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Abstract

Human information processing depends critically on continuous predictions about upcoming events, but the temporal
convergence of expectancy-based top-down and input-driven bottom-up streams is poorly understood. We show that,
during reading, event-related potentials differ between exposure to highly predictable and unpredictable words no later
than 90 ms after visual input. This result suggests an extremely rapid comparison of expected and incoming visual
information and gives an upper temporal bound for theories of top-down and bottom-up interactions in object recognition.
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Introduction

Perception is not the result of passive bottom-up transmission of

physical input [1]. Instead active top-down projections continu-

ously interact with earliest stages of sensory analysis. This insight

increasingly influences our understanding of cognitive efficiency

[2–5]. For instance, attention enhances neural responses to visual

stimuli in extrastriate and striate visual cortices [6], and already on

the subcortical level in the LGN [7]. In fact, studies using

functional magnetic resonance imaging (fMRI) revealed modula-

tions in cortical and subcortical areas even prior to sensory input of

expected stimuli [7–9]. We regard such anticipatory activity as

top-down predictions engaging lower-level areas involved in

sensory processing to grant fast and smooth perception of

forthcoming stimuli. Given that the quantity of feedback

connections to primary sensory areas even outnumbers pure

feedforward input [5] the interplay of top-down and bottom-up

flow appears as a major principle of perception.

Beyond fMRI-based evidence about spatial characteristics of

neural activity, temporal information contributes to the compre-

hension of bottom-up and top-down processes. Employing the

high temporal resolution of electroencephalography (EEG),

research predominantly focused the influence of attention on the

time course of visual perception [10]. For instance, spatial

attention modulates alpha band activity over occipital areas prior

to the appearance of an expected target [11,12]. After stimulus

onset amplitudes on the P1 component evolving at around 70 ms

are enhanced for stimuli appearing at attended compared to

unattended locations [13–16]. Influences of object- and feature-

based attention have typically been observed later with a post-

stimulus onset at 100 to 150 ms [17–22].

However, despite the undisputed role for top-down control,

attention cannot be equated with feedback flow per se. Gilbert

and Sigman [4] expanded the traditional concept of attention-based

top-down influences and denominated expectations and perceptual task

as further forms. Although these concepts are strongly overlapping

and can hardly be separated, the critical distinction lies in the

amount of information top-down streams carry. For example,

directing attention to a certain location presumably contains less

information than a task affording predictions about the identity of

an upcoming stimulus at that position. In particular, strong

expectations of a certain stimulus may involve a form of hypothesis

testing that compares characteristics of the incoming signal to

stored representations even prior to object identification [4]. This

idea is implemented in models integrating bottom-up and top-

down processes, such that feedforward streams transmitting

sensory information converge with feedback activity carrying

knowledge and hypotheses about stimuli. For instance, McClel-

land and Rumelhart [23,24] proposed that word identification is

driven by the interaction of linguistic and context-based

knowledge with incoming featural information. Indeed, the

amount of top-down feedback can be quantified at the level of

individual participants [25]. Grossberg [26] suggested that

stimulus-related signals are enhanced, when top-down predictions

are correct and match sensory inputs (cf., [27–30]). According to

such theories, the congruence of prediction and input facilitates

stimulus processing, potentially at early perceptual levels. An open

question is, however, at what point in time perception benefits

from the comparison of top-down and bottom-up processes, when

strong predictions are involved.

The present study used event-related potentials (ERPs) to

delineate the earliest interaction between expectations about the

identity of incoming signals and input-driven information in visual

word recognition. Sentence reading is perfectly suited to

investigate the issue. As a well-overlearned everyday activity, it

involves highly optimized object recognition processes ranging

from individual letters and sublexical units to whole words,

thereby engaging both early and higher levels of the visual system

PLoS ONE | www.plosone.org 1 March 2009 | Volume 4 | Issue 3 | e5047



[31]. Critically, earliest visual cortices were found to be selectively

sensitive to trained, letter-like shapes [32]. Furthermore, during

normal reading, rapid input rates of four to five words per second

require high perceptual efficiency and encourage fast stimulus

processing. This is crucial since modulations of early sensory

processes are primarily engaged, when task demands and

perceptual load are high [10,33,34]. Finally, sentence contexts

afford strong and form-specific predictions for upcoming words.

Indeed, increased neural activity was measured on articles (i.e., a/

an) when their phonological form mismatched the initial phoneme

of a highly predictable but not yet presented noun (e.g., airplane/

kite [35]; see also [36]).

