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The efficient calculation of rare-event kinetics in complex dynamical systems, such as the rate and
pathways of ligand dissociation from a protein, is a generally unsolved problem. Markov state models can
systematically integrate ensembles of short simulations and thus effectively parallelize the computational
effort, but the rare events of interest still need to be spontaneously sampled in the data. Enhanced sampling
approaches, such as parallel tempering or umbrella sampling, can accelerate the computation of equilibrium
expectations massively, but sacrifice the ability to compute dynamical expectations. In this work we
establish a principle to combine knowledge of the equilibrium distribution with kinetics from fast
“downhill” relaxation trajectories using reversible Markov models. This approach is general, as it does
not invoke any specific dynamical model and can provide accurate estimates of the rare-event kinetics.
Large gains in sampling efficiency can be achieved whenever one direction of the process occurs more
rapidly than its reverse, making the approach especially attractive for downhill processes such as folding
and binding in biomolecules. Our method is implemented in the PyEMMA software.
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I. INTRODUCTION

A wide range of biological or physicochemical systems
exhibit rare-event kinetics, consisting of rare transitions
between a couple of long-lived (metastable) states.
Examples are protein folding, protein-ligand association,
and nucleation processes. Metastability can be found in any
system in which states of minimum energy are separated by
barriers higher than the average thermal energy.
A thorough understanding of such systems encompasses

the kinetics of the rare events, e.g., rates and transition
pathways. Obtaining reliable estimates for such systems is
notoriously difficult: The simulation time needs to exceed
the longest waiting time, resulting in a sampling problem.
In recent years, Markov state models (MSMs) [1–8]

and their practical applicability through software [9,10]
have become a key technology for computing kinetics
of complex rare-event systems. A well-constructed MSM
separates the kinetically distinct states and captures their
transition rates or probabilities. With a suitable choice of
state space discretization and lag time, kinetics can be
approximated with high numerical accuracy [8,11]. MSMs
can be straightforwardly interpreted and analyzed with
Markov chain theory and transition path theory [12,13].

This was demonstrated, for example, for protein folding
[14,15] or protein-ligand binding [16,17].
MSMs can somewhat alleviate the sampling problem by

virtue of the fact that they can be estimated from short
simulations produced in parallel [14,15,18], thus avoiding
the need for single long trajectories [19]. However, the rare
events of interest must be sampled in the data in order to
be captured by the model. For example, in protein-ligand
binding, a dissociation rate can only be computed if
each step of the dissociation process has been sampled
at least once.
Orders of magnitude of speed-up can be achieved with

enhanced sampling methods such as umbrella sampling,
replica exchange dynamics, or metadynamics [20–23]. The
speed-up is achieved by coupling the unbiased ensemble
of interest with ensembles at higher temperature at which
the rare events occur more frequently or by using biasing
potentials which allow to “drag” the system across an
energy barrier. With such approaches, accurate equilibrium
expectations, such as free-energy profiles, can be computed
efficiently, but the dynamical properties of the unbiased
ensemble, such as transition rates, relaxation time scales,
and transition pathways, are generally not available.
A common approach to reconstruct the kinetics from

the free-energy profiles is to employ rate theories such
as transition state theory or Kramers or Smoluchowski-
Langevinmodels [24–27]. Suchdynamicalmodels introduce
additional assumptions that cannot be self-consistently
validated because the predicted dynamics is not present in
the data.
A much more advanced approach was recently intro-

duced in Ref. [28], where a MSM-based estimator for the
equilibrium distribution using transition counts harvested
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from simulations at different thermodynamic states was
developed. This approach allows us to mix, in principle,
umbrella sampling simulations and direct molecular dynam-
ics and compute the rates from the transition matrix of the
unbiased ensemble. However, the coefficient matrices used
to connect the biased and unbiased transition matrices
require a specific dynamical model to be formulated (such
as Brownian dynamics in the free-energy coordinate),
making this approach essentially a rate model. In general,
key assumptions underlying rate models are usually the
existence of a time-scale separation and approximate
Markovianity on a single or few reaction coordinates—
assumptions that are unlikely to hold for complex multistate
systems describing, e.g., biomolecular dynamics.
The recently introduce transition-based reweighting

analysis methods (TRAM) [29–31] permit one to rigorously
combine direct molecular dynamics and enhanced samp-
ling methods towards full thermodynamics and kinetics
without assuming any restrictive rate model. However, a
current limitation is that in order to extract unbiased kinetics,
the transition events need to be evaluated at a common
and sufficiently large lag time τ at all thermodynamic states.
This requirement is not consistent with efficient umbrella
sampling or replica-exchange MD simulations that typically
employ very short simulation snippets.
Finally, computation of kinetic quantities without rate

models is also possible with path sampling methods,
such as transition path sampling [32], milestoning [33],
transition interface sampling [34], and multistate transition
interface sampling [35]. A challenge is that these appro-
aches are essentially two-state methods. The transition end
states must be defined a priori and all relevant rare events
must be distinguishable in the reaction coordinates, cores,
or milestones that the method operates on.
Here, we construct a general simulation approach that

enables the computation of kinetic observables related to
slow processes without having to explicitly sample the rare
events. It is based upon a very simple but general idea:
Simulations are often constructed in such a way that they
obey microscopic reversibility or at least a generalization
thereof [36,37]. In this case, for any partition of state space
into sets i; j;… and any choice of the lag time τ, we have
the detailed balance relation

πipijðτÞ ¼ πjpjiðτÞ; ð1Þ

where pijðτÞ is the probability of making a transition from
set i to set j within a time τ and πi is the equilibrium
probability of set i. Suppose we have knowledge about the
equilibrium probabilities πi, πj from an enhanced sampling
simulation. Then, only the larger one of the two transition
probabilities—pij or pji—needs to be sampled while the
less probable event can be reconstructed by Eq. (1).
Speaking in terms of a network of states, a direct analysis

or an analysis via Markov state models requires all states

to be connected in both directions (strongly connected).
The presented method allows us to relax this requirement
if an estimate of the equilibrium probabilities is given—
now all states need to be connected in only one direction
(weakly connected).
The slow rate exhibits a functional dependence on the

transition probabilities of the slow event. By virtue of
the detailed balance condition, a reliable estimate of the
transition probabilities for the frequent event entails a
reliable estimate for the transition probabilities of the slow
event—resulting in a reliable estimate of the slow rate.
While the inference procedure is trivial for a two-state

