]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.-34. Lj.</td>
<td>A-C</td>
<td>47</td>
<td>75</td>
<td>79</td>
<td>47-147</td>
<td>15,62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D-F</td>
<td>51</td>
<td>75</td>
<td>76,8</td>
<td>60-138</td>
<td>14,60</td>
<td></td>
</tr>
<tr>
<td>60.-84. Lj.</td>
<td>A-C</td>
<td>155</td>
<td>82</td>
<td>83,8</td>
<td>58-130</td>
<td>12,56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D-F</td>
<td>209</td>
<td>81</td>
<td>82,7</td>
<td>58-124</td>
<td>11,23</td>
<td></td>
</tr>
<tr>
<td>Alter [Jahre]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.-34. Lj.</td>
<td>A-C</td>
<td>47</td>
<td>29</td>
<td>28,6</td>
<td>24-33</td>
<td>2,45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D-F</td>
<td>51</td>
<td>29</td>
<td>28,9</td>
<td>23-34</td>
<td>2,94</td>
<td></td>
</tr>
<tr>
<td>60.-84. Lj.</td>
<td>A-C</td>
<td>155</td>
<td>69</td>
<td>68,9</td>
<td>60-80</td>
<td>4,14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D-F</td>
<td>209</td>
<td>69</td>
<td>69,0</td>
<td>60-82</td>
<td>3,31</td>
<td></td>
</tr>
</tbody>
</table>

*Vergleich zwischen den Geschlechtern in den jeweiligen Altersgruppen; n: Anzahl der Teilnehmer; SD: Standardabweichung; Min-Max: minimale und maximale Werte für Alter, Größe und Gewicht; Median = Mittelwert der Verteilung; A-C: guter Qualitätsgrad; D-F: schlechter Qualitätsgrad

5.1.2 Verteilung der Lungenvolumina

Die Verteilung der Lungenvolumina für die 468 Probanden mit gutem Qualitätsgrad in der Spirometrie fasst Tabelle 17 zusammen. Hier nicht dargestellt zeigten die Lungenvolumina im Kolmogrov-Smirnov-Test eine Normalverteilung.

Probanden in der älteren Gruppe wiesen durchschnittlich niedrigere Werte für FEV1, FVC und den Quotienten FEV1/FVC als die jungen Probanden auf. Im Geschlechtsvergleich erreichten Frauen sowohl in der jungen als auch in der älteren Gruppe niedrigere Werte der
Lungenvolumina als Männer. Im t-Test zeigt sich hier sowohl eine signifikante Verringerung der Lungenvolumina zwischen jungen und alten Probanden als auch eine signifikante geschlechtsabhängige Reduktion der Lungenvolumina in den jeweiligen Altersgruppen. Lediglich der Quotient FEV1/FVC war in der jungen Probandengruppe nicht signifikant geschlechtsabhängig. Die in Tabelle 17 angegebenen p-Werte beziehen sich hier auf den Unterschied innerhalb der jeweiligen Altersgruppen. Im Durchschnitt unterschied sich in unserer Stichprobe die FEV1 um 1293,76 ml, die FVC um 1267,28 ml und das Verhältnis FEV1/FVC um 7,77% im Vergleich zwischen der jungen und der alten Probandengruppe. Abbildung 20 und 21 zeigen nochmals den direkten Vergleich der Lungenvolumina in Bezug auf Alter und Geschlecht im Boxplot.

Tabelle 17: deskriptiv-statistische Verteilung der Lungenvolumina FEV1, FVC und FEV1/FVC im Geschlechtsvergleich innerhalb der jeweiligen Altersgruppen

<table>
<thead>
<tr>
<th>Testvariable</th>
<th>Geschlecht</th>
<th>n</th>
<th>Median</th>
<th>Mittelwert [ml]</th>
<th>SD</th>
<th>Signifikanz (2-seitig)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV1 [ml]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.-34. Lj.</td>
<td>weiblich</td>
<td>50</td>
<td>3287</td>
<td>3338,54</td>
<td>407,703</td>
<td>p < 0,001</td>
</tr>
<tr>
<td></td>
<td>männlich</td>
<td>47</td>
<td>4246</td>
<td>4258,51</td>
<td>602,480</td>
<td></td>
</tr>
<tr>
<td>60.-84. Lj.</td>
<td>weiblich</td>
<td>216</td>
<td>2176</td>
<td>2175,93</td>
<td>426,139</td>
<td>p < 0,001</td>
</tr>
<tr>
<td></td>
<td>männlich</td>
<td>155</td>
<td>2942</td>
<td>2928,95</td>
<td>661,384</td>
<td></td>
</tr>
<tr>
<td>FVC [ml]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.-34. Lj.</td>
<td>weiblich</td>
<td>50</td>
<td>3963</td>
<td>4018,52</td>
<td>437,115</td>
<td>p < 0,001</td>
</tr>
<tr>
<td></td>
<td>männlich</td>
<td>47</td>
<td>5301</td>
<td>5269,13</td>
<td>653,842</td>
<td></td>
</tr>
<tr>
<td>60.-84. Lj.</td>
<td>weiblich</td>
<td>216</td>
<td>2892</td>
<td>2884,44</td>
<td>511,334</td>
<td>p < 0,001</td>
</tr>
<tr>
<td></td>
<td>männlich</td>
<td>155</td>
<td>3920</td>
<td>4016,02</td>
<td>756,450</td>
<td></td>
</tr>
<tr>
<td>FEV1/FVC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ml]</td>
<td>weiblich</td>
<td>50</td>
<td>83</td>
<td>83,16</td>
<td>6,151</td>
<td>p = n.s.</td>
</tr>
<tr>
<td>23.-34. Lj.</td>
<td>männlich</td>
<td>47</td>
<td>82</td>
<td>81,00</td>
<td>7,792</td>
<td>p = 0,003</td>
</tr>
<tr>
<td>weiblich</td>
<td>216</td>
<td>76</td>
<td>75,41</td>
<td>6,599</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.-84. Lj.</td>
<td>männlich</td>
<td>155</td>
<td>74</td>
<td>72,85</td>
<td>9,283</td>
<td></td>
</tr>
</tbody>
</table>

*Vergleich zwischen den Geschlechtern in den jeweiligen Altersgruppen; n: Anzahl der Teilnehmer; SD: Standardabweichung; Min-Max: minimale und maximale Werte für FEV1, FVC bzw. FEV1/FVC; Median = Mittelwert der Verteilung; FEV1 = Einsekundenkapazität; FVC = forcierte Vitalkapazität; FEV1/FVC = Tiffeneau-Index
Abbildung 20: Darstellung der forcierten Einsekundenkapazität (FEV1) im Alters- und Geschlechtsvergleich

Abbildung 21: Darstellung der forcierten Vitalkapazität (FVC) im Alters- und Geschlechtsvergleich
5.1.3 Prävalenz von pulmonaler Obstruktion

Abbildung 22: Darstellung des Tiffeneau-Indexes (FEV1/FVC) im Alters- und Geschlechtsvergleich
Tabelle 18: Beschreibung der Verteilung einer pulmonalen Obstruktion nach den Diagnosekriterien von GOLD, Hardie und nach DAL

<table>
<thead>
<tr>
<th>Lungenfunktion</th>
<th>Altersgruppe</th>
<th>Geschlecht</th>
<th>Anteil der Altersgruppe [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obstruktion (GOLD)</td>
<td>23.-34. Lj.</td>
<td>weiblich</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>60.-84. Lj.</td>
<td>weiblich</td>
<td>19,4</td>
</tr>
<tr>
<td></td>
<td>60.-84. Lj.</td>
<td>männlich</td>
<td>23,9</td>
</tr>
<tr>
<td></td>
<td>gesamt</td>
<td></td>
<td>5,2</td>
</tr>
<tr>
<td>Obstruktion (Hardie)</td>
<td>23.-34. Lj.</td>
<td>weiblich</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>60.-84. Lj.</td>
<td>weiblich</td>
<td>15,7</td>
</tr>
<tr>
<td></td>
<td>60.-84. Lj.</td>
<td>männlich</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>gesamt</td>
<td></td>
<td>5,2</td>
</tr>
<tr>
<td>Obstruktion (DAL)</td>
<td>23.-34. Lj.</td>
<td>weiblich</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>60.-84. Lj.</td>
<td>weiblich</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>60.-84. Lj.</td>
<td>männlich</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>gesamt</td>
<td></td>
<td>7,3</td>
</tr>
</tbody>
</table>

Abbildung 23: Prävalenz von Obstruktion nach verschiedenen Definitions­kriterien

5.1.4 Häufigkeit neu diagnostizierter pulmonaler Obstruktion und Häufigkeit antiobstruktiver Therapie

Probanden als pulmonal obstruktiv diagnostiziert werden konnten, eine antiobstruktive Medikation.

Tabelle 19: Gegenüberstellung von neu diagnostizierter pulmonaler Obstruktion nach den Diagnosekriterien von GOLD, Hardie und DAL-Kriterien mit bekannten Diagnosen und Therapiehäufigkeit

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>n</th>
<th>bekannte pulmonale Diagnose</th>
<th>Therapie mit Bronchodilatatoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obstruktion (GOLD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.-34. Lj.</td>
<td>5</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>60.-84. Lj.</td>
<td>79</td>
<td>12 (15,19%)</td>
<td>4 (5,06%)</td>
</tr>
<tr>
<td>Obstruktion (Hardie)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.-34. Lj.</td>
<td>5</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>60.-84. Lj.</td>
<td>76</td>
<td>12 (15,79%)</td>
<td>4 (5,26%)</td>
</tr>
<tr>
<td>Obstruktion (DAL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.-34. Lj.</td>
<td>5</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>60.-84. Lj.</td>
<td>27</td>
<td>6 (22,2%)</td>
<td>4 (14,81%)</td>
</tr>
</tbody>
</table>

GOLD: nach den Richtlinien der “Global Initiative for Lung Disease“ FEV1/FVC<70%; Hardie: nach Hardie et al. FEV1/FVC<altersspezifischer Sollwert; DAL: FEV1/FVC<LLN (“lower limit of normal“); n: Anzahl; *Hier wurde das Anamneseprotokoll manuell nach aktuellen Erkrankungen, die mit einer pulmonalen Obstruktion einhergehen können, durchsucht. Hierunter fallen Cystische Fibrose, Silikose, Stenose im Bereich der großen Atemwege (Tumorgeschehen) oder Lungenparenchymerkrankungen (z.B. Sarkoidose), sowie alle Diagnosen, die das Wort „Lunge“, „Bronch“ oder „pulmo“ beinhalteten

Unter den Studienteilnehmern innerhalb der alten Teilnehmergruppe erbrachte die spirometrische Testung in insgesamt 79 Fällen eine pulmonale Obstruktion nach GOLD. In Tabelle 20 ist nochmals detailliert das Ergebnis der Anamneseerhebung des pulmonalen Systems aufgeführt. 4 der insgesamt 6 Studienteilnehmer mit bekannter COPD erhielten eine
Ergebnisse

Tabelle 20: Verteilung der anamnestisch eruierbaren Diagnosen und Therapien

<table>
<thead>
<tr>
<th>Diagnosehäufigkeit*</th>
<th>Diagnose</th>
<th>Therapie</th>
<th>Diagnose</th>
<th>Therapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altersgruppen</td>
<td>23.-34. Lj.</td>
<td>23.-34. Lj.</td>
<td>60.-84. Lj.</td>
<td>60.-84. Lj.</td>
</tr>
<tr>
<td>Keine Diagnose</td>
<td>97</td>
<td>0</td>
<td>359</td>
<td>1</td>
</tr>
<tr>
<td>COPD</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Chronische obstruktive Bronchitis</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Bronchitis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lungenemphysem</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bronchiektasie</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sonstiges*</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Pulmonale Obstruktion</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pulmonale Diagnosen gesamt</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>5</td>
</tr>
</tbody>
</table>

*Hier wurde das Anamneseprotokoll manuell nach aktuellen Erkrankungen, die mit einer pulmonalen Obstruktion einhergehen können, durchsucht. Hierunter fallen Cystische Fibrose, Silikose, Stenose im Bereich der großen Atemwege (Tumorgeschäfte) oder Lungenparenchymmerkrankungen (z.B. Sarkoidose), sowie alle Diagnosen, die das Wort „Lunge“, „Bronch“ oder „pulmo“ beinhaltenen
5.2 Das metabolische Syndrom

5.2.1 Prävalenz des metabolischen Syndroms

Tabelle 21: Prävalenz des metabolischen Syndroms im Alters- und Geschlechtsvergleich

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Geschlecht</th>
<th>n</th>
<th>metabolisches Syndrom*</th>
<th>Signifikanz (2-Seitig)***</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.-34. Lj.</td>
<td>weiblich</td>
<td>44</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>männlich</td>
<td>45</td>
<td>13,3%</td>
<td>p = 0,026</td>
</tr>
<tr>
<td>60.-84. Lj.</td>
<td>weiblich</td>
<td>202</td>
<td>29,7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>männlich</td>
<td>137</td>
<td>37,2%</td>
<td>p = n.s.</td>
</tr>
</tbody>
</table>

* Nach der Definition nach IDF/AHA/NHLBI 2009; n: Anzahl; **Vergleich zwischen Männern und Frauen in der jeweiligen Altersgruppe
5.2.2 Ergebnisse der Taillenumfangsmessung

In Tabelle 22 ist der Taillenumfang bei jungen und älteren Probanden geschlechtsgetrennt aufgezeigt. Bei der älteren Studienpopulation (60-84 Lj.) nach den Definitionen der IDF/AHA/NHLBI (2009) erfüllten mehr als 80% der älteren Probanden das Kriterium für einen erhöhten Taillenumfang. Signifikant häufiger war hier im Mann-Whitney U Test ein erhöhter Taillenumfang bei Frauen zu beobachten (p < 0,001). Der Vergleich der Häufigkeit eines erhöhten Taillenumfangs mit der Geschlechtsverteilung ergab innerhalb dieser Altersgruppen im exakten Test nach Fisher eine Signifikanz von p < 0,001. Unabhängig von den Definitions kriterien des metabolischen Syndroms resultierte bei der älteren Probandengruppe für Männer ein durchschnittlicher Taillenumfang von 100,5 cm, bei Frauen von 92,3 cm. Bei den jüngeren Probanden erfüllten 28,1% die Definition für einen erhöhten Taillenumfang nach den Kriterien der IDF/AHA/NHLBI (2009). Hier fand sich ebenfalls ein signifikanter Geschlechtsunterschied zu Ungunsten der Frauen. Vergleicht man die Häufigkeit eines erhöhten Taillenumfangs mit der Geschlechtsverteilung, ergibt sich im exakten Test nach Fisher eine Signifikanz von p = 0,033. Innerhalb der jüngeren Gruppe hatten Frauen im Durchschnitt einen Taillenumfang von 79,1 cm, Männer einen Taillenumfang von 88,7 cm. Im Vergleich zwischen der älteren und der jüngeren Probandengruppe erkennt man im Mann-Whitney U Test eine signifikante Erhöhung des Taillenumfangs im Alter (p < 0,001) bei beiden Gruppen.