We manipulated predictability of target words in sentences to

investigate at what point in time after visual onset expectations

about upcoming stimuli are verified. To push the necessity of

efficient visual processing and to measure neural responses under

near-normal conditions, words were presented at a high rate

approximating natural reading speed [37,38]. Provided that match

and mismatch of stimulus and prediction evoke distinct neural

responses [5], an early difference between ERPs for predictable

and unpredictable words represents an upper bound for the

latency of top-down and bottom-up interactions.

Materials and Methods

Participants
Thirty-two native German readers (24 female; 29 right-handed;

mean age: 27.3, SD: 6.8), recruited at Freie Universität Berlin,

received course credit for participation. They had normal or

corrected-to-normal vision and reported no history of neurological

diseases. The experiment was performed in accordance with the

ethical standards laid down in the 1964 Declaration of Helsinki. In

agreement with the ethics and safety guidelines at the Freie

Universität Berlin, we obtained a verbal informed consent

statement from all individuals prior to their participation in the

study. Potential participants were informed of their right to abstain

from participation in the study or to withdraw consent to

participate at any time without reprisal.

Materials
A total of 144 sentence units formed the stimulus materials.

Each unit comprised two context sentences and one neutral

sentence. The latter was identical across conditions except for

target words setting up a two-by-two factorial design of frequency

and predictability (Figure 1A).

144 pairs of high (e.g., Schiff [ship]) and low frequency (e.g.,

Zepter [scepter]) open-class words served as targets. High frequency

words comprised lemma and word form frequencies greater than

100 and 10 occurrences per million, respectively. For low

frequency words, lemma and word form frequencies were lower

than 10 per million. Frequency norms were taken from the DWDS

data base [39]. High and low frequency words from one pair were

members of the same class (i.e., nouns, verbs, or adjectives) and,

where possible, shared the same number of letters; they differed in

one letter in 19 of the 144 cases, in two letters in 4 cases and in

three letters in 1 case. Target length varied between three and

eight letters and was matched across conditions.

Target pairs were embedded at the sixth to eighth word position

in neutral sentence frames and were always followed by at least two

more words. Two context clauses preceding the neutral sentences

triggered predictability of target words: High frequency targets were

of high predictability in context 1 and of low predictability in context

2. For low frequency targets the pattern was reversed. Predictability

norms were assessed in an independent cloze task performed by a

total of 151 voluntary participants; none of them took part in the

EEG experiment. In the cloze procedure, a context sentence was

presented together with words of the corresponding neutral sentence

up to the position prior to the target. Participants then guessed the

word that would most likely continue the sentence fragment. They

were asked to write at least one, but no more than three guesses per

sentence. Each participant was presented with only one context per

sentence unit and worked through a part of the stimuli. In total,

every sentence was rated by at least 30 subjects. Predictability was

computed as the proportion of participants correctly predicting the

target word with one of their guesses. In the 144 sentence units

entering the stimulus materials both low and high frequency words

reached cloze values of at least 0.5 in the high predictability

conditions while not exceeding 0.1 in the low predictability

conditions. Target word statistics are depicted in Table 1.

Figure 1B illustrates the distribution of predictability values in

the categories. Most low predictability targets had cloze values of

zero; in the high predictability condition the number of targets

increased with predictability. Cloze values were similarly distrib-

uted for low and high frequency words.

For the ERP study, randomized stimuli were divided into lists

such that each participant was presented with every sentence unit

only once. A Latin square design provided that each version of a

sentence unit was presented to the equal number of participants.

This resulted in 72 high and 72 low predictability trials per subject,

with 36 high and low frequency words in either category.

Procedure
Participants were seated at a distance of 60 cm from the

monitor in a dimly lit room and were asked to silently read two-

sentence stories for comprehension. A trial started with a context

sentence that was displayed in its entirety until subjects pressed a

button. Thereafter, a fixation cross, preceded and followed by a

500 ms blank interval, indicated for 1000 ms the required fixation

position at monitor center. The stimuli of the neutral sentence

together with their adjacent punctuation were then presented

word by word with a stimulus onset asynchrony (SOA) of 280 ms

(i.e., stimulus: 250 ms; blank: 30 ms). The presentation sequence

of context and neutral sentences is schematized in Figure 1C. After

the neutral sentence, either the next trial was initiated (66.67%) or

a three-alternative multiple-choice question was inserted to test

sentence comprehension (33.33%). Questions referred to the

content either of the context or the neutral sentence, but were

never related to the target word.