system where three of the four components in Eq. (1)
are known exactly, it is far from trivial for a system with
many states and when some or all estimates are subject
to statistical uncertainty. Here, we establish a systematic
inference scheme for combining multistate estimates of the
equilibrium probabilities ðπiÞ with sampling data of at least
the “downhill” transition probabilities pij. Our approach
is built upon the framework of reversible Markov models
[38,39], where Eq. (1) is enforced between all pairs of
states. As a consequence, our estimates do not invoke any
additional dynamical model, are accurate within a suitable
state space discretization [8,11], and are precise in the limit
of sufficient sampling.
In contrast to the dynamic weighted histogram analy-

sis method (DHAM) [28] and TRAM methods, we use
equilibrium probabilities previously estimated from
enhanced sampling simulations as additional input param-
eters for the estimation of MSM transition probabilities.
Standard reweighting schemes used to obtain the equilib-
rium probabilities do not usually assume a dynamical
model to obtain the desired unbiased probabilities.
The estimation procedure can reduce the sampling

problem tremendously for processes with some long-lived
states and some other states from which the system relaxes
rapidly. This case is ubiquitous in metastable systems,
because long-lived states are connected by short-lived
transition states. But even long-lived states usually have
very different lifetimes: For example, many ligands or
inhibitors bind to their protein receptor with nanomolar
concentrations, meaning that the transition probabilities
leading to the associated state are orders of magnitude
higher than the dissociation probabilities. The present
reversible Markov model approach provides the basis for
estimating the kinetics and mechanisms of protein-drug
dissociation by combining the much more rapid association
trajectories with suitable enhanced sampling methods,
such as Hamiltonian replica exchange [40] or umbrella
sampling [18,41].
The methods described here are implemented in

PyEMMA [42]. Tutorials for the maximum-likelihood and
Bayesian estimation of Markov models given equilibrium
distributions using the examples in this paper can be found in
the Supplemental Material [43].
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II. THEORY

A. Markov state models

Classical dynamics, governed by Newton’s equations in
the case of an isolated system and by Langevin equations
for systems at constant temperature [44], gives rise to a
transfer operator P propagating a phase-space density from
time t to time tþ Δt [45–47]. Numerical solutions for
Newton or Langevin equations can be obtained for complex
systems with many degrees of freedom, but a direct
numerical assessment of the transfer operator is, in most
cases, prohibited due to the curse of dimensionality.
Markov state models bridge this gap, estimating the

transfer operator on a suitably defined state space partition,

Ω ¼ fs1;…; sng; ð2Þ
using trajectories obtained by direct numerical simulation
[8,11].
MSMs model the jump process between states of this

partition by a Markov chain. Observed transitions between
pairs of states i and j are collected in a count matrix
C ¼ ðcijÞ, and the likelihood for the observed counts for a
given transition matrix P ¼ ðpijÞ is given by

PðCjPÞ ∝
Y
i

�Y
j

p
cij
ij

�
: ð3Þ

While the likelihood functions allow us to determine the
maximum likelihood estimator P̂ optimizing the likelihood
function for a given observation C over the set of all
possible models P, it does not specify the uncertainty of a
chosen model.
For a finite amount of observation data there will in

general be a whole ensemble of models compatible with the
given data. In order to specify uncertainties and determine
statistical errors of estimated quantities, we need to infer
the posterior probability of a model for a given observation.
An application of Bayes’s formula yields

PðPjCÞ|fflfflfflffl{zfflfflfflffl}
posterior

∝ PðPÞ|ffl{zffl}
prior

PðCjPÞ|fflfflfflffl{zfflfflfflffl}
likelihood

: ð4Þ

For a uniform prior, i.e., no a priori knowledge about the
model, the posterior probability is given as a product of
Dirichlet distributions:

PðPjCÞ ∝
Y
i

�Y
j

p
cij
ij

�
: ð5Þ

B. Inference using a given equilibrium distribution

There are many methods that allow us to efficiently
estimate the equilibrium vector, even in situations in which
a direct estimation from a finite observation of the Markov
chain is unfeasible due to the metastable nature of the

system [20–23,48,49]. In such situations it is often possible
to alter the system dynamics in a controlled way such that
the artificial dynamics equilibrates more rapidly than the
original one. The desired equilibrium distribution of the
original dynamics can then be related to the equilibrium
distribution estimated from the altered process [50–54].
In the following, we show how such prior knowledge

about the equilibrium distribution can be used to improve
the estimates of kinetic observables in systems with rare
events.
We are again given a finite observation of a Markov

chain in terms of the count matrix C. Assume we are
additionally given the equilibrium distribution π for our
system of interest and we know that the transition prob-
abilities of the chain fulfil detailed balance for the given
equilibrium distribution,

πipij ¼ πjpji: ð6Þ

Then, we can express the posterior probability for our
model via Eq. (4). Prior knowledge about the equilibrium
distribution π in combination with the detailed balance
assumption formally entails the following prior distribution
on the posterior ensemble:

PðPjπÞ ¼
Y
i<j

δðπipij − πjpjiÞ: ð7Þ

According to Eq. (4), the constrained posterior is

PðPjC; πÞ ∝ PðPjπÞPðCjPÞ: ð8Þ

The effect of the prior Eq. (7) is a restriction of the posterior
to the subspace of transition matrices fulfilling detailed
balance with respect to the fixed equilibrium distribution π.

C. Maximum likelihood estimate given
an equilibrium distribution

We can also use prior knowledge of the equilibrium
distribution to constrain the maximum likelihood estimate
P̂ to the set of matrices obeying Eq. (6) for a given
equilibrium distribution π. This results in the following
convex constrained optimization problem:

minimize −
X
i;j

cij logpij

subject to pij ≥ 0;X
j

pij ¼ 1;

πipij ¼ πjpji; ð9Þ

which can be solved using a fixed-point iteration method
outlined in Ref. [55].
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One can show that the solution to Eq. (9) can be
written as

p�
ij ¼

ðcij þ cjiÞπj
λ�i πj þ λ�jπi

: ð10Þ

The Lagrangian parameters λ�i are obtained by iterating the
following self-consistent equation to convergence:

λðnþ1Þ
i ¼

X
j

ðcij þ cjiÞπjλðnÞi

λðnÞi πj þ λðnÞj πi
: ð11Þ

D. Inference using an equilibrium distribution
with uncertainty

An equilibrium distribution estimate usually carries a
finite sampling error which should be accounted for when
inferring a reversible transition matrix from data. From
a Bayesian viewpoint, we have to combine two sources
of evidence: the observed count matrix C from standard
equilibrium simulations and the data from enhanced or
biased sampling methods E used to estimate the equilib-
rium distribution.
An error model for the estimation of uncertainty in the

equilibrium distribution assesses the posterior of equilib-
rium distributions given the enhanced sampling data,
PðπjEÞ. Recent methods for the uncertainty quantification
of reversible MSMs with fixed equilibrium distribution
allow us to sample the posterior PðPjπ; CÞ in Eq. (8).
The posterior for transition matrices under the combined

evidence PðPjC;EÞ can be formally decomposed as

PðPjC;EÞ ¼
Z

dπPðPjC; π; EÞPðπjC;EÞ: ð12Þ

Assuming that the direct effect of the enhanced sampling
information E is negligible in the posterior of transition
matrices with given equilibrium distribution,