Tabelle 22: Kenngrößen des Taillenumfangs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23.-34.</td>
<td>weiblich</td>
<td>43</td>
<td>63,3-116,0</td>
<td>79</td>
<td>79,1</td>
<td>10,80</td>
<td>39,5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>männlich</td>
<td>45</td>
<td>73,0-135,0</td>
<td>86</td>
<td>88,7</td>
<td>10,56</td>
<td>17,8%</td>
<td>p < 0,033</td>
</tr>
<tr>
<td>60.-84.</td>
<td>weiblich</td>
<td>202</td>
<td>62,0-122,0</td>
<td>92</td>
<td>92,3</td>
<td>10,90</td>
<td>87,1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>männlich</td>
<td>137</td>
<td>81,0-137,0</td>
<td>99,6</td>
<td>100,5</td>
<td>10,94</td>
<td>70,8%</td>
<td>p < 0,001</td>
</tr>
</tbody>
</table>

* Taillenumfang > 80cm bei Frauen oder > 94cm bei Männern; n: Anzahl der Teilnehmer; SD: Standardabweichung; Min-Max: minimaler und maximaler Taillenumfang; Median = Mittelwert der Verteilung; **Vergleich zwischen Männern und Frauen in der jeweiligen Altersgruppe
5.2.3 Ergebnisse der Blutdruckmessungen

Tabelle 23 gibt einen Überblick über die Verteilung der Blutdruckwerte. Sowohl in der jungen als auch in der alten Probandengruppe war bei den männlichen Teilnehmern im Vergleich zu den weiblichen ein höherer Blutdruck systolisch und diastolisch zu erkennen. In der alten Studiengruppe betrug der durchschnittliche systolische Blutdruck für Männer 146,9 mmHg und diastolisch 84,5 mmHg. Die jungen männlichen Teilnehmer erreichten einen durchschnittlichen systolischen Blutdruck von 130,2 mmHg und diastolisch von 80,3 mmHg. Bei den weiblichen Studienteilnehmern lag der durchschnittliche Blutdruck der jungen Teilnehmergruppe bei 117 mmHg systolisch und 75,2 mmHg diastolisch, in der älteren Vergleichsgruppe der durchschnittliche systolische Blutdruck bei 143,4 mmHg, der diastolische bei 84 mmHg. Die Gegenüberstellung der jungen mit den alten Studienteilnehmern zeigte im t-Test eine signifikante Erhöhung der Blutdrucke in der Gruppe der älteren Probanden (p < 0,001). Ebenfalls ist ein signifikanter geschlechtsspezifischer Unterschied innerhalb der jeweiligen Altersgruppen und im Vergleich dieser erkennbar. Die Kriterien eines erhöhten Blutdruckes nach der Definition der IDF/AHA/NHLBI (2009) erfüllten in der jungen Probandengruppe 11,6% der Frauen und 20% der Männer. Bei den älteren Probanden stieg der Anteil auf 69,3% bei den Frauen und 77,4% bei den Männern. Im exakten Test nach Fisher zeigt sich hier kein signifikanter geschlechtsspezifischer Unterschied innerhalb der jeweiligen Altersgruppe.

Tabelle 23: Kenngrößen des Blutdruckes

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Geschlecht</th>
<th>Blutdruck</th>
<th>n</th>
<th>Min-Max [mmHg]</th>
<th>Median [mmHg]</th>
<th>Mittelwert [mmHg]</th>
<th>SD</th>
<th>erhöhter Blutdruck*</th>
<th>Signifikanz (2-seitig)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.-34. Lj. weiblich</td>
<td>systolisch</td>
<td>43</td>
<td>96-144</td>
<td>115</td>
<td>117</td>
<td>11,43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>diastolisch</td>
<td>43</td>
<td>55-92</td>
<td>73</td>
<td>75,2</td>
<td>8,01</td>
<td>11,6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>männlich</td>
<td>systolisch</td>
<td>45</td>
<td>98-180</td>
<td>129</td>
<td>130,2</td>
<td>14,59</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>diastolisch</td>
<td>45</td>
<td>60-123</td>
<td>80</td>
<td>80,3</td>
<td>11,42</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>60.-84. Lj. weiblich</td>
<td>systolisch</td>
<td>202</td>
<td>88-216</td>
<td>141,5</td>
<td>143,4</td>
<td>19,56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>diastolisch</td>
<td>202</td>
<td>48-124</td>
<td>82</td>
<td>82,2</td>
<td>11,58</td>
<td>69,3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>männlich</td>
<td>systolisch</td>
<td>137</td>
<td>100-202</td>
<td>144</td>
<td>146,9</td>
<td>19,04</td>
<td>p = 0,108</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>diastolisch</td>
<td>137</td>
<td>59-119</td>
<td>84</td>
<td>84,5</td>
<td>10,54</td>
<td>77,4%</td>
<td></td>
</tr>
</tbody>
</table>

*RR systolisch > 130mmHg und RR diastolisch > 85mmHg oder bekannte arterielle Hypertonie oder Therapie; n: Anzahl der Teilnehmer; SD: Standardabweichung; Min-Max: minimaler und maximaler Blutdruck; Median = Mittelwert der Verteilung; **Vergleich zwischen Männern und Frauen in der jeweiligen Altersgruppe
5.2.4 Verteilung der Triglycerid-Werte

Die Verteilung der Serenwerte der Triglyceride ist alters- und geschlechtergetrennt in Tabelle 24 aufgetragen. In der jungen Probandengruppe fanden sich die niedrigsten Serenwerte an Triglyceriden mit im Durchschnitt 89,6 mg/dl bei Frauen und 104,0 mg/dl bei Männern, in der alten Vergleichsgruppe waren die Triglyceridwerte für Männer im Durchschnitt bei 124,2 mg/dl, bei Frauen bei 108,4 mg/dl. In der jungen Studiengruppe ergab sich eine Tendenz (p = 0,09) zu Ungunsten des männlichen Geschlechts, dahingegen war in der alten Probandengruppe dieser Unterschied im Geschlechtsvergleich signifikant (p < 0,001). Ebenfalls stellte sich ein signifikanter Unterschied in den zwei Altersgruppen zwischen der Verteilung der Triglyceride heraus. Nach den Kriterien der IDF/AHA/NHLBI (2009) erfüllten in der jungen Probandengruppe 4,7% der Frauen und 17,8% der Männer das Kriterium eines erhöhten Triglyceridspiegels, in der alten Probandengruppe 24,3% der Frauen und 35,8% der Männer. Hier zeigte sich ein signifikanter Unterschied im Geschlechtsvergleich innerhalb der alten Probandengruppe (p = 0,028). Insgesamt erfüllten mehr ältere Probanden das Kriterium einer Triglyceriderhöhung nach IDF/AHA/NHLBI (2009) als junge. Dieser Effekt bestätigte sich auch im Geschlechtsvergleich zwischen älteren und jüngeren Probanden.

Tabelle 24: Kenngrößen der Triglyceridspiegel

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Geschlecht</th>
<th>n</th>
<th>Min-Max [mg/dl]</th>
<th>Median [mg/dl]</th>
<th>Mittelwert [mg/dl]</th>
<th>SD</th>
<th>erhöhte Triglyceride*</th>
<th>Signifikanz (2-Seitig)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.-34. Lj.</td>
<td>weiblich</td>
<td>43</td>
<td>31-190</td>
<td>92</td>
<td>89,6</td>
<td>33,89</td>
<td>4,7%</td>
<td>p = 0,09</td>
</tr>
<tr>
<td></td>
<td>männlich</td>
<td>45</td>
<td>38-295</td>
<td>82</td>
<td>104,0</td>
<td>60,33</td>
<td>17,8%</td>
<td></td>
</tr>
<tr>
<td>60.-84. Lj.</td>
<td>weiblich</td>
<td>202</td>
<td>32-420</td>
<td>90,5</td>
<td>108,4</td>
<td>56,68</td>
<td>24,3%</td>
<td>p = 0,028</td>
</tr>
<tr>
<td></td>
<td>männlich</td>
<td>137</td>
<td>33-425</td>
<td>109</td>
<td>124,2</td>
<td>60,50</td>
<td>35,8%</td>
<td></td>
</tr>
</tbody>
</table>

* Triglyceridspiegel > 150 mg/dl oder Therapie; n: Anzahl der Teilnehmer; SD: Standardabweichung; Min-Max: minimaler und maximaler Triglyceridspiegel; Median = Mittelwert der Verteilung; **Vergleich zwischen Männern und Frauen in der jeweiligen Altersgruppe

5.2.5 Verteilung der Nüchternglukosespiegel

In Tabelle 25 ist die Verteilung der Serumnüchternglukose dargestellt. Der durchschnittliche Nüchternglukosewert in der Gruppe der jungen Probanden lag bei 80,3 mg/dl für Frauen und 86,8 mg/dl bei Männern. 4,7% der weiblichen Probanden, keiner der männlichen Probanden
innerhalb der jungen Teilnehmergruppe erfüllten das Kriterium einer Insulinresistenz nach den IDF/AHA/NHLBI Kriterien von 2009. In der Gruppe der alten Studienteilnehmer war dies jedoch bei 18,8% der Frauen und 31,4% der Männer der Fall. Hier zeigte sich ein signifikant erhöhter Glukosespiegel beim Vergleich der jungen Teilnehmergruppe mit der alten. Der durchschnittliche Nüchternglukosespiegel im höheren Alter betrug bei Frauen 92,0 mg/dl, bei Männern 100,1 mg/dl. Der geschlechtsspezifische Unterschied bezüglich des Erreichens eines erhöhten Blutzuckers nach IDF/AHA/NHLBI (2009) ist im exakten Test nach Fisher in dieser Gruppe signifikant (p = 0,009).

Tabelle 25: Kenngrößen der Nüchternglukose

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Geschlecht</th>
<th>n</th>
<th>Min-Max [mg/dl]</th>
<th>Median [mg/dl]</th>
<th>Mittelwert [mg/dl]</th>
<th>SD</th>
<th>Insulinresistenz*</th>
<th>Signifikanz**</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.-34.</td>
<td>weiblich</td>
<td>43</td>
<td>67-106</td>
<td>79,5</td>
<td>80,3</td>
<td>7,77</td>
<td>4,7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>männlich</td>
<td>45</td>
<td>72-100</td>
<td>86</td>
<td>86,8</td>
<td>6,20</td>
<td>0%</td>
<td>p = 0,236</td>
</tr>
<tr>
<td>60.-84.</td>
<td>weiblich</td>
<td>202</td>
<td>69-225</td>
<td>89</td>
<td>92,0</td>
<td>17,0</td>
<td>18,8%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>männlich</td>
<td>137</td>
<td>69-241</td>
<td>95</td>
<td>100,1</td>
<td>22,1</td>
<td>31,4%</td>
<td>p = 0,009</td>
</tr>
</tbody>
</table>

*Nüchternglukose >100 mg/dl oder bekannter Diabetes mellitus oder Therapie; n: Anzahl der Teilnehmer; SD: Standardabweichung; Min-Max: minimale und maximale Nüchternglukose; Median = Mittelwert der Verteilung; Nüchternglukose: Serum-Glucose nach > 8 Stunden Nahrungskarenz; **Vergleich zwischen Männern und Frauen in der jeweiligen Altersgruppe

5.2.6 Verteilung der HDL-Werte

Die deskriptive Beschreibung des HDL-Spiegels ist in Tabelle 26 ersichtlich. Frauen hatten in beiden Altersgruppen einen signifikant niedrigeren HDL-Spiegel als Männer (p < 0,001). Das Kriterium für einen erniedrigten HDL-Spiegel nach den Kriterien der IDF/AHA/NHLBI (2009) erfüllten 4,7% der jungen Frauen und 26,7% der jungen Männer. In der alten Probandengruppe konnte bei 22,3% der Frauen und 16,1% der Männer ein erniedrigter HDL-Spiegel gesehen werden. Der mittlere HDL-Wert in der jungen Probandengruppe lag bei 69,4 mg/dl bei den Frauen und 48,7 mg/dl bei den Männern. In der alten Studiengruppe zeigte sich ein mittlerer HDL-Wert von 68,7 mg/dl für Frauen und 54,9 mg/dl für Männer.
Ergebnisse

Tabelle 26: Kenngrößen der HDL-Serumspiegel

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Geschlecht</th>
<th>n</th>
<th>Min-Max HDL [mg/dl]</th>
<th>Median HDL [mg/dl]</th>
<th>Mittelwert HDL [mg/dl]</th>
<th>SD</th>
<th>erniedrigtes HDL*</th>
<th>Signifikanz (2-Seitig)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.-34. Lj.</td>
<td>weiblich</td>
<td>43</td>
<td>36-108</td>
<td>68</td>
<td>69,4</td>
<td>15,57</td>
<td>4,7%</td>
<td>p < 0,001</td>
</tr>
<tr>
<td></td>
<td>männlich</td>
<td>45</td>
<td>23-89</td>
<td>48</td>
<td>48,7</td>
<td>15,12</td>
<td>26,7%</td>
<td></td>
</tr>
<tr>
<td>60.-84. Lj.</td>
<td>weiblich</td>
<td>202</td>
<td>32-130</td>
<td>66,5</td>
<td>68,7</td>
<td>14,04</td>
<td>22,3%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>männlich</td>
<td>137</td>
<td>23-107</td>
<td>54</td>
<td>54,9</td>
<td>14,35</td>
<td>16,1%</td>
<td>p < 0,001</td>
</tr>
</tbody>
</table>

* HDL < 40 mg/dl bei Männern oder HDL < 50 mg/dl bei Frauen oder Therapie; n: Anzahl der Teilnehmer; SD: Standardabweichung; Min-Max: minimaler und maximaler HDL-Serumspiegel; Median: Mittelwert der Verteilung; HDL: high-density lipoprotein; **Vergleich zwischen Männern und Frauen in der jeweiligen Altersgruppe

5.2.6.1 Binär logistische Regressionsanalyse

Zur genaueren Einschätzung, welcher Faktor das Auftreten des metabolischen Syndroms in unserer Studienpopulation am stärksten beeinflusst, wurde im Anschluss bei der Gruppe der alten Probanden eine binär logistische Regression durchgeführt, in der das metabolische Syndrom als abhängige Variable, die einzelnen Faktoren als Einflussvariablen definiert wurden. Die Ergebnisse sind in den Tabellen 27 und 28 dargestellt. Den größten Einfluss auf die Zielvariable nehmen der Triglyceridspiegel, die Nüchternglukose und der Taillenumfang bei Männern ein, bei Frauen die Nüchternglukose, Triglyceridspiegel und HDL-Spiegel. Der Taillenumfang spielt hier bei Frauen eine untergeordnete Rolle.

Tabelle 27: Einfluss von Faktoren des metabolischen Syndroms auf diesen Symptomkomplex bei Männern

<table>
<thead>
<tr>
<th>Einflussvariablen*</th>
<th>Triglyceridspiegel</th>
<th>HDL-Spiegel</th>
<th>systolischer Blutdruck</th>
<th>diastolischer Blutdruck</th>
<th>Nüchternglukose</th>
<th>Taillenumfang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wald</td>
<td>10,546</td>
<td>,594</td>
<td>,251</td>
<td>1,157</td>
<td>8,239</td>
<td>6,953</td>
</tr>
<tr>
<td>Signifikanz**</td>
<td>,001</td>
<td>,441</td>
<td>,616</td>
<td>,282</td>
<td>,004</td>
<td>,008</td>
</tr>
</tbody>
</table>

*Cox & Snell R-Quadrat: 0,429; **abhängige Variable: metabolisches Syndrom; Nüchternglukose: Serum-Glucose nach > 8 Stunden Nahrungskarenz; HDL: high-density lipoprotein; Wald: Signifikanztest
Tabelle 28: Einfluss von Faktoren des metabolischen Syndroms auf diesen Symptomkomplex bei Frauen

<table>
<thead>
<tr>
<th>Einflussvariablen*</th>
<th>Triglycerid-Spiegel</th>
<th>HDL-Spiegel</th>
<th>systolischer Blutdruck</th>
<th>diastolischer Blutdruck</th>
<th>Nüchternglukose</th>
<th>Taillenumfang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wald</td>
<td>8,217</td>
<td>5,603</td>
<td>,667</td>
<td>,502</td>
<td>9,022</td>
<td>3,387</td>
</tr>
<tr>
<td>Signifikanz**</td>
<td>,004</td>
<td>,018</td>
<td>,414</td>
<td>,479</td>
<td>,003</td>
<td>,066</td>
</tr>
</tbody>
</table>

*aCox & Snell R-Quadrat: 0,295; **abhängige Variable: metabolisches Syndrom; Nüchternglukose: Serum-Glucose nach > 8 Stunden Nahrungskarenz; HDL: high-density lipoprotein; Wald: Signifikanztest

5.2.7 Abhängigkeit von Faktoren des metabolischen Syndroms untereinander

5.2.7.1 Korrelationsanalyse

Die genauen Korrelationskoeffizienten für Männer und Frauen in der alten Probandengruppe finden sich in Tabelle 29 wieder. Insgesamt korrelierten alle Faktoren, die zur Definition eines metabolischen Syndroms herangezogen werden, untereinander leicht bis mittel. Eine Ausnahme stellte die in Tabelle 29 nicht dargestellte Blutdruckmessung dar, die keine höhergradigen Korrelationen aufzeigte. Hier sah man Korrelationskoeffizienten von 0,17 (zwischen systolischem Blutdruck und Nüchternglukose) bzw. 0,15 (zwischen diastolischem Blutdruck und Nüchternglukose) bei Frauen. In Abbildung 24 ist nochmals der gegenseitige Einfluss von Taillenumfang und Nüchternglukose im Boxplot dargestellt, ferner der zusätzliche Einfluss von weiteren Parametern des metabolischen Syndroms auf den Nüchternglukosespiegel bei älteren Probanden mit hohem und normalem Taillenumfang. Bis auf den Faktor Blutdruck führten alle übrigen weiteren Parameter lediglich bei Probanden mit erhöhtem Taillenumfang zu einer nochmaligen Erhöhung des Nüchternglukosespiegels.
Tabelle 29: Korrelationsanalyse zwischen Faktoren des metabolischen Syndroms nach Spearman bei Männern und Frauen