Participants were asked to avoid eye movements and blinks

during the interval of word-wise sentence presentation. After eight

practice trials and 72 sentence units of the main experiment, they

took a short break. Stimuli (font: Courier New; size: 18 pt) were

presented in black on a white background.

Electrophysiological recording and data processing
EEG data were recorded from 50 scalp locations corresponding

to the 10/20 international system. Impedances were kept below

10 kV. All scalp electrodes and one channel on the right mastoid

originally referenced to the left mastoid were re-referenced offline

to the average of scalp electrodes. Two horizontal and two vertical

EOG electrodes recorded bipolarly oculomotor signals and blinks.

Data continuously recorded with a sampling rate of 512 Hz were

re-sampled offline to 256 Hz. Amplifier settings cut off frequencies

below .01 and above 100 Hz. Data were bandpass filtered offline

from .1 to 30 Hz (24 dB; 50 Hz notch).

EEG data contaminated by muscular artifacts and drifts were

rejected offline via visual inspection. Independent component

analysis (Vision Analyzer, Brain Products GmbH, Germany) was
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used to remove oculomotor artifacts and blinks. Additionally, an

automatic algorithm rejected segments with an absolute amplitude

larger than 90 mV in at least one channel. The rejection procedure

resulted in the exclusion of 3.17% of all target intervals (low

frequency – low predictability: 2.78%; low frequency – high

predictability: 2.17%; high frequency – low predictability: 3.82%;

high frequency – high predictability: 3.91%). In the remaining

data, the continuous EEG signal was divided into epochs from

200 ms before to 700 ms after the target. Epochs were corrected

relative to a 200 ms pre-stimulus baseline.

Effect onset was detected on the basis of 95% confidence intervals

computed from 5000 bootstrap samples of single-average difference

curves. Sampling points were considered as significant at the 5%-

level, when upper and lower bound of the confidence band shared

algebraic signs for an interval exceeding 10 ms. ERP amplitudes

collapsed across sampling points in the epoch from 50 to 90 ms were

examined in repeated measures analyses of variance (ANOVA). The

Huynh-Feldt correction was applied to adjust degrees of freedom

(rounded down) and P-values for violations of the sphericity

assumption.

Results

Grand average ERPs for low and high predictability target

words are illustrated in Figure 2A for a sample of nine scalp

electrodes. Curves are displayed for the interval from 200 ms

before target onset up to the appearance of the target-succeeding

word at 280 ms. Inspection of the data suggested amplitude

differences at a surprisingly early latency – well before 100 ms.

Amplitudes for high compared to low predictability words were

more negative at posterior left locations and more positive at

anterior right sites.

Figure 1. Stimuli and procedure. (A) Stimulus example. High (ship) and low frequency (scepter) targets were embedded in a neutral sentence
frame. Two context sentences triggered low or high predictability of target words. (B) Distribution of predictability values. Bars illustrate the
distribution of target predictability across the stimulus material. Low predictability targets (orange) include cloze probabilities no larger than .1. High
predictability words (blue) comprise cloze values of at least .5. Lines reflect the dispersion of predictability norms within low (light orange circles) and
high frequency (light blue squares) categories. Note that the entire corpus comprises a total of 576 predictability values, since each of the 144
sentence units involves a low and a high frequency target that both serve as low and as high predictability word. (C) Presentation sequence. A
context sentence was fully displayed until participants pressed a button. After a fixation cross, the neutral sentence was presented word by word at
monitor center. Each word was displayed for 250 ms and followed by a 30 ms blank screen.
doi:10.1371/journal.pone.0005047.g001

Table 1. Descriptive statistics of target words.

LF-LP LF-HP HF-LP HF-HP

Mean SD Mean SD Mean SD Mean SD

Word form
freq.