PðPjC; π; EÞ ≈ PðPjC; πÞ; ð13Þ
and that the direct effect of observed transition counts C is
unimportant compared to the enhanced sampling data used
to obtain π from a standard reweighting scheme,

PðπjC;EÞ ≈ PðπjEÞ; ð14Þ
we model the uncertainty encoded in the desired posterior
by inserting the two approximations Eqs. (13) and (14) into
Eq. (12):

PðPjC;EÞ ≈
Z

dπPðPjC; πÞPðπjEÞ: ð15Þ

Approximate sampling from PðPjC;EÞ can now be
achieved by drawing a random sample πð1Þ;…; πðMÞ dis-
tributed according to a given error model, πðkÞ ∼ PðπjEÞ,

and generating a sample of transition matrices PðkÞ
1 ;…; PðkÞ

N

from the constrained posterior PðkÞ
i ∼ PðPjC; πðkÞÞ for each

of the πðkÞ. The sample Pð1Þ
1 ;…; Pð1Þ

N ;…; PðMÞ
1 ;…; PðMÞ

N will
then be approximately distributed according to PðPjC;EÞ.
In Ref. [39] we presented a Markov chain Monte Carlo

approach to sample reversible transition matrices fulfilling
detailed balance with respect to a fixed equilibrium
distribution. This method, however, has suffered from
poor acceptance probabilities. In Ref. [55], we outline a
method to efficiently generate samples from the constrained
posterior using a Gibbs sampling algorithm that we also
use here.
For given vector ðπiÞ detailed balance Eq. (6) enforces a

linear dependence between the transition matrix element
pij and the element pji. As an immediate consequence, the
standard error of both elements for a sample generated from
the posterior PðPjCÞ has to be equal:ffiffiffiffiffiffiffiffiffiffiffiffiffi

VðpjiÞ
p
EðpjiÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
VðpijÞ

p
EðpijÞ

: ð16Þ

We show how this can be used in order to significantly
improve various estimates in situations in which pij ≪ pji.

III. RESULTS

Here, we demonstrate the usefulness of Eq. (16) via a
comparison of the standard error for kinetic quantities
depending on rare events that are either estimated from a
Markov model of the direct unbiased simulation [uncon-
strained posterior Eq. (5)], or from a combination of direct
simulations and enhanced sampling data [constrained
posterior Eq. (8) or constrained posterior with uncertain
equilibrium distribution Eq. (15)].

A. Finite state space Markov chain

Consider a three-state Markov chain with the following
transition matrix:

P ¼

0
B@

1 − 10−b 10−b 0

1
2

0 1
2

0 10−b 1 − 10−b

1
CA: ð17Þ

The parameter b > 0 can be thought of as the height of an
energy barrier between states one and three. The corre-
sponding equilibrium distribution is given by

π ¼ ð1þ 10−bÞ−1
�
1

2
; 10−b; 1

2

�
T
: ð18Þ

The pair ðπ; PÞ satisfies the detailed balance equation (6).
Any process starting in state one has an exponentially

small probability of crossing over to state three. In fact, a
chain starting in state one can reach state three only via state
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two, but the probability to go from state one to state two is
exponentially small in the barrier height b. The reversed
process, going from state two to state one, occurs much
faster. The same applies to state three and state two. The
eigenvalues of this matrix are

λ1 ¼ 1; λ2 ¼ 1 − 10−b; λ3 ¼ −10−b;
and the slowest time scale in the system is given by

t2 ¼ − 1

log λ2
≈ 10b:

It is apparent from t2 ≈ p−1
12 that estimates of t2 and of

p12 have similar standard errors. The standard error ϵ for a
matrix element pij for sampling from the unconstrained
posterior Eq. (5) is

ϵðpijÞ ¼
1ffiffiffiffiffifficij

p :

For b ¼ 4 and a single chain of length N ≈ 7 × 104 steps
starting in state one, we can on average expect c12 ¼ 4
resulting in a relative standard error of 50%. In order to
decrease the error down to 1% we would need to run a
chain of length N ≈ 1002 × 104 ¼ 108 steps. This is clearly
an unsatisfactory situation and we would like to reduce the
required simulation effort to reach a given error level as
much as possible.
In comparison for an ensemble of M short chains of

length L, with L ≪ 10b, starting in state two one will on
average observe a transition from state two to state one for
every second chain, c21 ¼ M=2, so that a relative error of
1% for p21 can be achieved for M ≈ 104, with L ≪ 10b,
so that the total simulation effort can be reduced by orders
of magnitude.
We do not have explicit expressions for the standard

error of matrix elements pij when sampling from the
restricted ensemble enforcing detailed balance with respect
to a given equilibrium distribution. It is, however, con-
ceivable that the standard errors of p21 can be reduced in
the same way. The relation Eq. (16) guarantees that a
small error for p21 will also result in a small error for the
rare-event quantity p12.
Figure 1 shows the standard error of t2 versus the total

simulation effort. The error for a single long chain is
estimated from a sample of transition matrices generated
from the unconstrained posterior. The error for the ensem-
ble of short chains is estimated from a sample of transition
matrices generated from the constrained posterior using the
algorithm outlined in Ref. [55]. From Fig. 1 it is apparent
that using a priori information about the equilibrium
distribution in combination with an ensemble of short
simulations started from the unstable state results in a
3 orders of magnitude smaller simulation effort when
trying to estimate t2 with a prescribed error. In particular,

estimation of the rare-event kinetics can be conducted
orders of magnitude before a direct simulation would even
encounter a single transition event.
This effect is even more pronounced when choosing

b ¼ 9, so that estimation via long trajectories, which need
to sample the rare event, is hopeless. Using short trajecto-
ries starting in the transition state in combination with the
equilibrium distribution, one can accurately estimate t2
with a total simulation effort of N ¼ 103 steps; cf. Fig. 2.
That is 6 orders of magnitude before on average even a
single rare event would have been observed.