<table>
<thead>
<tr>
<th>Spearman-Rho; Korrelationskoeffizienten</th>
<th>Taillenumfang</th>
<th>Nüchternblute</th>
<th>HDL-Spiegel</th>
<th>Triglycerid-Spiegel</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>202</td>
<td>137</td>
<td>202</td>
<td>137</td>
</tr>
<tr>
<td>Geschlecht</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frau</td>
<td>Mann</td>
<td>Frau</td>
<td>Mann</td>
<td>Frau</td>
</tr>
<tr>
<td>Taillenumfang</td>
<td>1,000</td>
<td>1,000</td>
<td>.428</td>
<td>.378</td>
</tr>
<tr>
<td>Nüchternblute</td>
<td>.428</td>
<td>.378</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>HDL-Spiegel</td>
<td>-.338</td>
<td>-.292</td>
<td>-.208</td>
<td>-.189</td>
</tr>
<tr>
<td>Triglycerid-Spiegel</td>
<td>.355</td>
<td>.307</td>
<td>.364</td>
<td>.254</td>
</tr>
</tbody>
</table>

Nüchternblute: Serum-Glucose nach > 8 Stunden Nahrungskarenz; HDL: high-density lipoprotein; n: Anzahl
Ergebnisse

*erhöhter Taillenumfang: > 80cm bei Frauen oder > 94cm bei Männern

A: Bereits bei Erhöhung des Taillenumfangs nach den Kriterien der IDF ist eine Erhöhung des Nüchternglukosespiegels der Probanden erkennbar. Dieser Effekt verstärkt sich bei Hinzunahme weiterer Kriterien wie HDL-Spiegel oder Triglyceridspiegel (B; D), jedoch nicht bei Hinzunahme des Blutdruckes als Einflussfaktor (C).
5.3 Kovariablen

5.3.1 Raucherstatus

In Tabelle 30 ist der Raucherstatus in Bezug auf die Prävalenz einer pulmonalen Obstruktion nach den jeweiligen Definitions kriterien nach GOLD, Hardie und DAL (Deutsche Atemwegsliga) aufgetragen. Der höchste Anteil an Probanden mit einer pulmonalen Obstruktion fand sich hier bei allen Definitionen in der Gruppe der Raucher. Nach den Definitions kriterien der GOLD-Initiative wiesen 48,1% der Raucher eine spirometrische Obstruktion auf. Zum gleichen Ergebnis kamen die Untersuchungen in Hinblick auf die Definition nach Hardie. Die DAL-Kriterien für das Vorhandensein einer pulmonalen Obstruktion ergaben, dass 22,7% der aktuellen Raucher eine pulmonale Obstruktion aufwiesen. Der Anteil der Raucher mit pulmonaler Obstruktion im Vergleich zur Gruppe der Nicht- und Ex-Raucher war jedoch nur nach der Definition GOLD und Hardie signifikant erhöht. Der Anteil der Ex-Raucher mit pulmonaler Obstruktion betrug in der Definition nach GOLD 20,8%, in der nach Hardie 16,9% und in der Definition nach den DAL-Kriterien 7,7%. Betrachtet man die Studienteilnehmer, die angaben, nie geraucht zu haben, so sah man nach der Definitions kriterien der GOLD-Initiative 17,2% der Studienteilnehmer als pulmonal obstruktiv, nach Hardie waren dies 14% und nach den DAL-Kriterien 5,3%.

<table>
<thead>
<tr>
<th>Tabelle 30: Raucherstatus und pulmonale Obstruktion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Raucher</td>
</tr>
<tr>
<td>Normale Lungenfunktion (GOLD)</td>
</tr>
<tr>
<td>Obstruktion (GOLD)</td>
</tr>
<tr>
<td>Signifikanz (2-seitig)</td>
</tr>
<tr>
<td>Normale Lungenfunktion (Hardie)</td>
</tr>
<tr>
<td>Obstruktion (Hardie)</td>
</tr>
<tr>
<td>Signifikanz (2-seitig)</td>
</tr>
<tr>
<td>Normale Lungenfunktion (DAL)</td>
</tr>
<tr>
<td>Obstruktion (DAL)</td>
</tr>
<tr>
<td>Signifikanz (2-seitig)</td>
</tr>
</tbody>
</table>

GOLD: nach den Richtlinien der “Global Initiative for Lung Disease“ FEV1/FVC<70%; Hardie: nach Hardie et al. FEV1/FVC<altersspezifischer Sollwert; DAL: FEV1/FVC<LLN („lower limit of normal“)

Unabhängig von der Definition einer pulmonalen Obstruktion zeigte sich, dass aktuelle Raucher die höchste Prävalenz für das Vorhandensein einer pulmonalen Obstruktion boten. Die niedrigste
Prävalenz wiesen in allen drei Definitions kriterien Probanden auf, die angaben, nie geraucht zu haben. Im exakten Test nach Fisher ergaben sich signifikante Gruppenunterschiede nur bei den Obstruk tionsdefinitionen nach GOLD und Hardie. Hier nicht dargestellt ergab sich im exakten Test nach Fisher kein Unterschied in der Verteilung der jeweiligen Gruppen in Bezug auf das metabolische Syndrom.

5.3.2 Statintherapie

Im Weiteren wurde der Zusammenhang zwischen pulmonaler Obstruktion und dem Vorhandensein einer Statintherapie in der alten Probandengruppe untersucht, wie in Tabelle 31 dargestellt. Hier zeigte sich in allen Definitionen für eine pulmonale Obstruktion ein signifikanter Zusammenhang zwischen der Therapie mit Simvastatin und pulmonaler Obstruktion bei Frauen, nicht jedoch in der männlichen Vergleichsgruppe. Die deutlichste Signifikanz fand sich nach den Kriterien von Hardie (p = 0.019). Bezüglich des Zusammenhangs zwischen Statintherapie und metabolischem Syndrom ergab sich eine Tendenz, jedoch kein signifikanter Zusammenhang.

Tabelle 31: Zusammenhang zwischen pulmonaler Obstruktion nach den jeweiligen Definitionen und der Therapie mit Simvastatin

<table>
<thead>
<tr>
<th>Lungenfunktion</th>
<th>Geschlecht</th>
<th>n</th>
<th>Statintherapie</th>
<th>Keine Statintherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine Obstruktion (GOLD)</td>
<td>Männer</td>
<td>102</td>
<td>12</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Frauen</td>
<td>162</td>
<td>11</td>
<td>151</td>
</tr>
<tr>
<td>Obstruktion (GOLD)</td>
<td>Männer</td>
<td>35</td>
<td>6</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Frauen</td>
<td>40</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>Signifikanz (2-seitig)</td>
<td>Männer</td>
<td>137</td>
<td>p = n.s.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frauen</td>
<td>202</td>
<td>p = 0.029</td>
<td></td>
</tr>
<tr>
<td>Keine Obstruktion (Hardie)</td>
<td>Männer</td>
<td>107</td>
<td>13</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Frauen</td>
<td>169</td>
<td>12</td>
<td>157</td>
</tr>
<tr>
<td>Obstruktion (Hardie)</td>
<td>Männer</td>
<td>30</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Frauen</td>
<td>33</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Signifikanz (2-seitig)</td>
<td>Männer</td>
<td>137</td>
<td>p = n.s.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frauen</td>
<td>202</td>
<td>p = 0.019</td>
<td></td>
</tr>
<tr>
<td>Keine Obstruktion (DAL)</td>
<td>Männer</td>
<td>123</td>
<td>11</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Frauen</td>
<td>189</td>
<td>15</td>
<td>174</td>
</tr>
<tr>
<td>Obstruktion (DAL)</td>
<td>Männer</td>
<td>14</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Frauen</td>
<td>13</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Signifikanz (2-seitig)</td>
<td>Männer</td>
<td>137</td>
<td>p = n.s.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frauen</td>
<td>202</td>
<td>p = 0.023</td>
<td></td>
</tr>
</tbody>
</table>

GOLD: nach den Richtlinien der “Global Initiative for Lung Disease” FEV1/FVC<70%; Hardie: nach Hardie et al.
FEV1/FVC<altersspezifischer Sollwert; DAL: FEV1/FVC<LLN („lower limit of normal“); n = Anzahl
5.3.3 Lungenvolumina in Abhängigkeit von Simvastatintherapie und Raucherstatus

Tabelle 32: Abhängigkeit der Lungenvolumina FEV1 und FVC sowie deren Quotient FEV1/FVC von der Medikation mit Simvastatin bzw. des Raucherstatus bei Männern

<table>
<thead>
<tr>
<th></th>
<th>Simvastatin</th>
<th>Rauchen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Keine Therapie</td>
<td>Therapie</td>
</tr>
<tr>
<td>FEV1 [ml]</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td></td>
<td>119</td>
<td>18</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>2924</td>
<td>2724</td>
</tr>
<tr>
<td>Median</td>
<td>2924</td>
<td>2573</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>671</td>
<td>713</td>
</tr>
<tr>
<td>Signifikanz (2-seitig)</td>
<td>p = n.s.</td>
<td>p = 0.013</td>
</tr>
<tr>
<td>FVC [ml]</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td></td>
<td>119</td>
<td>18</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>4020</td>
<td>3867</td>
</tr>
<tr>
<td>Median</td>
<td>3932</td>
<td>3655</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>767</td>
<td>808</td>
</tr>
<tr>
<td>Signifikanz (2-seitig)</td>
<td>p = n.s.</td>
<td>p = n.s.</td>
</tr>
<tr>
<td>FEV1/FVC [ml]</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td></td>
<td>119</td>
<td>18</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>72,69</td>
<td>70,04</td>
</tr>
<tr>
<td>Median</td>
<td>74,05</td>
<td>72,02</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>9,80</td>
<td>7,81</td>
</tr>
<tr>
<td>Signifikanz (2-seitig)</td>
<td>p = n.s.</td>
<td>p = 0,007</td>
</tr>
</tbody>
</table>

n: Anzahl der Teilnehmer; SD: Standardabweichung; Median = Mittelwert der Verteilung; FEV1 = Einsekundenkapazität; FVC = forcierte Vitalkapazität; FEV1/FVC = Tiffeneau-Index
Tabelle 33: Abhängigkeit der Lungenvolumina FEV1 und FVC sowie deren Quotient FEV1/FVC von der Medikation mit Simvastatin bzw. des Raucherstatus bei Frauen

<table>
<thead>
<tr>
<th></th>
<th>Simvastatin</th>
<th>Rauchen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Keine Therapie</td>
<td>Therapie</td>
</tr>
<tr>
<td>FEV1 [ml]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>183</td>
<td>19</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>2186</td>
<td>2128</td>
</tr>
<tr>
<td>Median</td>
<td>2184</td>
<td>2148</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>417</td>
<td>491</td>
</tr>
<tr>
<td>Signifikanz (2-seitig)</td>
<td>p= n.s.</td>
<td>p= n.s.</td>
</tr>
<tr>
<td>FVC [ml]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>183</td>
<td>19</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>2888</td>
<td>2932</td>
</tr>
<tr>
<td>Median</td>
<td>2891</td>
<td>3033</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>515</td>
<td>495</td>
</tr>
<tr>
<td>Signifikanz (2-seitig)</td>
<td>p= n.s.</td>
<td>p= n.s.</td>
</tr>
<tr>
<td>FEV1/FVC [ml]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>183</td>
<td>19</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>75,73</td>
<td>72,25</td>
</tr>
<tr>
<td>Median</td>
<td>75,81</td>
<td>74,65</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>6,16</td>
<td>9,80</td>
</tr>
<tr>
<td>Signifikanz (2-seitig)</td>
<td>p= n.s.</td>
<td>p= n.s.</td>
</tr>
</tbody>
</table>

n: Anzahl der Teilnehmer; SD: Standardabweichung; Median = Mittelwert der Verteilung; FEV1 = Einsekundenkapazität; FVC = forcierte Vitalkapazität; FEV1/FVC = Tiffeneau-Index
5.4 Zusammenhänge zwischen metabolischem Syndrom und pulmonaler Obstruktion

5.4.1 Obstruktion nach den GOLD-Richtlinien und metabolisches Syndrom

In Tabelle 34 ist der Zusammenhang zwischen pulmonaler Obstruktion gemäß der Definition der GOLD-Richtlinien (FEV1/FCV<70%) und der Prävalenz eines metabolischen Syndroms im Geschlechtsvergleich aufgetragen. Ferner wurden die einzelnen das metabolische Syndrom definierenden Faktoren auf einen Zusammenhang zur Prävalenz eines metabolischen Syndroms untersucht. Im exakten Test nach Fisher findet sich hier weder für das metabolische Syndrom noch für die einzelnen das metabolische Syndrom definierenden Faktoren ein signifikanter Zusammenhang. Ersichtlich ist jedoch, dass - wenn ein Kriterium des metabolischen Syndroms erfüllt ist - die Prävalenz der pulmonalen Obstruktion nach GOLD oft höher ist als in der Gesamtpopulation.

Tabelle 34: Zusammenhang zwischen pulmonaler Obstruktion nach GOLD und dem Vorhandensein eines metabolischen Syndroms bzw. dessen Definitionskomponenten nach den Kriterien der IDF/AHA/NHLBI (2009)

<table>
<thead>
<tr>
<th>Variable*</th>
<th>Geschlecht</th>
<th>n</th>
<th>normale Lungenfunktion (GOLD)</th>
<th>Obstruktion (GOLD)</th>
<th>Signifikanz (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>metabolisches Syndrom</td>
<td>männlich</td>
<td>51</td>
<td>38</td>
<td>13 (25,5%)</td>
<td>p=1,000</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>60</td>
<td>47</td>
<td>13 (21,7%)</td>
<td>p=0,701</td>
</tr>
<tr>
<td>erhöhter Blutdruck</td>
<td>männlich</td>
<td>106</td>
<td>81</td>
<td>25 (23,6%)</td>
<td>p=0,354</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>140</td>
<td>111</td>
<td>29 (20,7%)</td>
<td>p=0,704</td>
</tr>
<tr>
<td>erhöhte Triglyceride</td>
<td>männlich</td>
<td>49</td>
<td>35</td>
<td>14 (20,6%)</td>
<td>p=0,547</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>49</td>
<td>38</td>
<td>11 (22,5%)</td>
<td>p=0,681</td>
</tr>
<tr>
<td>Insulinresistenz</td>
<td>männlich</td>
<td>43</td>
<td>34</td>
<td>9 (20,9%)</td>
<td>p=0,527</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>38</td>
<td>32</td>
<td>6 (15,8%)</td>
<td>p=0,652</td>
</tr>
<tr>
<td>erhöhter Taillenumfang</td>
<td>männlich</td>
<td>97</td>
<td>74</td>
<td>23 (23,7%)</td>
<td>p=0,519</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>176</td>
<td>142</td>
<td>34 (19,3%)</td>
<td>p=0,607</td>
</tr>
<tr>
<td>erniedrigtes HDL</td>
<td>männlich</td>
<td>22</td>
<td>15</td>
<td>7 (31,8%)</td>
<td>p=0,438</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>45</td>
<td>34</td>
<td>11 (24,4%)</td>
<td>p=0,399</td>
</tr>
</tbody>
</table>

Nach den Kriterien der IDF/AHA/NHLBI (2009); HDL = high-density lipoprotein; n = Anzahl
5.4.2 Obstruktion nach Hardie et al. und metabolisches Syndrom

Betrachtet man die Zusammenhänge zwischen der Prävalenz eines metabolischen Syndroms und einer pulmonalen Obstruktion nach der Definition nach Hardie, so findet sich im exakten Test nach Fisher ebenso wie bei der Definition nach GOLD keinerlei Beziehung, weder hinsichtlich der Häufigkeitsverteilung des metabolischen Syndroms noch dessen Faktoren nach den Kriterien der IDF/AHA/NHLBI (2009), wie in Tabelle 35 zusammengefasst.