3.76 2.08 3.76 2.08 155.58 194.63 155.58 194.63

Lemma freq. 4.87 2.68 4.87 2.68 362.19 875.30 362.19 875.30

Predictability .01 .02 .83 .13 .01 .02 .84 .13

Length 5.32 1.11 5.32 1.11 5.36 1.16 5.36 1.16

Word position 6.94 .76 6.94 .76 6.94 0.76 6.94 .76

Target word norms [mean and standard deviation (SD)] according to the 262
experimental manipulation of frequency (low: LF; high: HF) and predictability
(low: LP; high: HP). 144 target word pairs consisted of 92 noun-, 37 verb-, and 15
adjective-pairs.
doi:10.1371/journal.pone.0005047.t001
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The visual impression was corroborated in statistical analyses

examining temporal onsets and durations of the first predictability

effect (Figure 3A). From 0 to 100 ms, a total of 19 out of 50 scalp

electrodes revealed significant amplitude differences with an

average onset latency of 60 ms (SD: 4 ms) and a mean duration

of 28 ms (SD: 16 ms). The earliest effect emerged at 52 ms post-

stimulus. The topographical latency map (Figure 3B) identified

early predictability effects at right anterior and left posterior sites.

Based on these results, we conducted statistical tests on mean

amplitudes in the epoch from 50 to 90 ms after stimulus onset

(dashed lines in Figure 3A). An ANOVA with frequency (2),

predictability (2), and electrode (50) as within-subject factors

yielded a main effect of electrode [F(2,70) = 14.66; P,.001;

partial-g2 = .321] and, critically, an interaction of predictabil-

ity6electrode [F(4,132) = 2.97; P = .019; partial-g2 = .098]. Nei-

ther the interaction of frequency6electrode (P = .298) nor the

three-way interaction (P = .478) was significant (note that only

interactions with the factor electrode are meaningful in this

ANOVA because the average reference sets mean amplitudes

across scalp channels to zero).

In order to strengthen evidence that the observed predictability

effect was related to the experimental manipulation of targets, we

examined ERPs for the two words prior to the target. These

stimuli were identical across all conditions and were not subject to

the predictability modulation from context sentences. Hence,

amplitudes should not reveal any significant differences in the

critical interval from 50 to 90 ms. ANOVAs with frequency (2),

predictability (2), and electrode (50) as factors yielded no reliable

effects for frequency, predictability, or the interaction of

frequency6predictability (all Fs,1). Additionally, ANOVAs on

each of the two target-preceding words were performed in seven

successive epochs of 40 ms, ranging from 0 to 280 ms after

stimulus onset. None of these intervals revealed significant effects

involving the factors frequency, predictability, or the interaction of

frequency6predictability (all Ps..15). Grand average ERPs for

the target-preceding word are displayed in Figure 2B.

To scrutinize the predictability effect on the target word we

grouped the 50 scalp electrodes into nine regions according to a

grid of three sagittal (left, midline, right) and three coronal

(anterior, central, posterior) fields (see Figure 4A). ERP amplitudes

were collapsed across electrodes in corresponding regions and

submitted to an ANOVA with the factors frequency (2),

predictability (2), and region (9). The main effect of region

[F(1,51) = 13.27; P,.001; partial-g2 = .300] and the interaction of

predictability6region [F(2,80) = 3.36; P = .028; partial-g2 = .098]

were significant. No other factors were statistically reliable (all

Ps..15). Post-hoc two-way ANOVAs with the factors frequency

(2) and predictability (2) in each of the nine regions yielded

significant predictability effects at anterior-midline [F(1,31) = 4.47;

P = .043; partial-g2 = .126], anterior-right [F(1,31) = 4.73; P = .037;

partial-g2 = .132], central-right [F(1,31) = 9.43; P = .004; partial-

g2 = .233], and posterior-left sites [F(1,31) = 10.67; P = .003; partial-

g2 = .256; shown in Figure 4B]. The main effect of frequency and

the interaction of frequency6predictability were not reliable in

any of the nine regions (all Ps..10).

Finally, we conducted separate analyses for low and high

frequency words in the posterior-left region, which yielded the

strongest effect (Figure 4A–C). As shown in Figure 4C, we

consistently found more negative amplitudes for high than for low

predictability words within the low frequency (t(31) = 22.25;

P = .032) as well as within the high frequency condition

(t(31) = 22.54; P = .016).