B. Double-well potential

Let us now go to an example where the Markov state
model is an approximation of the true dynamics. We
employ Brownian dynamics in a double-well potential
defined by

(a)

(b)

FIG. 1. Mean and standard error of the largest implied time
scale t2 total simulation effort N for metastable three-state system
with barrier parameter b ¼ 4. (a) Convergence of the mean value,
using either a single long trajectory starting in one of the
metastable states or the equilibrium distribution together with
an ensemble of short chains relaxing from the transition state. The
latter approach allows us to obtain a reliable estimate before the
average waiting time for a single rare event τ13 þ τ31 has elapsed.
The comparison of the estimated standard error (b) indicates a 3
orders of magnitude speed-up when estimating the rare-event
sensitive quantity t2 using the equilibrium distribution in combi-
nation with short relaxation trajectories.
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VðxÞ ¼ ðx2 − σ2Þ2 þ δσ

�
1

3
x3 − σ2x

�
: ð19Þ

The two minima of the potential at �σ are separated by a
maximum at −δσ=4; cf. Fig. 3. The dynamics is governed
by the following stochastic differential equation (SDE):

dXt ¼ −∇VðXtÞ þ
ffiffiffiffiffiffiffiffiffiffi
2β−1

q
dWt; ð20Þ

with dWt denoting the increments of the Wiener process.
The inverse temperature β ¼ ðkBTÞ−1 controls the intensity
of the stochastic fluctuations.
Equation (20) defines a process, Xt, that samples from

the canonical distribution,

πðxÞ ¼ ZðβÞ−1e−βVðxÞ: ð21Þ

The temperature-dependent constant ZðβÞ is the partition
function ensuring correct normalization,

R
dxπðxÞ ¼ 1.

Spectral properties of this Markov process, such as the
largest implied time scale, can be computed from a

spatial discretization of its associated transition kernel;
cf. Appendix A.
For the numerical experiment we use a double-well

potential with parameters σ ¼ 2.2 and δ ¼ 0.1. The time
step for the explicit Euler scheme is Δt ¼ 10−3. The noise
parameter is β ¼ 0.4.
Spatial discretization of the transition kernel is per-

formed with Lx ¼ 3.4 and nx ¼ 400 regular subintervals.
The matrix ðpijÞ is assembled by evaluating the kernel
at the midpoints of the subintervals. The largest implied
time scale, t2 ¼ 1.2 × 106, is computed from an eigenvalue
decomposition of the assembled matrix. Mean first-passage
times (MFPTs) between sets A ¼ ½σ − 0.2; σ þ 0.2� and
B¼ ½−σ−0.2;−σþ0.2� are computed as τAB ¼ 5.3 × 106

and τBA ¼ 1.6 × 106, see Appendix B for details. Values
computed from the spatial discretization are used as refe-
rence values for comparison with estimates obtained from
a Markov model.
The Markov model is built using a regular grid discre-

tization of ½−L; L�, with L ¼ 3.4 and n ¼ 100 states. From
an implied time-scale estimation using long trajectories
with N ¼ 108 steps, we obtain a lag time of τ ¼ 10dt.
The equilibrium distribution is estimated from umbrella

sampling simulations using the weighted histogram analy-
sis method [51,56]. Estimates are computed usingMπ ¼ 20

umbrella sampling simulations with Lπ ¼ 2.5 × 104 points
per umbrella, as well as from umbrella sampling simu-
lations with Lπ ¼ 5 × 106 points per umbrella. To account
for the uncertainty in the estimated equilibrium distribution,
we use bootstrap resampling [57] of the generated data and
compute the equilibrium distribution for each resampled
data set to model the ensemble of equilibrium distribution
compatible with the observed umbrella sampling data.
In Fig. 4 we show the mean and standard error of the

largest implied time scale t2 versus the total simulation
effort N. The total simulation effort N is composed of the

(a)

(b)

FIG. 2. Mean and standard error of the largest relaxation time
scale t2 total simulation effort N for metastable three-state system
with barrier parameter b ¼ 9. (a) Convergence of the mean value
using short trajectories relaxing from the transition state. A
correct estimate can be obtained 6 orders of magnitude before a
single rare event would have occurred on average. (b) Standard
error of the estimate. The estimation using long trajectories is
unfeasible.

FIG. 3. Potential VðxÞ and equilibrium distribution πðxÞ for
Brownian dynamics in double-well potential. The equilibrium
distribution (shaded area) is scaled to fit the scale of the potential
function. It can be seen that the equilibrium distribution is
concentrated in the metastable regions around the two minima
of the potential at �σ.
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simulation effort spent on obtaining a count matrix from
standard simulations NC and the simulation effort spent
on obtaining the equilibrium distribution from umbrella
sampling simulations Nπ:

N ¼ Nπ þ NC: ð22Þ

We compare three different approaches when estimating
the mean and standard error of the largest implied time
scale t2.
(1) Generate a single trajectory starting in one of the

metastable regions and compute estimates without
a priori knowledge of the equilibrium distribution.

(2) Generate an ensemble of short trajectories starting
on the barrier and compute estimates with an error
model for the equilibrium distribution as prior
information.

(3) Balanced sampling: Split the total simulation effort
equally between umbrella simulations and short
trajectories starting on the barrier, Nπ ¼NC¼N=2.
Compute estimates updating the error model for the
equilibrium distribution according to the increasing
amount of data available for the estimation.

Transition matrices are sampled according to Eq. (5) if
no prior knowledge about the equilibrium distribution is
available and from Eq. (15) if the equilibrium distribution
is estimated from umbrella simulation data. For the first
approach we use MC ¼ 20–100 long trajectories of length
LC ¼ 106dt starting in the minimum point, x0 ¼ s, and
for the second approach we use an ensemble of MC ¼
50–5000 short trajectories of length LC ¼ 104dt starting
on the barrier, x0 ¼ −δσ=4. For the second approach we
estimate the equilibrium distribution from a small as well as
for a large amount of umbrella sampling data in order to
demonstrate the dependence of the standard error of the
kinetic observable on the error in the ensemble of input
equilibrium distributions.
It can be seen from Fig. 4 that for a fixed effort

Nπ ¼ MπLπ the standard error cannot be reduced below
a certain amount with increasing NC ¼ MCLC. This is a
result of the nonzero statistical error in the estimate of the
equilibrium distribution for fixed Nπ . The usual N−1=2
dependence of the standard error can be recovered for the
proposed splitting Nπ ¼ NC ¼ N=2. Figure 4 shows the
favorable scaling coefficient of such an approach leading
to a more than 2 orders of magnitude faster convergence of
the estimated quantity compared to using standard simu-
lations alone. Reliable estimates of the rare-event kinetics
can be obtained 1 order of magnitude simulation effort
before the standard approach using long trajectories, and
no information about the equilibrium probabilities can
be applied at all. The finite error for the estimate of the
equilibrium distribution for Nπ ¼ 5 × 104dt and Nπ ¼
107dt results in a saturation of the error of t2, which
can be further decreased using a more precise estimate
of the equilibrium distribution from additional enhanced
sampling simulations.
For metastable systems we propose the following

strategy for distributing initial conditions exploiting the
information from the equilibrium vector. Once all meta-
stable sets and all kinetic barriers separating the sets have
been identified using some enhanced sampling protocol,
short trajectories should be started on top of all barriers or
in high-energy metastable states. The length of the short
trajectories needs to be sufficient to relax towards the
low-energy metastable states. The method described here
can be used to combine these data to an estimate of the
full rare-event kinetics.