Tabelle 35: Zusammenhang zwischen pulmonaler Obstruktion nach Hardie und dem Vorhandensein eines metabolischen Syndroms bzw. dessen Definitions­komponenten nach den Kriterien der IDF/AHA/NHLBI (2009)

<table>
<thead>
<tr>
<th>Variable*</th>
<th>Geschlecht</th>
<th>n</th>
<th>normale Lungenfunktion (Hardie)</th>
<th>Obstruktion (Hardie)</th>
<th>Signifikanz (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>metabolisches Syndrom</td>
<td>männlich</td>
<td>51</td>
<td>42</td>
<td>9 (17,7%)</td>
<td>p=0,339</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>60</td>
<td>48</td>
<td>12 (20%)</td>
<td>p=0,406</td>
</tr>
<tr>
<td>erhöhter Blutdruck</td>
<td>männlich</td>
<td>106</td>
<td>85</td>
<td>21 (19,8%)</td>
<td>p=0,324</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>140</td>
<td>116</td>
<td>24 (17,1%)</td>
<td>p=0,686</td>
</tr>
<tr>
<td>erhöhte Triglyceride</td>
<td>männlich</td>
<td>49</td>
<td>39</td>
<td>10 (20,4%)</td>
<td>p=0,832</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>49</td>
<td>39</td>
<td>10 (20,4%)</td>
<td>p=0,832</td>
</tr>
<tr>
<td>Insulinresistenz</td>
<td>männlich</td>
<td>43</td>
<td>36</td>
<td>7 (16,3%)</td>
<td>p=0,374</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>38</td>
<td>33</td>
<td>5 (13,2%)</td>
<td>p=0,635</td>
</tr>
<tr>
<td>erhöhter Taillenumfang</td>
<td>männlich</td>
<td>97</td>
<td>78</td>
<td>19 (19,6%)</td>
<td>p=0,365</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>176</td>
<td>116</td>
<td>24 (13,6%)</td>
<td>p=0,686</td>
</tr>
<tr>
<td>erniedrigtes HDL</td>
<td>männlich</td>
<td>22</td>
<td>16</td>
<td>6 (27,3%)</td>
<td>p=0,574</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>45</td>
<td>35</td>
<td>10 (18,5%)</td>
<td>p=0,254</td>
</tr>
</tbody>
</table>

Nach den Kriterien der IDF/AHA/NHLBI (2009); HDL = high-density lipoprotein; n = Anzahl
5.4.3 Obstruktion nach DAL-Kriterien und metabolisches Syndrom

Tabelle 36: Zusammenhang zwischen pulmonaler Obstruktion (FEV1/FVC<LLN) und dem Vorhandensein eines metabolischen Syndroms, bzw. dessen Definitionsbestandteilen

<table>
<thead>
<tr>
<th>Variable*</th>
<th>Geschlecht</th>
<th>n</th>
<th>normale Lungenfunktion (DAL)</th>
<th>Obstruktion (DAL)</th>
<th>Signifikanz (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>metabolisches Syndrom</td>
<td>männlich</td>
<td>51</td>
<td>48</td>
<td>3 (5,8%)</td>
<td>p=0,252</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>60</td>
<td>55</td>
<td>5 (8,3%)</td>
<td>p=0,534</td>
</tr>
<tr>
<td>erhöhter Blutdruck</td>
<td>männlich</td>
<td>106</td>
<td>95</td>
<td>11 (10,4%)</td>
<td>p=1,000</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>140</td>
<td>131</td>
<td>9 (6,4%)</td>
<td>p=1,000</td>
</tr>
<tr>
<td>erhöhte Triglyceride</td>
<td>männlich</td>
<td>49</td>
<td>44</td>
<td>5 (10,2%)</td>
<td>p=1,000</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>49</td>
<td>44</td>
<td>5 (10,2%)</td>
<td>p=0,312</td>
</tr>
<tr>
<td>Insulinresistenz</td>
<td>männlich</td>
<td>43</td>
<td>39</td>
<td>4 (9,3%)</td>
<td>p=1,000</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>38</td>
<td>36</td>
<td>2 (5,3%)</td>
<td>p=1,000</td>
</tr>
<tr>
<td>erhöhter Taillenumfang</td>
<td>männlich</td>
<td>97</td>
<td>89</td>
<td>8 (8,3%)</td>
<td>p=0,234</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>176</td>
<td>165</td>
<td>11 (6,3%)</td>
<td>p=0,676</td>
</tr>
<tr>
<td>erniedrigtes HDL</td>
<td>männlich</td>
<td>22</td>
<td>19</td>
<td>3 (13,6%)</td>
<td>p=0,699</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>45</td>
<td>40</td>
<td>5 (11,1%)</td>
<td>p=0,169</td>
</tr>
</tbody>
</table>

*Nach den Kriterien der IDF/AHA/NHLBI (2009); HDL = high-density lipoprotein; n = Anzahl

5.4.4 Zusammenhänge zwischen Lungenvolumina und Faktoren des metabolischen Syndroms

Unabhängig von den jeweiligen Definitionen der pulmonalen Obstruktion wurden im Folgenden das metabolische Syndrom und die diesen Symptomkomplex definierenden Faktoren nach den Kriterien der IDF/AHA/NHLBI (2009) in Bezug auf die einzelnen Lungenvolumina FEV1, FVC
und das Verhältnis FEV\textsubscript{1}/FVC untersucht, wie in Tabelle 37 und 38 aufgezeigt. Die Einsekundenkapazität war hier bei Männern mit erhöhter Insulinresistenz signifikant erniedrigt (p = 0,023). Ebenfalls zeigte sich die FVC bei Männern mit erhöhter Insulinresistenz erniedrigt (p = 0,027), nicht jedoch der Quotient FEV\textsubscript{1}/FVC. Die anderen Testvariablen, insbesondere die Prävalenz des metabolischen Syndroms, waren in Bezug auf die Lungenvolumina bei Männern nicht signifikant unterschiedlich verteilt.

Tabelle 37: t-Test zwischen dichotomen Faktoren des metabolischen Syndroms nach den Kriterien der IDF/AHA/NHLBI (2009) und Lungenvolumina bei Männern

<table>
<thead>
<tr>
<th></th>
<th>Blutdruck</th>
<th>Insulinresistenz</th>
<th>Taillenumfang</th>
<th>HDL-Spiegel</th>
<th>Triglycerid-Spiegel</th>
<th>metabolisches Syndrom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>normal</td>
<td>erhöht</td>
<td>normal</td>
<td>erhöht</td>
<td>normal</td>
<td>erhöht</td>
</tr>
<tr>
<td>FVC [ml]</td>
<td>n</td>
<td>31</td>
<td>106</td>
<td>94</td>
<td>43</td>
<td>40</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>2842</td>
<td>2914</td>
<td>2992</td>
<td>2692</td>
<td>2906</td>
<td>2894</td>
</tr>
<tr>
<td>Median</td>
<td>2942</td>
<td>2877</td>
<td>2971</td>
<td>2804</td>
<td>2946</td>
<td>2886</td>
</tr>
<tr>
<td>SD</td>
<td>644</td>
<td>689</td>
<td>638</td>
<td>723</td>
<td>831</td>
<td>608</td>
</tr>
<tr>
<td>Signifikanz (2-seitig)</td>
<td>p= n.s.</td>
<td>p\textsubscript{= 0,023}</td>
<td>p= n.s.</td>
<td>p= n.s.</td>
<td>p= n.s.</td>
<td>p= n.s.</td>
</tr>
<tr>
<td>FVC [ml]</td>
<td>n</td>
<td>31</td>
<td>106</td>
<td>94</td>
<td>43</td>
<td>40</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>3955</td>
<td>4013</td>
<td>4100</td>
<td>3780</td>
<td>4104</td>
<td>3957</td>
</tr>
<tr>
<td>Median</td>
<td>4016</td>
<td>3881</td>
<td>4007</td>
<td>3799</td>
<td>3889</td>
<td>3914</td>
</tr>
<tr>
<td>SD</td>
<td>805</td>
<td>764</td>
<td>749</td>
<td>782</td>
<td>829</td>
<td>746</td>
</tr>
<tr>
<td>Signifikanz (2-seitig)</td>
<td>p= n.s.</td>
<td>p\textsubscript{= 0,027}</td>
<td>p= n.s.</td>
<td>p= n.s.</td>
<td>p= n.s.</td>
<td>p= n.s.</td>
</tr>
<tr>
<td>FEV\textsubscript{1}/FVC [ml]</td>
<td>n</td>
<td>31</td>
<td>106</td>
<td>94</td>
<td>43</td>
<td>40</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>71,73</td>
<td>72,5</td>
<td>72,97</td>
<td>70,98</td>
<td>70,32</td>
<td>73,2</td>
</tr>
<tr>
<td>Median</td>
<td>70,95</td>
<td>74,4</td>
<td>74,27</td>
<td>73,66</td>
<td>72,97</td>
<td>74,0</td>
</tr>
<tr>
<td>SD</td>
<td>7,31</td>
<td>10,2</td>
<td>8,85</td>
<td>11,01</td>
<td>12,50</td>
<td>8,01</td>
</tr>
<tr>
<td>Signifikanz (2-seitig)</td>
<td>p= n.s.</td>
<td>p= n.s.</td>
<td>p= n.s.</td>
<td>p= n.s.</td>
<td>p= n.s.</td>
<td>p= n.s.</td>
</tr>
</tbody>
</table>

n: Anzahl der Teilnehmer; SD: Standardabweichung; Median = Mittelwert der Verteilung; FEV\textsubscript{1} = Einsekundenkapazität; FVC = forcierte Vitalkapazität; FEV\textsubscript{1}/FVC = Tiffeneau-Index

Bei den hier untersuchten Frauen war in Hinblick auf die Insulinresistenz bei einer Erhöhung dieser nach den Kriterien der IDF/AHA/NHLBI (2009) sowohl FVC erniedrigt als auch das Verhältnis FEV\textsubscript{1}/FVC, nicht jedoch die Einsekundenkapazität. Weiter ergaben sich hier signifikant verringerte Werte für FVC bei erhöhtem Blutdruck (p = 0,024) nach den Kriterien der
IDF/AHA/NHLBI (2009). Die FEV1 war ebenfalls tendenziell bei weiblichen Probanden mit erhöhtem Blutdruck erniedrigt (p = 0,069). Bezüglich des metabolischen Syndroms nach der Definition der IDF/AHA/NHLBI (2009) ergaben sich bei Frauen signifikant erniedrigte Werte für FEV1 (p = 0,05) und FVC (p = 0,034) bei Vorhandensein des metabolischen Syndroms, nicht jedoch für den Quotienten FEV1/FVC. Die weiteren Definitionslisten des metabolischen Syndroms waren bei Vorhandensein dieser Kriterien nicht mit einer signifikanten Verringerung etwaiger Lungenvolumina assoziiert.

Tabelle 38: t-Test zwischen dichotomen Faktoren des metabolischen Syndroms nach den Kriterien der IDF/AHA/NHLBI (2009) und Lungenvolumina bei Frauen

<table>
<thead>
<tr>
<th>Blutdruck</th>
<th>Insulinresistenz</th>
<th>Tailenumfang</th>
<th>HDL-Spiegel</th>
<th>Triglycerid-Spiegel</th>
<th>metabolisches Syndrom</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>normal</td>
<td>erhöht</td>
<td>normal</td>
<td>erhöht</td>
<td>normal</td>
</tr>
<tr>
<td>FEV1 [ml]</td>
<td>n</td>
<td>62</td>
<td>140</td>
<td>164</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Mittelwert</td>
<td>2237</td>
<td>2147</td>
<td>2200</td>
<td>2097</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2233</td>
<td>2131</td>
<td>2210</td>
<td>2103</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>371</td>
<td>442</td>
<td>426</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>Signifikanz (2-seitig)</td>
<td>p=0,069</td>
<td>p= n.s.</td>
<td>p= n.s.</td>
<td>p= n.s.</td>
</tr>
<tr>
<td>FVC [ml]</td>
<td>n</td>
<td>62</td>
<td>140</td>
<td>164</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Mittelwert</td>
<td>3011</td>
<td>2840</td>
<td>2933</td>
<td>2718</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2973</td>
<td>2811</td>
<td>2944</td>
<td>2778</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>476</td>
<td>520</td>
<td>506</td>
<td>506</td>
</tr>
<tr>
<td></td>
<td>Signifikanz (2-seitig)</td>
<td>p= 0,024</td>
<td>p=0,022</td>
<td>p= n.s.</td>
<td>p= n.s.</td>
</tr>
<tr>
<td>FEV1/FVC [ml]</td>
<td>n</td>
<td>62</td>
<td>140</td>
<td>164</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Mittelwert</td>
<td>75,12</td>
<td>75,52</td>
<td>74,6</td>
<td>77,28</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>75,1</td>
<td>76,6</td>
<td>75,4</td>
<td>78,2</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>5,97</td>
<td>6,92</td>
<td>6,69</td>
<td>6,10</td>
</tr>
<tr>
<td></td>
<td>Signifikanz (2-seitig)</td>
<td>p= n.s.</td>
<td>p= 0,043</td>
<td>p= n.s.</td>
<td>p= n.s.</td>
</tr>
</tbody>
</table>

n: Anzahl der Teilnehmer; SD: Standardabweichung; Median = Mittelwert der Verteilung; FEV1 = Einsekundenkapazität; FVC = forcierte Vitalkapazität; FEV1/FVC = Tiffeneau-Index

Zur weiteren Untersuchung der Zusammenhänge zwischen den Parametern der Lungenfunktion und denen des metabolischen Syndroms wurde im Folgenden eine Korrelationsanalyse erstellt. Dazu wurden die das metabolische Syndrom definierenden Faktoren ebenfalls auf...

Tabelle 39: Korrelationsanalyse zwischen Parametern des metabolischen Syndroms und Parametern der Lungenfunktion bei Frauen

<table>
<thead>
<tr>
<th>Variablen (n = 202)</th>
<th>FEV1 [ml]</th>
<th>FVC [ml]</th>
<th>FEV1/FVC</th>
<th>systolischer Blutdruck [mmHg]</th>
<th>diastolischer Blutdruck [mmHg]</th>
<th>Taillenumfang [cm]</th>
<th>Nüchtern-glukose [mg/dl]</th>
<th>Triglyceride-Spiegel [mg/dl]</th>
<th>HDL-Spiegel [mg/dl]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV1 [ml]</td>
<td>1,000</td>
<td>.904**</td>
<td>.352**</td>
<td>-.042</td>
<td>.000</td>
<td>-.161*</td>
<td>-.083</td>
<td>-.012</td>
<td>.102</td>
</tr>
<tr>
<td>FVC [ml]</td>
<td>.904**</td>
<td>1,000</td>
<td>-.033</td>
<td>-.093</td>
<td>-.042</td>
<td>-.195**</td>
<td>-.155*</td>
<td>-.050</td>
<td>.101</td>
</tr>
<tr>
<td>FEV1/FVC [ml]</td>
<td>.352**</td>
<td>-.033</td>
<td>1,000</td>
<td>.172*</td>
<td>.163*</td>
<td>.063</td>
<td>.168*</td>
<td>.113</td>
<td>-.005</td>
</tr>
</tbody>
</table>

n: Anzahl; FEV1 = Einsekundenkapazität; FVC = Forcierte Vitalkapazität; FEV1/FVC = Tiffeneau-Index; * Die Korrelation ist auf dem Niveau 0,05 signifikant; ** Die Korrelation ist auf dem Niveau 0,001 signifikant
Tabelle 40: Korrelationsanalyse zwischen Parametern des metabolischen Syndroms und Parametern der Lungenfunktion bei Männern

<table>
<thead>
<tr>
<th>Variablen (n = 137)</th>
<th>FEV1 [ml]</th>
<th>FVC [ml]</th>
<th>FEV1/FVC [ml]</th>
<th>systolischer Blutdruck [mmHg]</th>
<th>diastolischer Blutdruck [mmHg]</th>
<th>Taillenumfang [cm]</th>
<th>Nüchtern-glukose [mg/dl]</th>
<th>Triglycerid-Spiegel [mg/dl]</th>
<th>HDL-Spiegel [mg/dl]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV1 [ml]</td>
<td>1,000</td>
<td>.867**</td>
<td>.478**</td>
<td>-.042</td>
<td>.115</td>
<td>-.130*</td>
<td>-.132</td>
<td>-.091</td>
<td>.049</td>
</tr>
<tr>
<td>FVC [ml]</td>
<td>.867**</td>
<td>1,000</td>
<td>.070</td>
<td>-.056</td>
<td>.143</td>
<td>-.188*</td>
<td>-.146*</td>
<td>-.075</td>
<td>.051</td>
</tr>
<tr>
<td>FEV1/FVC [ml]</td>
<td>.478**</td>
<td>.070</td>
<td>1,000</td>
<td>.052</td>
<td>.071</td>
<td>.085</td>
<td>.050</td>
<td>-.104</td>
<td>.044</td>
</tr>
</tbody>
</table>

n: Anzahl; FEV1 = Einsekundenkapazität; FVC = Forcierte Vitalkapazität; FEV1/FVC = Tiffeneau-Index; * Die Korrelation ist auf dem Niveau 0,05 signifikant; ** Die Korrelation ist auf dem Niveau 0,001 signifikant

5.4.5 Multivariate Regressionsanalyse zwischen Faktoren des metabolischen Syndroms und Obstruktion nach GOLD, Hardie et al. und DAL

Die Regressionsanalyse zeigte bei Männern in der Definition nach GOLD einen signifikanten Einfluss insbesondere des Triglyceridspiegels (p= 0,013), des Rauchens (p= 0,022), des Taillenumfangs (p= 0,031) sowie der Insulinresistenz (p= 0,047).