Discussion

The present study examined the earliest index for the interplay

between expectancy-based top-down and stimulus-driven bottom-

up processes in sentence reading. ERPs to predictable and

Figure 2. Grand averages for a sample of nine electrodes. ERPs for low (orange) and high predictability (blue) target conditions when (A) the
target word or (B) the target-preceding word was presented. Background shading illustrates the stimulus sequence (gray: word present; white: blank
screen). Dashed lines border the interval from 50 to 90 ms.
doi:10.1371/journal.pone.0005047.g002
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unpredictable words differed in an interval from 50 to 90 ms after

stimulus onset, a latency that is considerably faster than most

previous reports of interactions between top-down and bottom-up

information in visual perception. It should be noted that other

target properties cannot serve as an explanation for the effect

because low and high predictability conditions utilized the same

words in identical sentence frames; only preceding context

sentences rendered targets expected or unexpected. Words prior

to the target did not evoke differential ERPs across frequency and

predictability conditions, corroborating the view that the observed

effect resulted from the experimental manipulation of the target

word. Importantly, the predictability effect held across levels of

word frequency (Figure 4C) pointing to the reliability of the result.

Furthermore, the independence from frequency rules out visual

word familiarity as an explanation. We therefore propose that

ERP differences have emerged from a rapid match of form-specific

predictions with incoming visual patterns.

The finding contributes to the idea that active top-down

predictions play a major role in early visual processing [2–

4,12,23,24,26–30,32]. As was noted previously, the large amount

of feedback connections warrants projections to early cortical

regions (e.g., [5]). Accordingly, fMRI studies have revealed top-

down activations of primary sensory areas prior to the occurrence

of expected stimuli [7,9]. In visual word recognition, predictions

were shown to pre-activate form-specific patterns of expected

words (e.g., [35]). The present data indicate, that these predictions

are verified very rapidly with the actual incoming stimulus, i.e.,

before 90 ms after visual onset.

Notably, the predictability effect occurred substantially earlier

than in previous research. We consider two explanations why

top-down effects at comparable latencies have been rarely

reported before. First, we presume that powerful top-down

projections are required to produce measurable influences at

early latencies. In previous studies, effects potentially were

indiscoverable or absent as a consequence of insufficiently strong

feedback information. For example, effects of spatial attention

were usually found from around 70 ms on P1 amplitudes,

whereas the C1 component from 50 to 90 ms was unaffected

[13–16]. However, variable SOAs inducing temporal uncertainty

may have reduced the strength of attention towards upcoming

stimuli. By contrast, with fixed SOAs and individual differences

taken into account, attention effects on the C1 were found after

57 ms [40]. Beyond that, top-down influences vary in the

amount of information they carry [4]. Feedback signals issuing

spatial selection are presumably weaker than expectations pre-

activating form-specific representations of predicted stimuli

[35,36]. The present data indicate that word predictability

afforded top-down modulations that were strong enough to affect

earliest perceptual processes.

As a second explanation, we presume that the observation of

early top-down modulations depends on the perceptual task (see

also [4]). In particular, early processes are enforced when task

demands and perceptual load are sufficiently high [10,33,34]. In

word recognition, normal reading speed of four to five words per

second sets tight time constraints for stimulus processing.

Compared to that, ERP reading experiments typically used slow

rates of one or two words per second and potentially missed

adequate demands. Those mostly revealed predictability effects

from 200 to 500 ms on the N400 component [41–43]; only a few

authors reported earlier effects, from 120 to 190 ms [44,45].

Employing a quasi-normal reading speed, the present setup

presumably approximated temporal conditions word recognition

is optimized for and encouraged rapid integration of both top-

down and bottom-up information. This is comparable to auditory

sentence processing at normal speaking rate, where expected and

unexpected inflections on adjectives evoked differential ERPs no

later than after 50 ms [36].

Figure 3. Latencies of the first predictability effect. (A) Gray bars
illustrate onset and duration of the first significant predictability effect
on 50 scalp electrodes. In the interval from 50 to 90 ms (dashed lines),
the effect emerges on 19 channels. (B) The onset topography reveals
early predictability effects at right anterior and left posterior sites.
doi:10.1371/journal.pone.0005047.g003
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These two proposals are neither exclusive nor exhaustive and,

certainly, a number of additional factors will influence the timing

of convergence between bottom-up and top-down streams in

visual processing. To examine the validity of the present

suggestions and to complete the picture of short-latency top-down

effects, further research will be necessary. The reconciliation of

these findings with feedback modulations occurring later in time

will contribute to a comprehensive understanding about the

interplay of internal brain states and information from the

environment.

Clearly, the present data point to the efficiency of stimulus

encoding in visual perception. Evidence from electro- and

magneto-encephalography revealed that bottom-up activation

spreads in the primary visual cortex at around 50 ms post-

stimulus and is rapidly transmitted to higher cortical areas.