(a)

(b)

FIG. 4. Mean and standard error of largest implied time scale t2,
given total simulation effortN, for Brownian dynamics in double-
well potential. (a) Convergence of the mean value, using either a
single long trajectory starting in one of the metastable states or
the equilibrium distribution together with an ensemble of short
chains relaxing from the transition state. The latter approach
allows us to obtain a reliable estimate before the average waiting
time for a single rare event τAB þ τBA has elapsed. A comparison
of the standard error (b) indicates a more than 2 orders of
magnitude speed-up when estimating the rare-event sensitive
quantity t2. By combining short trajectories with information
about the equilibrium probabilities, reliable estimates of the
slowest relaxation time scale can be obtained with a total amount
of simulation data that is about 1 order of magnitude smaller
than the expected waiting time for a forward and backward
transition across the barrier.
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C. Alanine dipeptide

As an example for a rare-event quantity in a molecular
system, we use the mean first-passage time for the C5 to
Cax
7 transition in the alanine-dipeptide molecule. Alanine

dipeptide has been the long-serving laboratory rat of
molecular dynamics [58–62]. The ϕ and ψ dihedral angles
have been identified as the two relevant coordinates for
the slowest kinetic processes of the system in equilibrium.
The potential of mean force for the two dihedral angles is
shown in Fig. 5.
One can identify five metastable regions in the free-

energy landscape. The C5 and PII regions correspond to
dihedral angles found in a beta-sheet conformation and the
αR and αL regions correspond to a right- and a left-handed
α-helix conformation. Reference values for the mean first-
passage times between all pairs of sets are computed from
the maximum likelihood estimator of Eq. (3) using a total
of 10 μs of simulation data. Values can be found in Table I.
For details of the computation of mean first-passage times,
see Appendix B.
All computations are carried out on high-performance

graphics processing unit (GPU) cards using the OpenMM
simulation package [63]. The force field we use is
amber99sb-ildn [64] and the water model we use is tip3p
[65]. Thepeptide is simulated in a cubic box of 2.7-nm length
including 652 solvent molecules. Langevin equations are
integrated at T ¼ 300 K using a time step dt of 2 fs. The
potential we use for umbrella sampling simulations is
ViðϕÞ ¼ k½1þ cosðϕ − ϕi − πÞ�, with k ¼ 200 kJ=mol.
Umbrellas are placed at a spacing of ϕi − ϕiþ1 ¼ 9°.

1. Analysis in ϕ and ψ dihedral angle space

We show the convergence of the largest relaxation time
scale and validate the MSM constructed at a lag time of

τ ¼ 6 ps via a Chapman-Kolmogorov test in Fig. 12.
Convergence of the largest relaxation time indicates that
the slow eigenfunctions of the associated dynamical operator
are well approximated by the discrete MSM. The Chapman-
Kolmogorov test explicitly checks the Markov assumption
comparing self-transition probabilities computed from the
MSM, parametrized at lag time τ, with direct estimates from
the data at larger lag times, nτ. A thorough discussion of
MSM validation can be found in Ref. [8].
In Fig. 6 we show the estimate of the mean first-passage

time τAB between theC5 and the αL region together with the
corresponding standard error ϵðτABÞ for different values of
the total simulation effortN. The simulation setup is similar
to the one described for the double-well potential in the
previous section. Instead of starting short trajectories
directly on the barrier, we start them from the metastable
αL region. Figure 6 shows that, by combining umbrella
sampling data and short trajectories relaxing from a
metastable region with low probability (high free-energy)
towards a metastable state with high probability (low
free-energy), we are able to estimate the reference value,
τAB ¼ 43 ns, for the C5 to αL transition with a total
simulation effort of 70 ns if short downhill trajectories
are used in combination with umbrella sampling data.
Utilizing information about the equilibrium distribution in
combination with short simulations that do not have to
sample the rare event, we are able to achieve a standard
error with almost an order of magnitude less simulation
effort compared to an ensemble of long trajectories. The
observed eightfold speed-up is in good agreement with
the expected speed-up given by

τAB
L

;

with τAB ¼ 43 ns the MFPT for the slow “up-hill” tran-
sition from C5 to αL and L ¼ 5 ns the length of individual
short trajectories.
The present approach of estimating rare-event kinetics is

more powerful than traditional rate theories because quan-
tities that can be estimated can be much more complex than
only rates. As a reversible Markov model is estimated,
full mechanisms, such as the ensemble of transition path-
ways from one state to another state, can be computed.

FIG. 5. Free-energy profile of alanine dipeptide as a function of
the dihedral angles. Energies are given in kJ=mol. The average
thermal energy kBT at 300 K is 2.493 kJ=mol. One can identify
five metastable sets on the dihedral angle torus, indicated here by
black lines. There are three low-energy (high-probability) sets C5,
PII, and αR, with ϕ < 0, and two high-energy (low-probability)
sets αR and Cax

7 , with ϕ > 0.

TABLE I. Mean first-passage time (MFPT) between metastable
regions of alanine dipeptide. The MFPTs have been estimated
from 10 μs of simulation data using a Markov state model.

τAB=ns C5 PII αR αL Cax
7

C5 0 0.021 0.253 43.456 60.220
PII 0.041 0 0.255 43.449 60.213
αR 0.142 0.125 0 43.549 60.312
αL 1.553 1.527 1.744 0 17.757
Cax
7 1.559 1.533 1.745 1.221 0
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To illustrate this we compute the committor probability
function, cf. Appendix C, from C5 to αL using both
estimates Fig. 7. We see that information about the
equilibrium distribution results in nearly the same com-
mittor function as the one estimated using an order of
magnitude larger simulation effort.