Bei Frauen war lediglich das Rauchen (p= 0,007) signifikant und die Statintherapie tendenziell (p= 0,084) als Einfluss auf das Vorhandensein einer Obstruktion zu beobachten.

Betrachtet man die Regressionsanalyse mit Obstruktion nach Hardie als abhängige Variable, so findet sich bei den Männern ein Einfluss durch die Variablen Triglycerid-Spiegel (p= 0,029), Nüchtern-glukose (p= 0,041) und Rauchen (p= 0,046). Beim Taillenumfang ergab sich hier lediglich eine Tendenz (p= 0,059).
Bei den Frauen fielen lediglich die Faktoren Rauchen signifikant (p = 0,003) und Statintherapie tendenziell (p = 0,097) ins Gewicht.
Zuletzt wurde eine binär logistische Regressionsanalyse mit Obstruktion nach der Definition der Deutschen Atemwegsliga durchgeführt. Bei Männern erwiesen sich hier die Variablen Rauchen (p = 0,002) und Tailleumfang (p = 0,042) als Einflussfaktoren. Bei Frauen war lediglich das Rauchen ein signifikanter Einflussfaktor (p = 0,031).

Tabelle 41: Binär-logistische Regressionsanalyse zur Bestimmung der Einflussfaktoren auf pulmonale Obstruktion nach GOLD, Hardie und DAL

<table>
<thead>
<tr>
<th>Obstruktionskriterien:</th>
<th>Männer</th>
<th>Frauen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DAL</td>
<td>GOLD</td>
</tr>
<tr>
<td>Cox & Snell R-Quadrat</td>
<td>0,122</td>
<td>0,139</td>
</tr>
<tr>
<td>Einflussvariablen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simvastatintherapie [mg]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rauchen [py]</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Taillenumfang [cm]</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HDL-Serumspiegel [mg/dl]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triglycerid-Serumspiegel [mg/dl]</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Nüchternglukose [mg/dl]</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Systolischer Blutdruck [mmHg]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diastolischer Blutdruck [mmHg]</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

+ = p<0,05; +/- = p<0,1 und p>0,05; - = p>0,1; GOLD: nach den Richtlinien der “Global Initiative for Lung Disease” FEV1/FVC<70%; Hardie: nach Hardie et al. FEV1/FVC<altersspezifischer Sollwert; DAL: FEV1/FVC<LLN (“lower limit of normal“) HDL: high-density lipoprotein; Nüchternglukose: Serum-Glukose nach > 8 Stunden Nahrungskarenz; py: pack years
6 Diskussion

6.1 Probandenkollektiv der Berliner Altersstudie

6.1.1 Bewertung des Gesundheitszustandes des Probandenkollektivs der Berliner Altersstudie II

6.1.2 Raucherstatus im Vergleich zur Normalbevölkerung

Probanden ab dem 60. Lebensjahr berichteten in unserer Datenerhebung 7,8% aktiv zu rauchen, 27,6% gaben an Exraucher zu sein, 64,4% hatten nie in ihrem Leben geraucht. Im Vergleich zu nationalen Prävalenzdaten liegt die Anzahl der aktiven Raucher somit auch in der älteren Vergleichsgruppe deutlich niedriger als im nationalen Durchschnitt. Die Datenerhebung der Europäischen Kommission beschreibt, dass ca. 14% der Einwohner im Alter von über 55 Jahren aktiv raucht. In Tabelle 42 sind zur Verdeutlichung nationale Prävalenzdaten des Raucherstatus geschlechtsgetrennt aufgeführt. Da Rauchen als einer der wichtigsten Risikofaktoren für die Entstehung einer Lungenfunktionseinschränkung gilt, ist davon auszugehen, dass die Prävalenz der obstruktiven Lungenerkrankungen in unserer Auswertung unterschätzt werden könnte. Auch in Hinblick auf das kardiovaskuläre Risikoprofil der Probanden allgemein kann angenommen werden, dass dieses niedriger als in der Gesamtbevölkerung ausfällt.

Tabelle 42: Nationale Prävalenzdaten zum Raucherstatus bei Männern und Frauen

<table>
<thead>
<tr>
<th>Studie</th>
<th>Alter in Jahren</th>
<th>aktive Raucher in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frauen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lampert et al.</td>
<td>60 - 69</td>
<td>13,5</td>
</tr>
<tr>
<td>Lampert et al.</td>
<td>70+</td>
<td>8,8</td>
</tr>
<tr>
<td>GEDA 2009</td>
<td>65+</td>
<td>8,7</td>
</tr>
<tr>
<td>Männer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lampert et al.</td>
<td>60 - 69</td>
<td>20,6</td>
</tr>
<tr>
<td>Lampert et al.</td>
<td>70+</td>
<td>12,5</td>
</tr>
<tr>
<td>GEDA 2009</td>
<td>65+</td>
<td>13,7</td>
</tr>
</tbody>
</table>

6.1.3 Bewertung der Ausschlusskriterien vorangegangener Studien

Tabelle 43: Ausschlusskriterien vorangegangener Studien

<table>
<thead>
<tr>
<th>Ausschlusskriterium</th>
<th>DA-Studie</th>
<th>Cogito</th>
<th>Space</th>
<th>Telefonstudie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übergewicht (>120kg)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Raucher (>10/Tag)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Diabetes(>insulinbedürftig)</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Schlaganfall</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Herzinfarkt</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+ = Kriterium wurde ausgeschlossen; - = Kriterium wurde nicht ausgeschlossen

Andererseits bleibt zu erwähnen, dass auch in die aktuellen Datenanalyse Probanden miteinbezogen werden konnten, welche Kriterien aufwiesen, die zum damaligen Zeitpunkt als Ausschlusskriterien galten. So kann durch die Aufführung der Ausschlusskriterien lediglich der Stand dieser Faktoren zum Zeitpunkt der jeweiligen Studie beschrieben werden. Bereits an
Diskussion

6.1.4 Bewertung der Stichprobenauswahl innerhalb des Probandenkollektives der Berliner Altersstudie II anhand des spirometrischen Qualitätsgrades

Die Auswahl der zur Datenanalyse ausgesuchten Stichprobe innerhalb der Studienteilnehmer der Berliner Altersstudie II erfolgte anhand des in der Spirometrie erreichten Qualitätsgrades. Das Kriterium eines ausreichenden Qualitätsgrades konnten 43,5 % der Probanden erfüllen. Im Vergleich zu anderen Studien, in denen die Spirometrie als Methodik gewählt wurde, befinden sich die Ergebnisse der Berliner Altersstudie damit im Unterfeld wie in Tabelle 44 dargestellt. Nur bei solchen Probanden kann nach Meinung der führenden Fachgesellschaften eine glaubhafte Aussage bezüglich der Lungenventilation erbracht werden.

gleichzeitig Asthmatiker und solche Studienteilnehmer, die asthmaspezifische Symptome beschrieben, aus der Datenauswertung heraus. Da zum Zeitpunkt der Datenanalyse bei 32 Studienteilnehmern nicht alle Informationen zur Bestimmung der Definition eines metabolischen Syndroms erfasst waren, wurden diese im Verlauf ebenfalls nicht berücksichtigt.

Tabelle 44: Publikationen, in denen Qualitätskriterien der DAL und GOLD zur Auswertung herangezogen und beschrieben wurden, im Vergleich zu BASE II

<table>
<thead>
<tr>
<th>Autor</th>
<th>Jahr</th>
<th>n</th>
<th>Alter</th>
<th>Probanden mit gutem Qualitätsgrad [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE II</td>
<td>2013</td>
<td>1075</td>
<td>60-84</td>
<td>43.5</td>
</tr>
<tr>
<td>Vaz, Fragoso et al.</td>
<td>2012</td>
<td>3578</td>
<td>65-80</td>
<td>88.4</td>
</tr>
<tr>
<td>Hill et al.</td>
<td>2010</td>
<td>1459</td>
<td>ab dem 40. Lj.</td>
<td>68.7</td>
</tr>
<tr>
<td>Eaton et al.</td>
<td>1999</td>
<td>559</td>
<td>0-89</td>
<td>13.5</td>
</tr>
<tr>
<td>Pezzoli et al.</td>
<td>2003</td>
<td>585</td>
<td>65-94</td>
<td>81.8</td>
</tr>
<tr>
<td>Bellia et al.</td>
<td>2000</td>
<td>638</td>
<td>65-91</td>
<td>83.6</td>
</tr>
<tr>
<td>Enright et al.</td>
<td>2011</td>
<td>9893</td>
<td>56.6</td>
<td>90</td>
</tr>
<tr>
<td>Szanto et al.</td>
<td>2010</td>
<td>574</td>
<td>60-93</td>
<td>52</td>
</tr>
</tbody>
</table>

n = Anzahl

6.2 Pulmonale Obstruktion

6.2.1 Diskussion über Spirometrie als Messmethode für pulmonale Obstruktion im Alter

Diskussion
Veränderungen der Lungenfunktion berücksichtigen, wird im Weiteren diskutiert. Einleuchtend erscheint jedoch, dass für junge und alte Probanden andere Kriterien zur Beurteilung einer Lungenfunktionseinschränkung herangezogen werden müssen.

6.2.2 Diskussion über die verschiedenen Definitions­kriterien einer pulmonalen Obstruktion

Uneinheitlich wird in der Literatur die Definition einer pulmonalen Obstruktion gehandhabt. In der hier durchgeführten Analyse wurden die zwei gängigsten Definitions­kriterien nach GOLD (FEV1/FVC < 70%) und ATS/ERS bzw. derer der Deutschen Atemwegsliga verwendet (FEV1/FVC < LLN). Da es sich bei den Studienteilnehmern in unserer Stichprobe auch um Probanden im höheren Lebensalter handelt, kam zudem die altersadaptierte Definition nach Hardie et al. zur Anwendung.

Es gibt jedoch einige Hinweise dafür, dass die Definition nach GOLD im höheren und niedrigeren Altersbereich deutliche Einschränkungen aufweist. So werden durch diese einfache Formel zu wenig junge Probanden als pulmonal obstruktiv erkannt, wohingegen bei älteren Probanden eine Überschätzung der Häufigkeit einer Lungenfunktionsstörung stattfinden kann. Diese Fehleinschätzung minimiert eventuell die Verwendung der Definition nach Hankinson et al. (FEV1/FVC<LLN). Hier besteht jedoch auch die Gefahr einer Unterschätzung der Häufigkeit pulmonaler Obstruktion. Einige Studien weisen darauf hin, dass mit der Methode nach GOLD Personen, die nach der Definition DAL eine Obstruktion aufweisen, nicht erkannt werden. Eine Studie von Hansen et al. aus dem Jahr 2007 an 5906 Studienteilnehmern, die in ihrem Leben nie geraucht hatten, und 3497 aktuellen Rauchern ergab, dass sich die Ergebnisse einer Lungenfunktionsprüfung nach den Kriterien der GOLD-Initiative (FEV1/FVC < 70%) stark von denen, die unter anderem die Deutsche Atemwegsliga empfiehlt (FEV1/FVC < LLN), unterschieden. Die Obstruktions­definition nach GOLD erfasste hier knapp 50% der jungen Probanden, die nach der Definition FEV1/FVC < LLN als pulmonal obstruktiv erkannt wurden, nicht. Umgekehrt wurden in der älteren Studien­population knapp 20% mehr Probanden als pulmonal obstruktiv erkannt als nach der Alternativdefinition. Innerhalb unserer Auswertung

6.2.3 Prävalenz von pulmonaler Obstruktion nach verschiedenen Definitionskenntnissen

Die Prävalenz einer pulmonalen Obstruktion richtete sich auch in unserer Datenauswertung nach den zu Grunde liegenden Definitionskenntnissen. In Tabelle 45 sind internationale und nationale Prävalenzen für die BASE-II entsprechenden Altersbereiche aufgelistet und nach den verschiedenen Definitionskenntnissen untergliedert. Wie aus Tabelle 45 ersichtlich, unterscheiden sich die Prävalenzen nicht nur nach den verschiedenen Definitionskenntnissen, sondern auch innerhalb der Definitionskenntnisse.

Die Prävalenz der pulmonalen Obstruktion innerhalb der Studienteilnehmer der Berliner Altersstudie schwankte in der älteren Probandengruppe zwischen 7,3 – 21,3% je nach zu Grunde liegender Definition und spiegelt so die Ergebnisse nationaler und internationaler Studien tendenziell wider. Hierbei ist zu erwähnen, dass es sich bei den BASE II-Probanden um eine relativ gesunde Stichprobe selbstständig zu Hause lebender Senioren handelt. Auch erfassten die Ergebnisse unserer Datenauswertung teilweise Probanden im höheren Alter als in den meisten Vergleichsstudien. Der Ausschluss von Asthmakern bzw. Probanden mit potentiellem Asthma bronchiale mit asthmatypischen Beschwerden stellte eine Besonderheit der Stichprobenauswahl innerhalb der Berliner Altersstudie II dar, andere Studien handhaben dies teilweise nicht so.

Einige Studien definierten eine pulmonale Obstruktion lediglich durch den jeweiligen Quotienten aus FEV1/FVC, andere führten, wie nach den Leitlinien der maßgebenden Fachgesellschaften empfohlen, einen Bronchospasmolysetest durch. Eine direkte Vergleichbarkeit ergibt sich somit nur eingeschränkt. Inwiefern die national und international
empfohlenen Qualitätsgrade zur Beurteilung der Ergebnisse herangezogen wurden, bleibt ebenfalls unklar.

Allgemein bestätigten die Ergebnisse der Berliner Altersstudie II jedoch die bereits in der Literatur genannten Werte und die deutliche Differenz zwischen den verschiedenen Definitions­skriterien einer pulmonalen Obstruktion. Bei der Definition nach GOLD fand sich in jeder der Vergleichsstudien stets die höchste Prävalenz gefolgt von der Definition nach Hardie. Die niedrigsten Prävalenzraten ergaben sich nach der Definition, die auch die Deutsche Atemwegsliga empfiehlt (LLN).

Tabelle 45: Internationale Prävalenzerhebungen der pulmonalen Obstruktion nach den verschiedenen Definitions­skriterien

<table>
<thead>
<tr>
<th>Autor</th>
<th>Region</th>
<th>Jahr</th>
<th>n</th>
<th>Alter in Jahren</th>
<th>Definitions­kriterium</th>
<th>Obstruktion [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE II</td>
<td>Deutschland</td>
<td>2013</td>
<td>339</td>
<td>60-84</td>
<td>DAL</td>
<td>7,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GOLD</td>
<td>21,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hardie</td>
<td>17,5</td>
</tr>
<tr>
<td>Bridevaux et al.</td>
<td>Schweiz</td>
<td>2010</td>
<td>1378</td>
<td>60-69</td>
<td>DAL</td>
<td>5-8,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GOLD</td>
<td>7,4-15,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hardie</td>
<td>-</td>
</tr>
<tr>
<td>Miravitlles et al.</td>
<td>Spanien</td>
<td>2009</td>
<td>3802</td>
<td>40-80</td>
<td>DAL</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GOLD</td>
<td>10,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hardie</td>
<td>-</td>
</tr>
<tr>
<td>Maio et al.</td>
<td>Multi­zentrisch (Europa)</td>
<td>2012</td>
<td>4021</td>
<td>19-80</td>
<td>DAL</td>
<td>12,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GOLD</td>
<td>20,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hardie</td>
<td>-</td>
</tr>
<tr>
<td>Szanto et al.</td>
<td>Schweden</td>
<td>2010</td>
<td>574</td>
<td>60-93</td>
<td>DAL</td>
<td>10,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GOLD</td>
<td>22,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hardie</td>
<td>14,1</td>
</tr>
</tbody>
</table>

GOLD: nach den Richtlinien der “Global Initiative for Lung Disease” FEV₁/FVC<70%; Hardie: nach Hardie et al.
FEV₁/FVC<altersspezifischer Sollwert; DAL: FEV₁/FVC<LLN („lower limit of normal“)

6.2.4 Diskussion über die Aussage bezüglich COPD

Die innerhalb der Berliner Altersstudie II durchgeführte Spirometrie erfasste keine Daten über Lungenvolumina nach Gabe eines Bronchodilatators und entspricht in dieser Hinsicht nicht den Kriterien aktueller Leitlinien zur Erfassung einer COPD. Die Durchführung einer solchen

6.2.5 Über- bzw. Unterdiagnostiziertheit im internationalen Vergleich

COPD ist eine der häufigsten Erkrankungen im hohen Lebensalter. Obwohl die Diagnostik mittels Spirometrie in Hausarztpraxen möglich wäre, stellt sie noch lange keine Selbstverständlichkeit dar. Auch wenn in unserer Datenauswertung ein Großteil der Probanden angab, bereits in ihrem Leben eine Spirometrie durchgeführt zu haben, so bleibt doch unklar, in welchen Abständen eine solche Untersuchung vorgenommen, nach welchen Kriterien diese beurteilt und ob ein Spasmolysetest durchgeführt, bzw. ob die entsprechenden Therapiemöglichkeiten besprochen wurden.