Activity reaches a large proportion of extrastriate and frontal

regions within 70 and 80 ms, respectively [46,47]. Can these

signals be interpreted and compared to stored information before

90 ms? Converging empirical support comes from visual search.

Sigman and colleagues showed that extensive training with letter-

like shapes grants selective responsiveness in earliest visual cortices

[32]. Further, complex search patterns that were either predictive

or unpredictive with respect to target position evoked differential

magneto-encephalographic responses from 50 to 100 ms at

occipital sites. Since participants were not aware of the pattern-

target associations, this result points to fast elaboration of visual

input that rapidly contacts unconscious memory [48]. An

explanation for the high processing speed of visual input is

provided by recent theories proposing that meaningful informa-

tion is already extracted from the first 1–5% of the bottom-up

signal. Thereby, top-down processes, acting as temporal bias,

increase stimulus saliency [49,50]. Consistent with these ideas, our

data indicate that in the presence of strong predictions, the cortex

matches pre-activated representations with incoming stimuli

shortly after the visual signal is available.

This interpretation is in line with models assuming interactions

between feedforward and feedback information (e.g., [23,24,26–

30]). For instance, Di Lollo and co-workers [27] proposed that

early visual processes generate preconscious hypotheses about the

identity of an incoming stimulus. These hypotheses re-enter low

visual areas and are iteratively compared with the input. An

affirmative match enhances the signal and affords conscious

perception of a stimulus. This interactive view of feedforward

and feedback information successfully accounted for findings

from backward masking, assuming that top-down hypotheses

from a briefly presented target mismatch the visual input after a

mask has superseded the bottom-up target signature [27,51].

Further, rapid resumption of an interrupted visual search

indicates that preprocessed patterns evoke target-specific hy-

potheses which are swiftly tested against sensory information

[52,53]. The present data extend this view suggesting that top-

down hypotheses also emerge from the interpretation of semantic

contexts. Thereby, the instantaneous match with the visual input

is compatible with the idea that top-down influences dynamically

reconfigure filters in the visual system to grant optimal processing

of relevant information from incoming signals [54]. Thus, visual

perception appears as an active process that rapidly compares

internal semantic representations with task-relevant aspects of

incoming stimuli [55–57].

The observed predictability effect was strongest over posterior

electrodes. This region is situated above the left hemispheric

occipito-temporal network that is strongly linked to the so-called

visual word form area [58,59]. As these cortical structures are

gradually sensitive to the processing of word-like stimuli [31],

they reflect a plausible ground for the matching of top-down

predictions and incoming signals. Another relevant structure may

be the foveal portion of the retinotopic cortex that was shown to

receive category-specific feedback information as response to

peripherally presented objects. Hence, V1 was proposed to serve

as scratch pad for the storage and computation of task-relevant

Figure 4. Predictability effect in scalp regions. (A) Topography of mean amplitude differences (low minus high predictability) in the epoch
from 50 to 90 ms. Nine regions of scalp electrodes are delimited by black borders. (B) Mean amplitudes from seven electrodes at the posterior left
region. In the interval from 50 to 90 ms (dashed lines), amplitudes are more negative for high (blue) than for low predictability (orange) words. The
lower panel shows the difference waveform (low minus high predictability). Mid-gray and light-gray error bands depict 95% and 99% confidence
intervals, respectively, computed from 5000 bootstrap samples. Background shading illustrates the stimulus sequence (gray: word present; white:
blank screen). (C) Within-frequency class ERPs at the posterior left region. The early effect of predictability is independent from target frequency.
Background shading reflects the stimulus sequence (shaded: word present; white: blank screen).
doi:10.1371/journal.pone.0005047.g004

Verification of Predictions

PLoS ONE | www.plosone.org 6 March 2009 | Volume 4 | Issue 3 | e5047



visual information [60] (see also [4]). Note, however, that

suggestions about underlying sources of the predictability effect

remain speculative, as no strong inferences about localization can

be drawn on the basis of the present ERP data.

In conclusion, previous research has shown that predictions

about upcoming words pre-activate representations of specific

word forms. The present results indicate that, under near-normal

reading speed, these predictions are checked in an interval from

50 to 90 ms after the visual input. Though reading is ideally

suited to examine this issue, rapid verification of expected

physical input is fundamental to many domains, including object

recognition in general [5] and movement control [61]. If

replicable across a wide range of tasks, our finding provides a

critical temporal constraint for theories of top-down and bottom-

up interactions as well as novel insights about the efficiency of

stimulus encoding.
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