4. SUMMARY
4. Summary

4.6. **PURE ZEIN COATINGS**

4.6.1. **Zein from ethanolic solution**

Zein coatings applied from ethanolic solution were able to extend the release of theophylline pellets up to several hours. The drug release was fast in pH1.2, whereas extended in pH6.8. It was further increased in the presence of proteolytic enzymes, like pepsin or pancreatin. The drug release was further enhanced with higher solubility of the model drug or additional osmotic activity inside the core. The difference in the release behaviour in pH 1.2 vs. pH 6.8 was attributed to the changed swelling behaviour related to the ionic composition of the media.

Zein coatings possess excellent storage stability. The release profiles remained unchanged upon storage for 12months even at accelerated storage conditions (40\(^\circ\)C / 75%r.h.).

The reproducibility of the drug release from coatings prepared of different zein batches was prone to some variability, but could be improved by and additional purification step.

Protective coatings of zein at low coating level for immediate release formulations were effective for moisture protection and taste masking purpose.

4.6.2. **Aqueous zein dispersions**

Four different methods were evaluated for the preparation of aqueous zein dispersions: method 1 and 2 were based on a solvent extraction method. Zein was dissolved in an organic solvent and introduced into an aqueous phase with (method 1) or without (method 2) the use of a needle. Method 3 relied on phase inversion. After dissolving zein in an organic solvent, water was added in 1 ml-steps until phase inversion occurred. Method 4 was investigated as a solvent-free alternative. Zein powder was directly dispersed into the aqueous phase and the particle size reduced by ultra turrax treatment.
Method 1 resulted in a stable aqueous dispersion with the smallest particle size (0.36 µm). Additives in the aqueous phase (e.g. surfactants) could not further reduce the particle size, but had in some cases even a detrimental effect.

An exchange of solvent for the organic phase from ethanol (80 % v/v) with isopropanol, acetone or methanol strongly influenced the resulting particle size of the dispersion. The particle size decreased with decreasing solvent power, thus methanol resulted in the smallest particle size with 0.15 µm. Moreover, methanol has the highest affinity to water in comparison to the other solvents, in the order of the solubility parameters with methanol > acetone > ethanol > isopropanol. Dispersions prepared by method 3 confirmed this order, as higher amounts of water were necessary to induce phase inversion for the solvents with higher solvent power.

Variations in the zein batches strongly affected the particles size of the zein dispersions. Especially increased xanthophyll contents hindered the proper preparation and resulted in lump formation, due to a plasticisation of zein.

The maximum polymer concentration without increase in the particle size was ~10 % (w/w) and could not be further increased by stabilisers. The enormous swelling of zein is responsible for the high volume fraction occupied by the polymer particles. Calculations based on the volume distribution of the polymer particles confirmed, that at ~10 % (w/v) polymer concentration the particles occupy 74% of the volume and thus are in the closest packed array when they get into contact with each other. Thus agglomeration starts.

Redispersible powders prepared by spray-drying resulted in smaller particles size compared to powders obtained by lyophilisation of aqueous zein dispersions. The polymer particles agglomerate during the freezing step necessary for lyophilisation, as confirmed by freeze-thawing experiments. The redispersion can be improved at pH 7.4 compared to the redispersion in water, resulting again in a mean particle size in the colloidal range. Milling of zein did not result in a powder of suitable particle size.

The drug release from pellets coated with aqueous zein dispersions could retard the drug release up to 6 h, but was faster than for coatings applied from ethanolic solutions.
4.7. **ZEIN-SHELLAC COMBINATIONS**

4.7.1. **Zein-shellac mixed coatings**

Zein-shellac mixed coatings reduced the fast drug release of pure zein coated pellets in pH 1.2. Shellac as a gastric resistant polymer was able to decrease the drug release of zein in the gastric pH by limiting the swelling of the mixed coatings compared to the pure zein coatings. The swelling was decreased with increasing shellac ratio and was related to a decrease in the flexibility of the films. The drug release was linearly correlated to the swelling and mechanical properties of the films according the zein-shellac ratio. In pH 6.8 extended release was found for all formulations, due to the slow dissolution of shellac. In pH 7.4, the drug release increased with increasing shellac ratio, owing to the faster dissolution of shellac at this pH. The suitable ratio of zein to shellac to achieve extended release over the entire pH-range was dependent on the solubility of the drug, with increasing shellac ratio necessary for drugs of higher solubility.

A stronger decrease in drug release after 12 months storage was observed with increasing shellac contents. This instability may be overcome by a thermal after-treatment (curing) after the coating, e.g. at 60°C/5d or 80°C/2h.