In unserer Datenauswertung fand sich so trotz der hohen Anzahl derer, die berichteten, bereits einmal in ihrem Leben eine Lungenfunktionsprüfung gemacht zu haben, eine deutliche Unterdiagnostiziertheit pulmonaler Obstruktionen. Je nach zu Grunde liegender Definition konnte bei 77,7% – 83,5% der Probanden mit einem pathologischen Spirometriebefund eine pulmonale Obstruktion neu diagnostiziert werden. Ein ähnliches Bild ergibt sich bei der

\textit{Tabelle 46: Über- und Unterdiagnostiziertheit pulmonaler Obstruktion im internationalen Vergleich}

<table>
<thead>
<tr>
<th>Autor</th>
<th>Jahr</th>
<th>Unterdiagnostiziert [%]</th>
<th>Untertherapiert [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bednarek et al.</td>
<td>2006</td>
<td>81,2</td>
<td>-</td>
</tr>
<tr>
<td>Mannino et al.</td>
<td>2000</td>
<td>63,3</td>
<td>-</td>
</tr>
<tr>
<td>Zhang et al.</td>
<td>2013</td>
<td>92,2</td>
<td>72,9</td>
</tr>
<tr>
<td>Hill et al.</td>
<td>2010</td>
<td>67,3</td>
<td>-</td>
</tr>
<tr>
<td>Make et al.</td>
<td>2012</td>
<td>-</td>
<td>66,3</td>
</tr>
</tbody>
</table>

6.2.6 Zusammenhang zwischen pulmonaler Obstruktion und Statintherapie

Die Anzahl derer, die eine Statintherapie erhalten, beläuft sich in Deutschland auf ca. 5% der Bevölkerung. Im höheren Alter nimmt diese Zahl zu. Dies liegt zum einen an späten Manifestationen von Erkrankungen, die zu einer solchen Therapie führen, wie zum Beispiel dem Diabetes mellitus Typ 2 als kardiovaskulärem Risikofaktor, als auch an den Folgen solcher

6.2.7 Diskussion über die Sinnhaftigkeit eines spirometrischen Screenings der Bevölkerung

Ein Screening der Allgemeinbevölkerung auf COPD raten in den letzten Jahren viele Autoren an. Insbesondere Personen im hohen Alter oder mit erhöhtem Risikoprofil für eine COPD sollen laut dieser Autoren von einem Screening profitieren.111,112 Als Methode der Wahl wird durch Fachgesellschaften wie die Deutsche Atemwegsliga die Spirometrie als einfache Screeningmethode empfohlen, da die Progression und Exacerbation einer Lungenfunktionseinschränkung durch frühes Eingreifen verhindert bzw. herausgezögert werden kann. Es wird aktuell wie bereits diskutiert eine deutliche Unterdiagnostiziertheit der pulmonalen Obstruktion bzw. der COPD in der Allgemeinbevölkerung angenommen. Eine Studienanalyse von Kenneth Lin et al. im Jahr 2008 hingegen beschreibt, dass trotz der hohen Rate an undiagnostizierter pulmonaler Obstruktion hunderte Personen gescreent werden müssten, um eine Exacerbation einer COPD zu verhindern. Laut dieser Veröffentlichung fehlt in der Literatur der direkte Nachweis, dass ein Screening auf COPD das Outcome bei solchen Probanden verbessern könnte.113 Ein weiterer Kritikpunkt an einem Screening ist die Rate der falsch positiv bzw. falsch negativ festgestellten pulmonalen Obstruktionen. Je nach verwendeter Definition schwanken Prävalenzdaten in unserer Studie zwischen ca. 7,3-21,3%. Vergleichbare Studien, in denen die Anzahl derer, die einen ausreichenden Qualitätsgrad nach den GOLD-Richtlinien bzw. den DAL-Kriterien als Kriterium für die Datenauswertung bei älteren Probanden benennen, erheben wie bereits diskutiert ähnliche Werte.

Dem gegenübergestellt muss allerdings bedacht werden, dass die Spirometrie als eine in der theoretischen Anwendung einfache Methode auch wiederholt an unterschiedlichen Tagen durchgeführt werden könnte, was in unserem Studienablauf nicht der Fall war. Auf Grund der bereits beschriebenen Unterdiagnostiziertheit und Untertherapiertheit wäre eine Screeninguntersuchung jedoch trotz der genannten Einschränkungen sinnvoll. Insbesondere bei Risikopatienten kann auf kostengünstige Art und Weise in jedem Fall der Hinweis auf Lungenfunktionsstörungen aufgezeigt und eventuell in der fachärztlichen Weiterbehandlung detaillierter analysiert werden.

6.3 Das metabolische Syndrom

6.3.1 Diskussion über das Konzept des metabolischen Syndroms

Diskussion

Triglyceridspiegels, der abdominellen Adipositas bzw. des Nüchternglukosespiegels konnte gesehen werden und ist pathogenetisch zu vermuten.

In der Abbildung 24 (a-d) sind die Nüchternglukose-Werte der einzelnen Probanden in Abhängigkeit vom Taillenumfang und der Einfluss der weiteren das metabolische Syndrom definierenden Faktoren dargestellt. Hier sah man eine Erhöhung der Nüchternglukose bei erhöhtem Taillenumfang, weiter war die Nüchternglukose bei erhöhtem Taillenumfang nochmals gesteigert, sobald Triglyceride oder HDL als weiterer Einflussfaktor hinzukamen. Auch wenn sich bei normalem Taillenumfang nach den Kriterien der IDF keine Unterschiede in der Gruppe derer mit normwertigem oder pathologisch veränderten Triglyceriden oder HDL zeigte, erschien dies in der Gruppe derer mit erhöhtem Taillenumfang einen zusätzlichen Einfluss zu haben. Erhöhter Blutdruck war in unserer Datenauswertung generell mit einem erhöhten Nüchternglukosespiegel assoziiert, weitestgehend unabhängig vom Taillenumfang. Diese Ergebnisse unterstreichen nochmals die Sinnhaftigkeit, das metabolische Syndrom als Erkrankung und nicht als Risikoscore zu betrachten, auch wenn der Faktor Blutdruck in unserer Auswertung eine untergeordnete Rolle spielte.

Abbildung 25: Zusammenhänge zwischen den Faktoren des metabolischen Syndroms untereinander
6.3.2 Prävalenz des metabolischen Syndroms im nationalen und internationalen Vergleich

Die Prävalenz des metabolischen Syndroms ist von der zu Grunde liegenden Definition abhängig. Nationale und internationale Prävalenzerhebungen zeigen, dass Schwankungen zwischen 13,6% und 86% durchaus möglich sind. Unterschiedliche Erhebungen zur Prävalenz des metabolischen Syndroms sind in Tabelle 47 aufgeführt. Nationale Studien sehen eine Prävalenz zwischen 13,6% und 36,6%. Höhere Prävalenzdaten finden sich in nationalen Studien in erster Linie für besondere Risikogruppen wie Diabetiker. Internationale Studien sehen Prävalenzen je nach Region und Definition sowie der eingeschlossenen Altersgruppe von bis zu 86%.

Tabelle 47: Prävalenzdaten des metabolischen Syndroms im nationalen und internationalen Vergleich

<table>
<thead>
<tr>
<th>Autor</th>
<th>Land</th>
<th>Jahr</th>
<th>Bevölkerungsgruppe</th>
<th>Anzahl</th>
<th>Definition</th>
<th>Prävalenz [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE II</td>
<td>Deutschland</td>
<td>2013</td>
<td>Gruppe 23-34-jähriger; Gruppe >60-jähriger</td>
<td>89</td>
<td>IDF/AHA/NHLBI 2009</td>
<td>0-13,3, 29,7-37,2</td>
</tr>
<tr>
<td>Alexander et al.</td>
<td>USA</td>
<td>2003</td>
<td>>50-jährige Diabetiker</td>
<td>3510</td>
<td>NCEP III</td>
<td>86</td>
</tr>
<tr>
<td>Koehler et al.</td>
<td>Deutschland</td>
<td>2007</td>
<td>Diabetiker im Alter von 35-80</td>
<td>4020</td>
<td>WHO, AHA/NHLBI, IDF</td>
<td>26,1, 79,3, 82,6</td>
</tr>
<tr>
<td>Ford et al.</td>
<td>USA</td>
<td>2004</td>
<td>ab dem 20. Lj.</td>
<td>3601</td>
<td>NCEP, IDF</td>
<td>34,6, 39,1</td>
</tr>
<tr>
<td>Athyros et al.</td>
<td>Griechenland</td>
<td>2005</td>
<td>ab dem 18. Lj.</td>
<td>9 669</td>
<td>NCEP III, IDF</td>
<td>24,5, 43,5</td>
</tr>
<tr>
<td>Neuhauser et al.</td>
<td>Deutschland</td>
<td>2005</td>
<td>18-79</td>
<td>7124</td>
<td>ATP III</td>
<td>13,6</td>
</tr>
<tr>
<td>Pieper et al.</td>
<td>Deutschland</td>
<td>2008</td>
<td>Keine KHK, kein Diabetes mellitus</td>
<td>4846</td>
<td>NCEP III, IDF</td>
<td>25,2, 36,6</td>
</tr>
</tbody>
</table>

In unserer Datenauswertung fand sich gemäß der Definition nach den IDF/AHA/NHLBI-Kriterien von 2009 eine Prävalenz von 13,3% in der Gruppe der jungen Männer und 0% der jungen Frauen. Bei den älteren Probanden war das Auftreten dieses Symptomkomplexes deutlich häufiger. Männer waren zu 37,2% betroffen, Frauen zu 29,7%.

Die Ergebnisse der Berliner Altersstudie II bestätigen im Wesentlichen die Tendenz bereits erhobener Prävalenzdaten.

6.3.3 Faktoren des metabolischen Syndroms im internationalen und nationalen Vergleich

Nicht nur die Prävalenz des metabolischen Syndroms, sondern auch die der einzelnen Faktoren dieses Symptomkomplexes unterscheiden sich nicht nur in verschiedenen Altersgruppen, sondern auch regionale Unterschiede machen einen großen Einfluss aus. Eine Übersicht über die Definitions kriterien in verschiedenen Regionen ist in Tabelle 48 aufgeführt und den Daten der Berliner Altersstudie II gegenübergestellt.

Tabelle 48: Prävalenzdaten für die einzelnen das metabolische Syndrom definierenden Faktoren im nationalen und internationalen Vergleich

<table>
<thead>
<tr>
<th>Autor</th>
<th>Region</th>
<th>HDL [%]</th>
<th>Triglyceride [%]</th>
<th>Insulinresistenz [%]</th>
<th>Taillenumfang [%]</th>
<th>Blutdruck [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>m</td>
<td>w</td>
<td>m</td>
<td>w</td>
<td>m</td>
</tr>
<tr>
<td>BASE II</td>
<td>Deutschland</td>
<td>26,7</td>
<td>6,8</td>
<td>17,8</td>
<td>4,5</td>
<td>0</td>
</tr>
<tr>
<td>(23.-34. Lj.)</td>
<td></td>
<td>2,3</td>
<td>17,8</td>
<td>30,6</td>
<td>20</td>
<td>11,4</td>
</tr>
<tr>
<td>BASE II</td>
<td>Deutschland</td>
<td>16,1</td>
<td>21,3</td>
<td>35,8</td>
<td>24,3</td>
<td>31,4</td>
</tr>
<tr>
<td>(> 60. Lj.)</td>
<td></td>
<td>18,8</td>
<td>70,8</td>
<td>87,1</td>
<td>77,4</td>
<td>69,3</td>
</tr>
<tr>
<td>Lorenzo et al</td>
<td>Spanien</td>
<td>30,6</td>
<td>36</td>
<td>28,4</td>
<td>13,1</td>
<td>7,4</td>
</tr>
<tr>
<td>et al**</td>
<td></td>
<td>6,4</td>
<td>23</td>
<td>66,4</td>
<td>48,1</td>
<td>50,5</td>
</tr>
<tr>
<td>Lorenzo et al</td>
<td>St Antonio</td>
<td>57,7</td>
<td>52,7</td>
<td>37,6</td>
<td>28,8</td>
<td>2,9</td>
</tr>
<tr>
<td>et al</td>
<td></td>
<td>1,5</td>
<td>29,7</td>
<td>40,2</td>
<td>33,9</td>
<td>28,9</td>
</tr>
<tr>
<td>Arden et al</td>
<td>Kanada</td>
<td>32-34</td>
<td>35-38</td>
<td>22-26</td>
<td>3-5</td>
<td>17-24*</td>
</tr>
<tr>
<td>et al</td>
<td></td>
<td>3-5</td>
<td>19-22*</td>
<td>38-47</td>
<td>24-30</td>
<td></td>
</tr>
<tr>
<td>Ervin et al</td>
<td>USA**</td>
<td>21,6</td>
<td>27,8</td>
<td>35,6</td>
<td>26,9</td>
<td>45,8</td>
</tr>
<tr>
<td>et al</td>
<td></td>
<td>31,3</td>
<td>44,8</td>
<td>60,7</td>
<td>43,4</td>
<td>35,2</td>
</tr>
</tbody>
</table>

[\%] = % der Personen, die das Kriterium nach AHA/NHLBI/IFD (2009) erfüllen; * BMI als Kriterium; ** ab dem 20. Lebensjahr

6.4 Zusammenhang zwischen Lungenfunktion und dem metabolischen Syndrom

6.4.1 Zusammenhang zwischen pulmonaler Obstruktion nach GOLD, Hardie und DAL mit dem metabolischen Syndrom

In der Datenauswertung der Berliner Altersstudie II findet sich kein signifikant gehäuftes Auftreten einer pulmonalen Obstruktion in der Gruppe derer, die ein metabolisches Syndrom aufweisen. Die Prävalenz des metabolischen Syndroms liegt jedoch in der Gruppe der pulmonal obstruktiven Studienteilnehmer tendenziell höher nach den Obstruktionskriterien von GOLD und Hardie, aber niedriger nach den DAL-Kriterien (nach GOLD: 25,5% der Männer und 21,7% der Frauen; nach Hardie: 17,6% der Männer und 20% der Frauen, nach DAL: 5,9% der Männer und 8,3% der Frauen). Betrachtet man umgekehrt, wie viele Studienteilnehmer mit pulmonaler Obstruktion ein metabolisches Syndrom auswiesen, so erkennt man, dass je nach Definition bis zu 37,1% der Männer (GOLD) und 38,5% der Frauen (DAL) ein metabolisches Syndrom hatten. Somit konnte in unserer Datenauswertung ebenfalls, jedoch abhängig von jeweiligen Definitionen, ein häufigeres Auftreten des metabolischen Syndroms als in der allgemeinen Studienpopulation bei der Gruppe der pulmonal obstruktiven Probanden detektiert werden. Andere Studien sehen hier ebenfalls bei fast der Hälfte der Probanden mit COPD auch ein metabolisches Syndrom.20

Ursächlich für den im Vergleich zu anderen Studien geringeren Zusammenhang zwischen metabolischem Syndrom und pulmonaler Obstruktion könnte der gute Gesundheitszustand

6.4.2 Zusammenhang zwischen Lungenvolumina und dem metabolischen Syndrom

Betrachtet man die einzelnen Lungenfunktionsparameter, so ergab sich in unserer Datenauswertung zunächst bezüglich der Parameter des metabolischen Syndroms nach den Definitionsamen der IDF/AHA/NHLBI (2009), dass die Einsekundenkapazität bei Männern mit erhöhter Nüchternglukose signifikant erniedrigt war, ebenso die FVC, nicht jedoch der Quotient FEV1/FVC.