2. Analysis in the ϕ coordinate alone

The method we present can also work if only information
about the slowest degree of freedom is used. In Fig. 8, we
show the free-energy profile for the ϕ dihedral angle.
An energetic barrier clearly separates the low free-energy
region, ϕ < 0, from the high free-energy region, ϕ > 0.

(a)

(b)

(c)

FIG. 7. Forward committor qþðxÞ for transition from C5 to αL
region. (a) Nonreversible reference estimate for N ¼ 10 μs of
simulation data. Dark contour lines indicate the free-energy
profile. (b) Difference between the reference estimate and a
nonreversible estimate forN ¼ 1 μs of simulation data. There is a
large error in the transition region due to insufficient sampling
in the short simulation. (c) Distance for an estimate using a
combination of umbrella sampling and standard simulation data
with N ¼ Nπ þ NC ¼ 960 ns. There is no significant error in
the transition region; the small error close to the second saddle
is probably due to insufficient sampling of this region by the
reference simulation.

(a)

(b)

FIG. 6. Mean and standard error of mean first passage time
(MFPT) τAB, total simulation effort N, for alanine-dipeptide
MSM on the ϕ, ψ dihedral angles. The mean first-passage time
τAB of the C5 to αL transition is used as an observable for a rare-
event process. (a) Convergence of the mean value is shown for a
small number of long chains starting in the C5 region (blue),
an ensemble of short chains starting in the αL region combined
with different amounts of umbrella sampling simulations (green,
red, light blue). The correct value of the C5 to αL transition,
τAB ¼ 43 ns, can be obtained for a total simulation effort of
N ¼ 70 ns when short “down-hill” simulations are used in
combination with umbrella sampling data. (b) The standard error
shows almost 1 order of magnitude speed-up when estimating
the kinetic characteristic of a rare event τAB using short trajecto-
ries in combination with umbrella sampling simulations com-
pared to using long trajectories and no additional information
about the equilibrium distribution.
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Crossing events from ϕ < 0 to ϕ > 0 are rare, leading to a
sampling problem if kinetic quantities associated with
barrier crossings need to be estimated. Again, we show
convergence of the largest relaxation time scale t2 and a
Chapman-Kolmogorov test for a MSM estimated at lag
time τ ¼ 15 ps, Fig. 13.
In Fig. 9, we show that the correct mean first-passage

time for the C5 to αL transition can also be recovered from
the MSM of the ϕ angle alone. This demonstrates that the
method we present is robust with respect to the choice of
microstates. Choosing a slightly larger lagtime, τ ¼ 15 ps,
for the ϕ MSM allows us to recover the correct mean first-
passage times despite the fact that information about the ψ
dihedral angle is completely neglected. The MSM for ϕ
dihedral angle is still a good approximation to the true
kinetics if the discretization and the lag time are suitably
matched. A thorough discussion of approximation errors
for MSMs can be found in Refs. [8,11].

D. Vesicle model

As a final example, we consider the diffusive motion
of a colloid that can reversibly attach to a surface via
m ¼ 0;…;M tethers. A biological example of such a system
is a neuronal vesicle that can attach to a plasmamembrane by
solubleN-ethylmaleimide-sensitive-factor attachment recep-
tor (SNARE) protein complexes. The diffusion in the solvent
is free, but the attachment of tethers restricts the location of
the vesicle to a vicinity of the membrane. The restriction is
stronger the more tethers are attached. Attachment of the
vesicle to themembrane is a fast process, but the dissociation
from the membrane is an extremely rare event. We show that
the mean first-passage time for dissociation can be reliably
estimated despite the fact that a non-Markovian coordinate,
the membrane-vesicle distance, is used.
Figure 10 shows the energy for the different vesicle

attachment modes. For m > 0, attachment of the vesicle to
the membrane is governed by a harmonic potential close
to the membrane. For x > 2, all attachment modes are

energetically equal corresponding to a breaking of the m
tethers once the distance between the vesicle and the
membrane exceeds a certain threshold. The association
of the vesicle has to overcome a small energetic barrier,
modeling a weak repulsion of the untethered vesicle.
The state of the vesicle is given by the pair ðx;mÞ, where x

is the vesicle membrane distance and m denotes the number
of tethers attached. A discretization of the vesicle membrane
distance with 0 ¼ x1 < … < xd ¼ 4 allows us to describe
the vesicle dynamics by a Markov chain on a finite state
space with ðM þ 1Þd microstates. The equilibrium distri-
bution of the chain is given as

FIG. 8. Free-energy profile for alanine dipeptide as a function
of the ϕ dihedral angle. One can identify three metastable sets:
two low-energy (high-probability) sets with ϕ < 0 and a single
high-energy (low-probability) set with ϕ > 0.

(a)

(b)

FIG. 9. Mean and standard error of MFPT τAB, total simulation
effort N, for alanine-dipeptide MSM on the ϕ dihedral angle
alone. The mean first-passage time τAB of the transition from
the low free-energy region, A ¼ fϕj − 162° < ϕ < −54°g, to the
high free-energy region, B ¼ fϕj36° < ϕ < 72°g, is used as an
observable for a rare-event process. (a) Convergence of the
mean value is shown for a small number of long chains starting
in the A region (blue) and for an ensemble of short chains starting
in the B region combined with different amounts of umbrella
sampling simulations (green, red, light blue). The correct value,
τAB ¼ 43 ns, for the C5 to αL transition can be obtained even if
no information about the ψ dihedral angle is used in the
construction of the MSM. (b) The standard error shows almost
1 order of magnitude speed-up when estimating the kinetic
characteristic of a rare event τAB using short trajectories in
combination with umbrella sampling simulations compared to
using long trajectories and no additional information about the
equilibrium distribution.
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π ¼ ½πð0Þðx1Þ;…; πðMÞðxdÞ�; ð23Þ

with entries given in terms of the usual Gibbs-Boltzmann
distribution:

πðmÞðxiÞ ∝ e−EðmÞðxiÞ: ð24Þ
EðmÞðxÞ is the energy of a vesicle at x with m tethers
attached; cf. Fig. 10 and Eq. (D1).
The transition matrix P ¼ ðpijÞ for the vesicle dynamics

is now constructed as follows. We encode random walk
probabilities in a proposal matrix Q ¼ ðqijÞ. The particle
moves from xi to xi−1 or xiþ1 with probability 1=3; if the
particle remains at its current position xi, it can attach,
m → mþ 1, or detach,m→m−1, a tether with probability
1=3 so that the overall proposal probability for attachment
or detachment is 1=9. To account for the energetic differ-
ences of the microstates, we use the Metropolis-Hastings
acceptance criterion to modulate the proposal probabilities
and obtain the desired transition probabilities via

pij ¼ min

�
1;
πjqji
πiqij

�
; i ≠ j: ð25Þ

Correct normalization is ensured by setting pii ¼ 1−P
j≠ipij. As a result of Eq. (25), the constructed transition

matrix P automatically fulfills the detailed balance con-
dition Eq. (6) with respect to the desired equilibrium
distribution.
The mean first-passage time for the dissociation of the

vesicle is τAB ¼ 8.56 × 109, the mean first-passage time
for association, τBA ¼ 1.59 × 103, is orders of magnitude
smaller. The mean first-passage time for dissociation of a
vesicle with the maximum number of tethers attached is
τAB ¼ 3.83 × 1010, so that the system dynamics cannot
be described in terms of the subspace with m ¼ 4 tethers.
This indicates that the dissociation kinetics is effectively
non-Markovian along the x coordinate.
The dissociation time τAB can reliably be estimated even

if no information about the mode of attachment is available.