4.7.2. **Shellac topcoats over zein coatings**

Shellac topcoats over basic zein coats were examined as an alternative to zein-shellac mixed coatings. The topcoats were expected to limit the rapid release at low pH, but to dissolve at intestinal pH, where the zein coating would further control the release. Shellac topcoats were able to effectively inhibit the swelling of zein coated pellets and decreased the drug release in pH 1.2 already at low coating level (1-2 %), but also in pH 6.8.
HPMC as a water soluble polymer was added to shellac to enhance the drug release in pH 6.8. However, a pronounced retardation was still observed even at 50% w/w HPMC content in the topcoat. Retardation with shellac-HPMC topcoats was not possible for systems with osmotically active cores. Small molecular weight organic acids were able to enhance the permeability of the topcoats in pH 6.8 due to their pH-dependent solubility until no further retardation was observed. Polymers with pH-dependent solubility, e.g. sodium alginate can be used alternatively to shellac as topcoat materials.

4.8. Dry Powder Coating

The critical parameters for film formation of dry powder coatings were investigated. The decisive parameters for coalescence and film formation are optimised polymer-plasticiser combinations, the polymer viscosity and the particle size of the polymer powder. Optimal polymer-plasticiser interactions reduced the Tg, the puncture strength, the modulus at puncture and the modulus of elasticity (E') in the order of the plasticiser efficiency with MCT < DBS < AMG < ATBC < ATEC < TEC < TBC, whereas the percent elongation and the intrinsic viscosity increased with increasing plasticiser efficiency. The drug release decreased with increasing polymer-plasticiser interaction. Optimal plasticiser for ethylcellulose, e.g. TBC result in extended drug release of coated pellets even without curing. The use of water, either for an aqueous binder solution or during curing, can be eliminated completely. Moreover, the viscosity of the polymer can enhance the film formation for not optimal polymer-plasticiser combinations.

Pre-plasticisation is an effective method to further improve film formation and to achieve extended drug release, however, only if the particle size of the powder after pre-plasticisation is small enough (as for spray-dried Aquacoat® and Surelease®).
4. Summary

The simultaneous application of the plasticiser has a key role for the film formation process, facilitating the adhesion of the polymer particles to the substrate surface and their subsequent deformation and coalescence.

Extended drug release was achieved for drugs of different solubility (slightly to freely soluble) at coating level between 10 and 15 %. The formation of a dense, homogeneous film was proven by SEM-pictures.

Water soluble additives like HPMC are suitable to further modify the drug release. Micronised HPMC with 20 % in a mixture of ethylcellulose increased the drug release only slightly. With 33 % HPMC in a mixture with ethylcellulose the drug release was significantly increased, without being decreased again by curing.
5. ZUSAMMENFASSUNG
5. Zusammenfassung

5.1. **Reine Zein Überzüge**

5.1.1. **Zein aus ethanolischen Lösungen**

Zein Überzüge haben eine ausgezeichnete Lagerstabilität. Die Freisetzung ist nach 12 Monaten Lagerung selbst unter Streßbedingungen (d.h. 40 °C/75 % r.F.) unverändert. Die Reproduzierbarkeit der Wirkstofffreisetzung bei Verwendung unterschiedlicher Zein-Chargen unterliegt gewissen Schwankungen und kann durch einen zusätzlichen Aufreinigungsschritt des Polymers verbessert werden.

Bei niedrigen Überzugsschichtdicken kann Zein auch als Schutzüberzug für Feuchtigkeitsschutz oder zur Geschmacksmaskierung dienen.

5.1.2. **Wäßrige Zein Dispersionen**

Ein Austausch des Lösungsmittels der organischen Phase von Ethanol 80 % (v/v) gegen Isopropanol, Aceton oder Methanol zeigte einen deutlichen Einfluß des Lösungsmittels auf die resultierende Partikelgröße der wäßrigen Dispersion. Die Partikelgröße nahm mit abnehmender Lösungsmittelstärke ebenfalls ab, so dass Methanol die kleinste Partikelgröße mit 0.15 µm ergab. Darüber hinaus weist Methanol eine höhere Affinität zu Wasser im Vergleich zu den anderen untersuchten Lösungsmitteln auf, entsprechend der Reihenfolge der Löslichkeitsparameter mit Methanol > Aceton > Ethanol > Isopropanol. Methode 3 bestätigt diesen Effekt. Mit zunehmender Lösungsmittelstärke nimmt die zur Phasenumkehr erforderliche Wassermenge zu.

Chargen-Schwankungen in der Zein Qualität haben einen starken Einfluß auf die resultierende Partikelgröße der wäßrigen Zein-Dispersionen. Insbesondere ein erhöhter Xanthophyll-Gehalt wirkt weichmachend auf Zein und verhindert damit teilweise die Herstellung einer stabilen wäßrigen Zein Dispersion, da diese in solchen Fällen zur Klumpenbildung neigt.