In der Teilnehmergruppe der älteren Frauen zeigten sich in Hinblick auf die Insulinresistenz bei einer Erhöhung dieses Faktors gemäß den Kriterien der IDF/AHA/NHLBI (2009) sowohl FVC als auch das Verhältnis FEV1/FVC signifikant erniedrigt, nicht jedoch die Einsekundenkapazität. Weiter ergaben sich bei Frauen signifikant verringerte Werte für FVC bei erhöhtem Blutdruck.
Die FEV1 war ebenfalls tendenziell bei weiblichen Probanden mit erhöhtem Blutdruck erniedrigt.

Bezüglich des metabolischen Syndroms ließen sich bei Frauen signifikant erniedrigte Werte für FEV1 und FVC, nicht jedoch für den Quotienten FEV1/FVC ermitteln.

Auch wenn also kein direkter Zusammenhang der Gruppen mit einem metabolischen Syndrom bzw. dessen Faktoren und den Obstruktionsskriterien nach GOLD, Hardie und DAL bestand, so konnten doch die Verringerungen einzelner Lungenvolumina signifikant in Zusammenhang mit bestimmten Faktoren des metabolischen Syndroms gebracht werden. Dies betraf hier jedoch meist nur die Lungenvolumina FEV1 und FVC, nicht den für die Definition einer obstruktiven Ventilationsstörung ausschlaggebenden Quotienten FEV1/FVC, zudem varierten die Ergebnisse dieser Auswertung geschlechtsabhängig. Dies erklärt in Teilen, warum sich kein Zusammenhang zwischen den Gruppen mit einem metabolischen Syndrom und mit pulmonaler Obstruktion zeigte. Dennoch kann aus dieser Auswertung abgeleitet werden, dass die bei der Entstehung bzw. Definition eines metabolischen Syndroms beteiligten Faktoren sehr wohl auch einen Einfluss auf die Lungenfunktion haben können. Teilweise bestätigte die Datenauswertung der Berliner Altersstudie II so die Ergebnisse der Literatur, insbesondere in Hinblick auf die Insulinresistenz. Bei Frauen ließ sich ebenfalls der bereits beschriebene Einfluss von Blutdruck und metabolischem Syndrom auf Lungenvolumina eruieren.

6.4.3 Abhängigkeit der pulmonalen Obstruktion von Faktoren des metabolischen Syndroms

Um den Einfluss der verschiedenen Parameter des metabolischen Syndroms und der in dieser Arbeit herangezogenen Kovariablen (Statintherapie, Raucherstatus) auf pulmonale Obstruktion nach GOLD, Hardie und DAL genauer zu testen, kam eine binär logistische Regressionsanalyse mit Zielgröße „pulmonale Obstruktion“ zum Einsatz. Hierdurch sollte, auch wenn sich kein direkter Zusammenhang zwischen dem metabolischen Syndrom und pulmonaler Obstruktion ergab, überprüft werden, inwiefern die einzelnen Variablen dieses Symptomkomplexes das
Auftreten einer obstruktiven Ventilationsstörung beeinflussen. In beiden Geschlechtergruppen war bezüglich der Kovariablen die pulmonale Obstruktion nach allen hier angewendeten Definitionsrichtlinien vom Rauchen (pack years) abhängig.

Die Statintherapie, die wie bereits beschrieben in der Literatur sowohl mit einer Verbesserung der Lungenfunktion als auch mit interstitiellen Lungenerkrankungen gesehen werden konnte, hatte in unserer Auswertung lediglich bei Frauen einen tendenziellen Einfluss auf die Diagnose „pulmonale Obstruktion“ nach GOLD und Hardie.

Der Taillenumfang, der in der Literatur zum Teil als zentrales Bindeglied zwischen metabolischem Syndrom und pulmonaler Obstruktion ermittelt wurde, war in unserer Datenauswertung bei Männern nach den DAL-Kriterien und denen der GOLD-Initiative signifikanter Einflussfaktor für die Diagnose einer pulmonalen Obstruktion, nach der Definition von Hardie fand sich hier eine Tendenz. Bei Frauen spielte der Taillenumfang für die Diagnose einer pulmonalen Obstruktion keine Rolle.

Weiter beeinflussten die Nüchternblutzucker und der Triglyceridspiegel bei Männern die Diagnose pulmonale Obstruktion nach GOLD und Hardie signifikant.

Betrachtet man nun die Faktoren, die in unserer Datenanalyse vorrangig für die Definition eines metabolischen Syndroms verantwortlich waren, so erkennt man, dass dies die gleichen Faktoren waren, die zumindest bei Männern einen signifikanten Einfluss auf die Diagnose einer pulmonalen Obstruktion hatten. Damit erscheinen die Faktoren Taillenumfang, Triglyceridspiegel und Nüchternblutzucker in der Gruppe der Männer einen gemeinsamen Verknüpfungspunkt zwischen pulmonaler Obstruktion und metabolischem Syndrom darzustellen. Die geschlechtsspezifischen Unterschiede, die in dieser Erhebung herausgearbeitet wurden, könnten auch in der unterschiedlichen Körperzusammensetzung von Frauen und Männern, insbesondere in Hinblick auf die Fettverteilung, begründet sein, jedoch auch von der Obstruktionsdefinition abhängen. Insgesamt erscheint ein diesen beiden Erkrankungen gemeinsamer Pathomechanismus durch die hier gewonnenen Ergebnisse wahrscheinlich. Zu einem ähnlichen Ergebnis kamen die Auswertungen von Lam et al. an einer Probandengruppe von 7358 Studienteilnehmern. Bei Männern konnten hier ebenfalls der Triglyceridspiegel und die abdominelle Adipositas, bei Frauen nur die abdominelle Adipositas als signifikant erhöht bei Teilnehmern mit einer pulmonalen Obstruktion gesehen werden, der in dieser Arbeit gefundenen Zusammenhang zur Insulinresistenz wurde nicht beobachtet.75
6.4.4 Zusammenfassung der Verknüpfungspunkte zwischen Lungenfunktion und metabolischem Syndrom

![Abbildung 26: Abhängigkeit der pulmonalen Obstruktion und des metabolischen Syndroms von Faktoren des metabolischen Syndroms bei Männern](image-url)
6.5 Zusammenfassung

In Rahmen der vorliegenden Arbeit wurde der Zusammenhang zwischen pulmonaler Obstruktion und metabolischem Syndrom an einer Gruppe selbstständig zu Hause lebender Studienteilnehmer untersucht. Diese beiden Krankheitsbilder sind unter den Probanden der Berliner Altersstudie II sowie in der Allgemeinbevölkerung häufig anzutreffen, selten diagnostiziert und häufig untertherapiert.

Definition (GOLD, Hardie, DAL) eine Prävalenz von ca. 5% in der Gruppe der jungen und 7,3-21,3% bei den alten Teilnehmern. 0-13,3% der Studienteilnehmer in der jungen Vergleichsgruppe und 29,7-37,2% der Teilnehmer in der Altersgruppe ab dem 60. Lebensjahr erfüllten die Kriterien eines metabolischen Syndroms. Hier schwanken je nach Definitionsprämissen der jeweiligen Fachgesellschaften nationale und internationale Vergleichsdaten stark. Ein ähnliches Bild konnte bei den einzelnen Faktoren des metabolischen Syndroms gesehen werden.

Bei Frauen zeigten sich signifikante Zusammenhänge zwischen Nüchternblutzuckern, Blutdruck und metabolischem Syndrom in Hinblick auf die Atemvolumina FEV1, FVC oder FEV1/FVC.

Weiter wurden die Faktoren des metabolischen Syndroms selbst auf ihre gegenseitige Abhängigkeit untersucht, um somit das Konzept des metabolischen Syndroms nochmals zu beleuchten und zu überprüfen, ob Einflussfaktoren, die dieses Konzept prägen, auch Lungenfunktionsparameter beeinflussten. Hier stellten sich die Triglyceridspiegel, abdominelle Adipositas und die gestörte Glukosetoleranz als zentrale Faktoren heraus.

Sowohl bei der pulmonalen Obstruktion als auch beim Konzept des metabolischen Syndroms konnten die abdominelle Adipositas und der Nüchternblutzuckerspiegel sowie die Triglyceride als Faktoren und eventuelle Bindeglieder zwischen diesen beiden Erkrankungen identifiziert werden. Als weitere Berührungspunkte fanden sich Raucherstatus und Statintherapie. Deutliche Unterschiede ergaben sich hier bei der geschlechtergetrennten Beurteilung der jeweiligen Einflussfaktoren.

Da es sich bei der aktuellen Auswertung der Daten nur um einen Querschnitt selbständig zu Hause lebender Senioren handelt, wird es im weiteren Verlauf der Studie, die als Längsschnittstudie angelegt ist interessant sein, inwiefern sich diese Zusammenhänge im Altersvergleich und auch bei der Gruppe der jüngeren Probanden, entwickeln.

Insgesamt konnten die Ergebnisse innerhalb der Berliner Altersstudie II keinen direkten, signifikanten Zusammenhang zwischen den Krankheitsbildern „pulmonale Obstruktion“ und „metabolisches Syndrom“ darlegen, lediglich bezüglich einzelner Risikofaktoren, die das
metabolische Syndrom definieren. Dass andere Forschungsgruppen eine solche Kausalität herausfanden, könnte zum einen an der relativ gesunden Stichprobenauswahl der BASE II Teilnehmer, zum andern an den jeweiligen Definitionsrikriterien für pulmonale Obstruktion oder metabolisches Syndrom liegen. Da BASE II als longitudinale Studie angelegt ist, wird im Verlauf ein Vergleich in höheren Altersstadien sowohl der jungen als auch der älteren Probanden zu den Analysen des aktuellen Querschnitts sowie im Vergleich zu anderen Studien interessant sein.

Weitere Untersuchungen der gesamten Stichprobe von 2200 Probanden in BASE II könnten in Kombination mit anderen Parametern wie z.B. bildgebenden Verfahren oder molekularbiologischen Ansätzen Zusammenhänge zwischen diesen beiden Krankheitsbildern, für die es pathogenetisch theoretische Zusammenhänge gibt, ergeben. Bei Betrachtung der Entwicklung der zukünftigen Bevölkerungsstruktur nicht nur in Hinblick auf das Altern, sondern auch auf die Prävalenz pulmonaler Obstruktion oder Lebensgewohnheiten, erscheint die weitere Erforschung dieser Hintergründe nicht nur wünschenswert sondern auch sehr interessant.
7 Abkürzungsverzeichnis

A.D. Anno Domini (dt. “nach Christi Geburt”)
ADP Adenosindiphosphat
AHA American Heart Association
Assessment Beurteilungsinstrument
ATP Adenosintriphosphat
ATS American Thoracic Society
Barthel-Index Assessmentinstrument zur Bewertung von alltäglichen Fähigkeiten
BASE Berliner Altersstudie
BASE II Berliner Altersstudie 2
BIA Bioelektrische Impedanzmessung (Messung der Körperzusammensetzung)
BMI Body-Mass-Index
BOLD Burden of Obstructive Lung Disease
bzw. beziehungsweise
c. zirka
CD Cluster of Differentiation
CES-D Center for Epidemiologic Studies Depression Scale (Depressionsfragebogen)
cm Zentimeter
COGITO Kognitive Interventionsstudie des MPI
Cohens d Effektgröße
COPD Chronic Obstructive Pulmonary Disease (chronisch obstructive Lungenerkrankung)
CRF Case Report Form (dt. Patientenerhebungsbogen)
CRP C-reaktives Protein
CSE-Hemmer Cholesterinsyntheseenzymhemmer
CT Computertomographie
DA-Studie Studie zum Thema „Lernen und Entwicklung über die Lebensspanne“
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAL</td>
<td>Deutsche Atemwegsliga und Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin</td>
</tr>
<tr>
<td>Dem Tect</td>
<td>Demenz Detection (dt. Demenz-Detektion)</td>
</tr>
<tr>
<td>DGE</td>
<td>Deutsche Gesellschaft für Ernährung</td>
</tr>
<tr>
<td>DXA</td>
<td>Dual energy X-ray Absorptiometry (dt. Doppel-Röntgen-Absorptiometrie)</td>
</tr>
<tr>
<td>ERS</td>
<td>European Respiratory Society</td>
</tr>
<tr>
<td>ERV</td>
<td>exspiratorisches Reservevolumen</td>
</tr>
<tr>
<td>ESC Euro-SCORE</td>
<td>Risikoscore zur Erfassung des kardiovaskulären Risikos</td>
</tr>
<tr>
<td>et al.</td>
<td>lat. „und andere“</td>
</tr>
<tr>
<td>etc.</td>
<td>et cetera (dt. „und so weiter“)</td>
</tr>
<tr>
<td>FEV1</td>
<td>Volumen, das nach maximaler Inspiration innerhalb der ersten Sekunde maximal ausgeatmet werden kann</td>
</tr>
<tr>
<td>FEV1/FVC</td>
<td>Verhältnis aus FEV1 und FVC (= Tiffeneau-Index)</td>
</tr>
<tr>
<td>FFS</td>
<td>freie Fettsäuren</td>
</tr>
<tr>
<td>Follow-up</td>
<td>Verlaufsuntersuchung</td>
</tr>
<tr>
<td>FRC</td>
<td>funktionelle Residualkapazität</td>
</tr>
<tr>
<td>FVC</td>
<td>Volumen, das nach maximaler Inspiration maximal ausgeatmet werden kann</td>
</tr>
<tr>
<td>g/min</td>
<td>Gramm pro Minute</td>
</tr>
<tr>
<td>GDS</td>
<td>Geriatric Depression Scale (dt. geriatrische Depressionsskala)</td>
</tr>
<tr>
<td>GEDA</td>
<td>Gesundheit in Deutschland aktuell – telefonische Gesundheitsbefragung des Robert-Koch-Instituts</td>
</tr>
<tr>
<td>ggf.</td>
<td>gegebenenfalls</td>
</tr>
<tr>
<td>GINA</td>
<td>Global INitiative for Asthma</td>
</tr>
<tr>
<td>GK</td>
<td>Glycerinkinase</td>
</tr>
<tr>
<td>GmbH</td>
<td>Gesellschaft mit beschränkter Haftung</td>
</tr>
</tbody>
</table>
GOLD Global Initiative for chronic Obstructive Lung Disease
GPO Glutathionperoxidase
H^+ Wasserstoffion
Hardie Nach der Definition nach Hardie et al. (FEV1/FVC<altersspezifischer Sollwert)
HCL Strukturformel für Chlorwasserstoff
HDL high-density lipoprotein
high-dose hohe Dosierung
HK Hexokinase
H_2O Strukturformel für Wasser
H_2O_2 Strukturformel für Wasserstoffperoxid
IADL Instrumental Activities of Daily Living (dt. instrumentelle Aktivitäten des täglichen Lebens)
ICD International Classification of Diseases (dt. internationale Klassifikation der Krankheiten)
ICS inhalatives Kortikosteroide
IDF International Diabetes Foundation
IgA Immunglobulin A
IgG Immunglobulin G
IgM Immunglobulin M
IL-4 Interleukin-4
IL-5 Interleukin-5
IL-6 Interleukin-6
Inc. incorporated
IRV inspiratorisches Reservevolumen
i.S. im Sinn
kg Kilogramm
KHK koronare Herzerkrankung
l Liter
LDL low-density lipoprotein
Lj. Lebensjahr
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLN</td>
<td>Lower Limit of Normal (FEV1/FVC < der 5. Perzentile des Sollwertes)</td>
<td></td>
</tr>
<tr>
<td>low-dose</td>
<td>niedrig dosiert</td>
<td></td>
</tr>
<tr>
<td>Lpa</td>
<td>Lipoprotein (a)</td>
<td></td>
</tr>
<tr>
<td>LPL</td>
<td>Lipoproteinlipase</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>Maximum</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>Mittelwert der Verteilung</td>
<td></td>
</tr>
<tr>
<td>medium-dose</td>
<td>mittlere Dosierung</td>
<td></td>
</tr>
<tr>
<td>MEF</td>
<td>Maximaler expiratorischer Fluss</td>
<td></td>
</tr>
<tr>
<td>MEF 25</td>
<td>expiratorischer Fluss bei 25% der forcierten Vitalkapazität</td>
<td></td>
</tr>
<tr>
<td>MEF 50</td>
<td>expiratorischer Fluss bei 50% der forcierten Vitalkapazität</td>
<td></td>
</tr>
<tr>
<td>MEF 75</td>
<td>expiratorischer Fluss bei 75% der forcierten Vitalkapazität</td>
<td></td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
<td></td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>Magnesium</td>
<td></td>
</tr>
<tr>
<td>mg/dl</td>
<td>Milligramm pro Deziliter</td>
<td></td>
</tr>
<tr>
<td>mg/g</td>
<td>Milligramm pro Gramm</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>Minimum</td>
<td></td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
<td></td>
</tr>
<tr>
<td>mmHg</td>
<td>Maßeinheit Millimeter Quecksilbersäule (1mmHg ist der Druck, den ein Millimeter einer Quecksilbersäule ausübt)</td>
<td></td>
</tr>
<tr>
<td>MMSE</td>
<td>Mini-Mental-State-Examination</td>
<td></td>
</tr>
<tr>
<td>MNA</td>
<td>Mini-Nutritional-Assessment</td>
<td></td>
</tr>
<tr>
<td>MPI</td>
<td>Max-Planck-Institut</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>Stichprobenumfang bzw. Anzahl von Probanden</td>
<td></td>
</tr>
<tr>
<td>NADP⁺</td>
<td>Nicotinamidenindinukleotidphosphat</td>
<td></td>
</tr>
<tr>
<td>NADPH</td>
<td>reduzierte Form von NADP⁺</td>
<td></td>
</tr>
<tr>
<td>NCEP</td>
<td>National Cholesterol Education Program</td>
<td></td>
</tr>
<tr>
<td>NHANES</td>
<td>National Health and Nutrition Examination</td>
<td></td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>NHLBI</td>
<td>National Heart, Lung and Blood Institute</td>
<td></td>
</tr>
<tr>
<td>NICE</td>
<td>the Nippon COPD Epidemiology study</td>
<td></td>
</tr>
<tr>
<td>NLHEP</td>
<td>National Lung Health Education Program</td>
<td></td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
<td></td>
</tr>
<tr>
<td>n.s.</td>
<td>nicht signifikant</td>
<td></td>
</tr>
<tr>
<td>Nüchternglukose</td>
<td>Serum-Glucose nach > 8 Stunden</td>
<td></td>
</tr>
<tr>
<td>O₂</td>
<td>Strukturformel für Sauerstoff</td>
<td></td>
</tr>
<tr>
<td>oGTT</td>
<td>oraler Glukosetoleranztest</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>Signifikanz</td>
<td></td>
</tr>
<tr>
<td>PAI-1</td>
<td>Plasminogen-Aktivator-Inhibitor-1</td>
<td></td>
</tr>
<tr>
<td>PEF</td>
<td>Spitzenfluss während der Expiration</td>
<td></td>
</tr>
<tr>
<td>PROCAM</td>
<td>Prospective Cardiovascular Münster</td>
<td></td>
</tr>
<tr>
<td>py</td>
<td>pack year(s)</td>
<td></td>
</tr>
<tr>
<td>r²</td>
<td>Bestimmtheitsmaß</td>
<td></td>
</tr>
<tr>
<td>RAPA</td>
<td>Fragebögen zur körperlichen Aktivität</td>
<td></td>
</tr>
<tr>
<td>Ratio</td>
<td>Verhältnis</td>
<td></td>
</tr>
<tr>
<td>RV</td>
<td>Residualvolumen</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung</td>
<td></td>
</tr>
<tr>
<td>SF-36</td>
<td>Gesundheitsfragebogen</td>
<td></td>
</tr>
<tr>
<td>SNS</td>
<td>sympathisches Nervensystem</td>
<td></td>
</tr>
<tr>
<td>SOEP</td>
<td>Sozio-oekonomisches Panel</td>
<td></td>
</tr>
<tr>
<td>Soll</td>
<td>spezifischer Sollwert</td>
<td></td>
</tr>
<tr>
<td>Space</td>
<td>Kognitionssstudie des MPI für Bildungsforschung</td>
<td></td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for the Social Sciences</td>
<td></td>
</tr>
<tr>
<td>Telefonstudie</td>
<td>Telefonische Befragungsstudie des MPI</td>
<td></td>
</tr>
<tr>
<td>TG</td>
<td>Triglyceride</td>
<td></td>
</tr>
<tr>
<td>Timed Up & Go</td>
<td>Mobilitätstest unter anderem zur Erfassung von Sturzrisiko</td>
<td></td>
</tr>
<tr>
<td>TLC</td>
<td>Totale Lungenkapazität (= TC)</td>
<td></td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumornekrosefaktor Alpha</td>
<td></td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Terminus</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>u.a.</td>
<td>unter anderem</td>
<td></td>
</tr>
<tr>
<td>VC</td>
<td>Vitalkapazität</td>
<td></td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
<td></td>
</tr>
<tr>
<td>Z.n.</td>
<td>Zustand nach</td>
<td></td>
</tr>
</tbody>
</table>
8 Abbildungsverzeichnis