If only information about the position of the vesicle is
available, then the state space of the ðM þ 1Þd distinct
microstates is coarse grained into d distinct sets, each
containing (M þ 1) microstates corresponding to theMþ1
possible tethering modes at position x. The coarse-grained
equilibrium distribution ~π is obtained by summing the
full equilibrium distribution π over all possible tethering
modes. If short association trajectories starting in the region
x > 2 are combined with the coarse-grained equilibrium
distribution, the dissociation time can again be estimated
orders of magnitude before a single dissociation event
would on average be observed despite the fact that the
MSM is built on a coordinate that is inherently non-
Markovian. In Fig. 11, we show the mean and standard
error for the MFPTof vesicle dissociation for a MSM build
at a lag time of τ ¼ 60 with d ¼ 40 microstates.
In Fig. 14, we again show convergence of the largest

relaxation time and the Chapman-Kolmogorov test for a
MSM constructed at lag time τ ¼ 60. The MSM is
estimated solely from short association trajectories starting

FIG. 10. Energy landscape for the different attachment modes,
m ¼ 0; 1;…; 4

(a)

(b)

FIG. 11. Mean and standard error of mean first-passage time of
vesicle dissociation on a coarse-grained non-Markovian state
space. (a) Convergence of the mean value, (b) standard error.
Estimates are obtained for an ensemble of association trajectories
starting in the high-energy region and relaxing towards the low-
energy region in combination with the coarse-grained equilibrium
distribution. The dissociation time can be estimated orders of
magnitude before a single dissociation event would have been
observed.
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in the high-energy region using the coarse-grained equi-
librium distribution ~π to obtain a reversible maximum
likelihood transition matrix from Eq. (9). The total simu-
lation effort, N ¼ 2 × 107, we use to obtain the MSM and
perform the validation is again orders of magnitude smaller
than the expected dissociation time.

IV. CONCLUSION

We describe a principle that allows rare-event kinetics
to be efficiently estimated without having to assume a rate
model. Our approach is applicable when the kinetic
properties of interest can be computed from a Markov
state model discretization of the system. Note that this
approach is qualitatively different from assuming a specific
rate theory, such as transition state theory or Kramers
model, because MSMs are a numerical approximation
method of the full kinetics and can be made arbitrarily
accurate in the limit of a good state space discretization [8],
whereas a specific rate model needs to apply by design and
can usually not be self-consistently validated.
The key idea of the our approach is to use enhanced

sampling methods to obtain reliable estimates of the
equilibrium distribution in combination with direct simu-
lations of the fast downhill processes. These data are
combined rigorously in a reversible Markov model. Our
approach can deliver estimates of kinetic properties,
including rates, passage times, as well as complex quan-
tities, such as committor functions and transition path
ensembles, while achieving enormous speed-ups compared
to a direct simulation.
We illustrate our method using two toy models, an

explicit-solvent MD simulation of alanine dipeptide with
about 2000 degrees of freedom and a model for reversible
attachment of a vesicle to a membrane. In these examples,
the kinetics of the rare events could be computed using
between 1 and 6 orders of magnitude less simulation time
than needed with a direct simulation approach that has to
wait for the rare events to happen spontaneously.
In general, the present approach will be efficient when-

ever the rare event occurs between low-probability and
high-probability states. A very important example of this
class is computational drug design, where the binding of
the drug compound occurs relatively fast [18], while the
unbinding may be many orders of magnitude slower.
Yet the unbinding kinetics have been shown to be critical
for drug efficacy [66].
We demonstrate in two applications that the approach

can compute kinetics from non-Markovian projections
of the data: by using only the ϕ coordinate in alanine
dipeptide, and by using only the distance coordinate in
the vesicle attachment model. A requirement is that the
resolved coordinates are slow compared to the nonresolved
coordinates. However, this requirement is not overly
restrictive, as the same requirement applies for the enhan-
ced sampling simulations, such as umbrella sampling,

employed to obtain an estimate for the equilibrium
distribution.
While the applications in the present paper use rever-

sible Markov model estimates in such a way that the
enhanced sampling simulation and the unbiased “downhill”
simulations visit the same state space, the principle we
explore here can be generalized beyond this case. States
visited only in one but not in the other simulation can
be modeled by appropriate uninformative priors on the
respective variables, e.g., uniform prior in the equilibrium
distributions of states not visited in an umbrella sampling
simulation.
A general framework to reconcile direct MD and

enhanced MD simulations is the transition-based reweight-
ing analysis method framework [29–31]. In order to apply
the TRAM framework to the current setting, a hybrid
TRAM method must be developed that can mix kinetic
simulations (with an estimation lag time τ) and simulations
that contain trajectories shorter than τ, such as those used
in umbrella sampling or replica exchange molecular
dynamics (REMD).
The present inference principle can be exploited in an

adaptive sampling framework [67,68] to optimally distrib-
ute the computational effort between enhanced sampling
and unbiased molecular dynamics simulations.
Our method is implemented in the python-based Markov

modeling software PyEMMA [42], and demonstrated
via IPython notebook tutorials in the Supplemental
Material [43].
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APPENDIX A: TRANSITION KERNEL
FOR THE EULER METHOD

The solution of Eq. (20) with initial position X0 ¼ x0 on
½0; T� is usually carried out by choosing a regular discre-
tization of the time interval

0 ¼ t0 < t1 < … < tN ¼ T;

with Δt ¼ tk − tk−1, for all k ¼ 1;…; N. The evolution of
the stochastic process is then approximated by the follow-
ing time-stepping scheme:

XtþΔt ¼ Xt − ∇VðXtÞΔtþ
ffiffiffiffiffiffiffiffiffiffi
2β−1

q
η; ðA1Þ

with X0 ¼ x0 and η being a N ð0;ΔtÞ distributed random
variable. The time-stepping scheme Eq. (A1) is known as
the Euler method or the Euler-Maruyama method [69].
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For this simple time-stepping scheme, the transition
kernel of the resulting Markov chain is given by

pΔtðx; yÞ ¼
1ffiffiffiffiffiffi

2π
p

Δt2=β
exp

�
− ðy − xþ∇VðxÞΔtÞ2

2ð ffiffiffiffiffiffi
Δt

p ffiffiffiffiffiffiffiffi
2=β

p Þ2
�
;

ðA2Þ
with x ¼ Xt and y ¼ XtþΔt. pΔtðx; yÞ is a Gaussian dis-
tribution with mean μ ¼ x − ∇VðxÞΔt and variance
σ2 ¼ 2Δt=β.
The transition probability PΔtðBjAÞ between two sets A,

B can be computed from

PΔtðBjAÞ ¼
R
A dxπðxÞ

R
B dypΔtðx; yÞR

A dxπðxÞ
: ðA3Þ

Choosing L such that pΔtðx; yÞ is effectively zero outside
of ½−L;L�, we pick a spatial discretization

−L ¼ x0 < x1 < … < xN ¼ L; ðA4Þ
with a regular spacing Δx ¼ xk − xk−1, for k ¼ 1;…; N,
such that pΔtðx; yÞ and πðxÞ are approximately constant on
subintervals Si ¼ ðxk; xkþ1�. In this case, we haveZ

xiþ1

xi

dxμðxÞ ≈ μðxkÞΔx

andZ
xiþ1

xi

dxμðxÞ
Z

xjþ1

xj

dypðx; yÞ ≈ μðxiÞpðxi; xjÞðΔxÞ2:

We can approximate the matrix elements pij ¼ PðSjjSiÞ as

pij ≈ pðxi; xjÞΔx
and compute spectral properties from the matrix ðpijÞ using
standard eigenvalue solvers.

APPENDIX B: MEAN FIRST-PASSAGE TIMES
BETWEEN METASTABLE REGIONS

The covered material can be found in many introductory
books to stochastic processes; cf. Ref. [70].
For a stochastic process ðXtÞ on a state space Ω, the first

hitting time TB of a set B⊆Ω is defined as

TB ¼ infft ≥ 0jXt ∈ Bg: ðB1Þ
The mean first-passage time τx;B to the set B starting in state
x ∈ Ω is the following expectation value:

τx;B ¼ ExðTBÞ: ðB2Þ
For a Markov chain on a finite state space Ω ¼ f1;…; ng
with transition matrix ðpx;yÞ, the mean first-passage time
can be computed from the following system of equations:

τx;B ¼
(
0 x ∈ B

1þ P
y∈Ω

px;yτy;B x∉B: ðB3Þ

Assuming that the chain has equilibrium distribution
ðμxÞ, we define the mean first-passage time τA;B from set A
to set B as the μ-weighted average of all mean first-passage
times to B when starting in a state x ∈ A,

τA;B ¼
X
x∈A

μxτx;B: ðB4Þ

Computing the mean first-passage time between two
sets for a Markov chain on a finite state space with given
transition matrix thus amounts to finding the equilibrium
distribution together with the solution of a linear system of
equations—both of which can be achieved using standard
numerical linear algebra libraries.

APPENDIX C: COMMITTOR FUNCTIONS

Committor functions are introduced in the context of
transition path theory [12] and are a central object for the
characterization of transition processes between two meta-
stable sets.
Let ðXtÞ again be a stochastic process on a state space Ω

and let A, B⊆Ω be two metastable sets. The forward
committor qðþÞðxÞ is the probability that the process
starting in x will reach the set B first, rather than the set A,

qðþÞðxÞ ¼ PxðTA < TBÞ: ðC1Þ
Again, TS denotes the first hitting time of a set S.
For a Markov chain on a finite state space with transition

matrix P, the forward committor solves the following
boundary value problem [13]:X

j

lijq
ðþÞ
j ¼ 0; i ∈ XðA∪BÞ;

qðþÞ
i ¼ 0; i ∈ A;

qðþÞ
i ¼ 1; i ∈ B: ðC2Þ

L ¼ P − I is the corresponding generator matrix of the
Markov chain.
Computing the committor for a finite state space again

amounts to solving a linear system of equations.

APPENDIX D: VESICLE POTENTIAL

The potential for the vesicle model is given by

EðmÞðxÞ¼

8>>><
>>>:

1þmð−5þ5x2−2.5x3þ0.3125x4Þ 0≤x<2

1þ8ðx−2Þ2−8ðx−2Þ3 2≤x<2.5

0.5−8ðx−2.5Þ2þ8ðx−2.5Þ3 2.5≤x<3

0 3≤x<4.

ðD1Þ
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APPENDIX E: MSM VALIDATION

(a) (b)

FIG. 12. (a) Implied time-scale test. Convergence of the largest relaxation time scale t2 indicates a good Markov model fit; i.e., the
slow eigenfunction of the associated dynamical operator is well approximated. (b) The Chapman-Kolmogorov test validates the Markov
assumption by comparing the evolution of self-transition probabilities predicted by the MSM parametrized at lag time τ with direct
estimates from the data at larger lag times nτ.

(a)

(b)

FIG. 13. (a) Implied time-scale test. Convergence of the largest
relaxation time scale t2 indicates a good Markov model fit; i.e.,
the slow eigenfunction of the associated dynamical operator is
well approximated. (b) The Chapman-Kolmogorov test validates
the Markov assumption by comparing the evolution of self-
transition probabilities predicted by the MSM parametrized at lag
time τ with direct estimates from the data at larger lag times nτ.

(a)

(b)

FIG. 14. (a) Implied time-scale test. Convergence of the largest
relaxation time scale t2 indicates a goodMarkov model fit; i.e., the
slow eigenfunction of the associated dynamical operator is well
approximated. (b) The Chapman-Kolmogorov test validates the
Markov assumption by comparing the evolution of self-transition
probabilities predicted by the MSM parametrized at lag time τ
with direct estimates from the data at larger lag times nτ. Values
are obtained from an ensemble of short trajectories starting in the
high-energy region utilizing the equilibrium distribution in the
estimation of the maximum likelihood estimator (MLE) transition
matrix; cf. Eq. (9).
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We show the implied time-scale test and the Chapman-
Kolmogorov test for the alanine dipeptide MSMs, Fig. 12
and Fig. 13, and for the vesiclemodel MSM, Fig. 14.
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