Abbildung 1: Möglicher pathomechanistischer Zusammenhang zwischen metabolischem Syndrom, kardiovaskulärem Risiko und Lungenfunktion angelehnt an Tiengo et al.

Abbildung 2: An der Berliner Altersstudie II (BASE II) beteiligte Institutionen, und deren Aufgabenschwerpunkte

Abbildung 3: Zusammenhang zwischen pulmonaler Obstruktion, COPD, Asthma bronchiale, chronischer (obstruktiver) Bronchitis und Lungenemphysem angelehnt an Ullmer et al.

Abbildung 4: Grundlegender Pathomechanismus pulmonaler Obstruktion und dessen Folgen.

Abbildung 5: Pathogenese der COPD angelehnt an Wood et al.

Abbildung 6: Gegenüberstellung histologischer Veränderungen kleiner Atemwege bei COPD und Asthma bronchiale nach Barnes et al

Abbildung 7: Pathophysiologische Veränderungen nach Allergenkontakt bei Asthma bronchiale aus Harrisons Innere Medizin, 18. Auflage

Abbildung 8: Veränderungen von Lungenvolumina in Abhängigkeit von Alter und Raucherstatus.

Abbildung 9: Häufigkeit des metabolischen Syndroms in Abhängigkeit von Definition und Geschlecht nach Koehler et al.

Abbildung 11: Mögliche Zusammenhänge zwischen pulmonaler Obstruktion und dem metabolischen Syndrom

Abbildung 12: Auswahl der Studienteilnehmer innerhalb des Probandenkollektives und Aufteilung in Gruppen anhand des Alters, des Asthmasstatus und des Qualitätsgrades der Spirometrie

Abbildung 13: Kennwerte der Altersverteilung in der jungen Probandengruppe

Abbildung 14: Kennwerte der Altersverteilung in der alten Probandengruppe

Abbildung 15: Funktionsweise moderner Spirometer

Abbildung 16: Lungenvolumina aus Harrison Innere Medizin, 18. Auflage

Abbildung 17: Fluss-Volumen-Kurven

Abbildung 18: Auswertungsalgorithmus zur Beurteilung der Spirometrie.
Abbildung 19: Verteilung der Qualitätsgrade in der Spirometrie im Geschlechtsvergleich
Abbildung 20: Darstellung der forcierten Einsekundenkapazität (FEV1) im Alters- und Geschlechtsvergleich
Abbildung 21: Darstellung der forcierten Vitalkapazität (FVC) im Alters- und Geschlechtsvergleich
Abbildung 22: Darstellung des Tiffeneau-Indexes (FEV1/FVC) im Alters- und Geschlechtsvergleich
Abbildung 23: Prävalenz von Obstruktion nach verschiedenen Definitionskenkriterien
Abbildung 25: Zusammenhänge zwischen den Faktoren des metabolischen Syndroms untereinander
Abbildung 26: Abhängigkeit der pulmonalen Obstruktion und des metabolischen Syndroms von Faktoren des metabolischen Syndroms bei Männern
9 Tabellenverzeichnis

Tabelle 1: Überblick über Risikofaktoren für die Entwicklung einer pulmonalen Obstruktion

Tabelle 2: Spirometrische Kriterien zur Schweregradeinteilung der COPD nach den GOLD-Leitlinien

Tabelle 3: Stufenschema zur Therapie bei COPD nach den Leitlinien der deutschen Atemwegsliga (DAL)

Tabelle 4: Unterscheidungsmerkmale zwischen COPD und Asthma bronchiale angelehnt an Buhl et al

Tabelle 5: Schweregradeinteilung bei Asthma bronchiale nach GINA (Global INitiative for Asthma) 2010

Tabelle 6: Medikamentöse Stufentherapie bei Asthma bronchiale nach GINA (Global INitiative for Asthma) 2010

Tabelle 7: Überblick über die Veränderung der Lungenfunktion im Alter

Tabelle 8: Unterschiedliche Definitionsansätze des metabolischen Syndroms im Überblick

Tabelle 9: Deskriptiv-statistische Kennwerte des Alters der Studienteilnehmer in Jahren

Tabelle 10: Deskriptiv-statistische Darstellung des Raucherstatus in den jeweiligen Altersgruppen

Tabelle 11: Ablauf des ersten Untersuchungstages der Berliner Altersstudie II

Tabelle 12: Ablauf des zweiten Untersuchungstages der Berliner Altersstudie II

Tabelle 14: Differenzierung von dynamischen und statischen Lungenvolumina

Tabelle 15: Vergleich von Größe, Gewicht und Alter in Jahren in Hinblick auf den spirometrischen Qualitätsgrad bei Frauen

Tabelle 16: Vergleich von Größe, Gewicht und Alter in Jahren in Hinblick auf den spirometrischen Qualitätsgrad bei Männern

Tabelle 17: deskriptiv-statistische Verteilung der Lungenvolumina FEV1, FVC und FEV1/FVC im Geschlechtsvergleich innerhalb der jeweiligen Altersgruppen

Tabelle 18: Beschreibung der Verteilung einer pulmonalen Obstruktion nach den Diagnosekriterien von GOLD, Hardie und nach DAL.
Tabelle 19: Gegenüberstellung von neu diagnostizierter pulmonaler Obstruktion nach den Diagnosekriterien von GOLD, Hardie und DAL-Kriterien mit bekannten Diagnosen und Therapiehäufigkeit

Tabelle 20: Verteilung der anamnestisch eruierbaren Diagnosen und Therapien
Tabelle 21: Prävalenz des metabolischen Syndroms im Alters- und Geschlechtsvergleich
Tabelle 22: Kenngrößen des Taillenumfangs
Tabelle 23: Kenngrößen des Blutdruckes
Tabelle 24: Kenngrößen der Triglyceridspiegel
Tabelle 25: Kenngrößen der Nüchternglukose
Tabelle 26: Kenngrößen der HDL-Serumspiegel
Tabelle 27: Einfluss von Faktoren des metabolischen Syndroms auf diesen Symptomkomplex bei Männern
Tabelle 28: Einfluss von Faktoren des metabolischen Syndroms auf diesen Symptomkomplex bei Frauen
Tabelle 29: Korrelationsanalyse zwischen Faktoren des metabolischen Syndroms nach Spearman bei Männern und Frauen
Tabelle 30: Raucherstatus und pulmonale Obstruktion
Tabelle 31: Zusammenhang zwischen pulmonaler Obstruktion nach den jeweiligen Definitionen und der Therapie mit Simvastatin
Tabelle 32: Abhängigkeit der Lungenvolumina FEV1 und FVC sowie deren Quotient FEV1/FVC von der Medikation mit Simvastatin bzw. des Raucherstatus bei Männern
Tabelle 33: Abhängigkeit der Lungenvolumina FEV1 und FVC sowie deren Quotient FEV1/FVC von der Medikation mit Simvastatin bzw. des Raucherstatus bei Frauen
Tabelle 34: Zusammenhang zwischen pulmonaler Obstruktion nach GOLD und dem Vorhandensein eines metabolischen Syndroms bzw. dessen Definitionskomponenten nach den Kriterien der IDF/AHA/NHLBI (2009)
Tabelle 36: Zusammenhang zwischen pulmonaler Obstruktion (FEV1/FVC<LLN) und dem Vorhandensein eines metabolischen Syndroms, bzw. dessen Definitionskomponenten
Tabelle 37: t-Test zwischen dichotomen Faktoren des metabolischen Syndroms nach den Kriterien der IDF/AHA/NHLBI (2009) und Lungenvolumina bei Männern
Tabelle 38: t-Test zwischen dichotomen Faktoren des metabolischen Syndroms nach den Kriterien der IDF/AHA/NHLBI (2009) und Lungenvolumina bei Frauen

Tabelle 39: Korrelationsanalyse zwischen Parametern des metabolischen Syndroms und Parametern der Lungenfunktion bei Frauen

Tabelle 40: Korrelationsanalyse zwischen Parametern des metabolischen Syndroms und Parametern der Lungenfunktion bei Männern

Tabelle 41: Binär-logistische Regressionsanalyse zur Bestimmung der Einflussfaktoren auf pulmonale Obstruktion nach GOLD, Hardie und DAL

Tabelle 42: Nationale Prävalenzdaten zum Raucherstatus bei Männern und Frauen

Tabelle 43: Ausschlusskriterien vorangegangener Studien

Tabelle 44: Publikationen, in denen Qualitätskriterien der DAL und GOLD zur Auswertung herangezogen und beschrieben wurden, im Vergleich zu BASE-II

Tabelle 45: Internationale Prävalenzerhebungen der pulmonalen Obstruktion nach den verschiedenen Definitionsrichtlinien

Tabelle 46: Über- und Unterdiagnose der pulmonalen Obstruktion im internationalen Vergleich

Tabelle 47: Prävalenzdaten des metabolischen Syndroms im nationalen und internationalen Vergleich

Tabelle 48: Prävalenzdaten für die einzelnen das metabolische Syndrom definierenden Faktoren im nationalen und internationalen Vergleich
10 Literaturverzeichnis

41. Wood AM, Stockley RA. The genetics of chronic obstructive pulmonary disease. Respiratory research 2006;7:130.

76. Steinhagen-Thiessen E BHO-uSBA, II -Medizinische Untersuchung- Ersterhebung 2009/2010 -.

81. Dobson R. Smoking may increase abdominal obesity BMJ 2005 September 17;331(7517): 596.

83. Spector TD, Blake DR. EFFECT OF CIGARETTE SMOKING ON LANGERHANS' CELLS. The Lancet 1988;332:1028.

84. Lampert T, Thamm M. Consumption of tobacco, alcohol and drugs among adolescents in Germany. Results of the German Health Interview and Examination Survey for Children and Adolescents (KiGGS). Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 2007;50:600-8.

Anhang

- Eidesstattliche Versicherung
- Lebenslauf
- Danksagung
Eidesstattliche Versicherung

Alle Stellen, die wörtlich oder dem Sinne nach auf Publikationen oder Vorträgen anderer Autoren beruhen, sind als solche in korrekter Zitierung (siehe „Uniform Requirements for Manuscripts (URM)“ des ICMJE -www.icmje.org) kenntlich gemacht. Die Abschnitte zu Methodik (insbesondere praktische Arbeiten, Laborbestimmungen, statistische Aufarbeitung) und Resultaten (insbesondere Abbildungen, Graphiken und Tabellen) entsprechen den URM (s.o) und werden von mir verantwortet.

______________________ ____________________
Datum Unterschrift
Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht.
Danksagung

Mein größter Dank gilt Frau Prof. Dr. E. Steinhagen-Thiessen für die stetige Motivation sowie Korrektur und freundliche Unterstützung bei der Durchführung der Arbeit. Sie ermöglichte mir neben meiner klinischen Tätigkeit als Arzt Besuche internationaler Kongresse, was zur Themenfindung meiner Dissertation entscheidend beitrug.

Bei Frau Dr. R. Eckardt bedanke ich mich herzlich für die zeitintensiven Durchsichten dieser Arbeit, die akribischen Korrekturhinweise und die stetige Hilfsbereitschaft und fachliche Unterstützung.

Ebenso gilt mein Dank Herrn PD Dr. Dr. W. Hopfenmüller, der mir als statistischer Berater eine große Unterstützung war. Allen Mitarbeitern der Berliner Altersstudie 2 danke ich für die kollegiale Zusammenarbeit und die freundliche Aufnahme in das Forschungsteam, insbesondere danke ich Herrn Mike Heinig für die stetige Unterstützung.

Bei meiner Freundin Julia bedanke ich mich für ihre liebevolle und verständnisvolle Art und die Unterstützung und Geduld während des Verfassens dieser Arbeit.

Zuletzt danke ich meiner Familie, die mich nicht nur im Rahmen dieser Arbeit unterstützte und fortwährend ermutigt haben.