Die maximale Polymer-Konzentration von Zein ohne eine Erhöhung der Partikelgröße liegt bei ~10 % (w/w) und konnte auch durch die Zugabe von Stabilisatoren nicht weiter erhöht werden. Die Ursache dafür liegt in der enormen Quellung von Zein in wäßrigen Medien, was dazu führt, dass ein hoher Volumenanteil durch die Polymerpartikel besetzt ist. Berechnungen auf Grundlage des durch die Polymerpartikel besetzten Volumenanteils bestätigten, dass bei ~10 % (w/w) Polymerkonzentration die Partikel bereits 74 % des Volumens einnehmen und damit in einer dichtesten Kugelpackung angeordnet sind, in der sie sich gegenseitig berühren. Dies ist der Grund für die beginnende Agglomeration.
5. Zusammenfassung

Redispergierbare Pulver, die durch Sprühtrocknung hergestellt werden, ergeben Pulver mit kleinerer Partikelgröße im Vergleich zu Pulvern die durch Lyophilisation gewonnen werden. Durch das Einfrieren der Dispersion für die Lyophilisation agglomerieren die Polymerpartikel bereits, wie sich durch Einfrier-Auftau-Versuche gezeigt hat. Die Redispergierung der trockenen Pulver kann weiter verbessert werden, wenn es statt in Wasser in Puffer bei pH 7.4 redispergiert wird, so dass die Partikelgröße anschließend wieder im kolloidalen Bereich liegt. Vermahlen des Zein Pulvers konnte die Partikelgröße nicht ausreichend reduzieren.

Die Wirkstofffreisetzung aus mit wässrigen Zein Dispersionen überzogen Pellets war bis zu 6 h verzögert, ist aber im Vergleich zu Pellets, die mit ethanolischen Zein-Lösungen überzogen wurden, deutlich beschleunigt.

5.2. **ZEIN-SCHELLACK KOMBINATIONEN**

5.2.1. Zein-Schellack Mischüberzüge

Zein-Schellack Mischüberzüge reduzieren die schnelle Wirkstofffreisetzung in pH 1.2 im Vergleich zu reinen Zein-Überzügen. Schellack, als magensaftresistentes Polymer, ist in der Lage die Freisetzung im sauren pH des Magens durch eine Einschränkung der Quellung der Mischüberzüge im Vergleich zu den reinen Zein-Überzügen zu erniedrigen. Die Quellung ist mit steigendem Schellack-Anteil zunehmend eingeschränkt und korreliert mit einer reduzierten Flexibilität der Filme.

Wirkstofflöslichkeit. Mit steigender Löslichkeit der Wirkstoffe sind höhere Schellack-Anteile erforderlich.

Mit steigendem Schellack-Anteil wurde eine stärkere Erniedrigung der Freisetzung nach 12 Monaten Lagerung beobachtet. Dieser Lagerungs-Instabilität kann durch eine thermische Nachbehandlung (Curing) bei erhöhten Temperaturen (z.B. 5 d/60 °C oder 2 h/80 °C) im Anschluß an das Überziehen der Arzneiformen vorgebeugt werden.

5.2.2. Schellack Deck-Überzüge auf Zein Grund-Überzügen

Schellack Deck-Überzüge über Zein Grund-Überzügen wurden als alternative Formulierung zu Zein-Schellack Mischüberzügen untersucht. Es wurde erwartet, dass die Deck-Überzüge die schnelle Wirkstofffreisetzung bei niedrigem pH einschränken, während sie sich beim erhöhten pH des simulierten Darmsaftes auflösen, wo die Freisetzung dann über die Zein Grund-Überzüge weiter kontrolliert wird.

Schellack Deck-Überzüge können die Quellung und die schnelle Freisetzung von Zein-überzogenen Pellets in pH 1.2 bereits bei niedrigen Überzugsmengen effektiv verzögern. Jedoch wird die Freisetzung auch in pH 6.8 weiter retardiert.

HPMC ist ein wasserlösliches Polymer und wurde Schellack zugesetzt um die Freisetzung in pH 6.8 zu beschleunigen. Jedoch wurde eine Verzögerung der Freisetzung durch die Schellack Decküberzüge selbst bei einem HPMC-Anteil von 50 % w/w im Überzug beobachtet. Darüber hinaus ist eine Retardierung der schnellen Freisetzung aus Pellets mit osmotisch aktiven Kernen mit Schellack-HPMC Decküberzügen nicht möglich.

Organische Säuren mit niedrigem Molekulargewicht sind in der Lage die Permeabilität der Decküberzüge in pH 6.8 durch ihre pH-abhängige Löslichkeit zu erhöhen, so dass keine Verzögerung der Wirkstofffreisetzung mehr beobachtet wurde.

Polymere mit pH-abhängiger Löslichkeit, wie z.B. Natriumalginat, können als Alternativen zu Schellack Deck-Überzügen dienen.
5. Zusammenfassung

5.3. Trocken-Überzugs-Verfahren (Dry Powder Coating)

Weichmachung des Polymers vor der Anwendung zum Überziehen ist eine effektive Methode, um die Filmbildung weiter zu verbessern und eine verzögerte Wirkstofffreisetzung ohne thermische Nachbehandlung auch für nicht-optimale Weichmacher (z.B. MCT) zu erreichen. Jedoch ist dies nur möglich, wenn die Partikelgröße des Polymerpulvers nach der Weichmachung ausreichend klein ist (wie z.B. für sprühgetrocknetes Aquacoat® oder Surelease®).

Die simultane Anwendung des Weichmachers hat eine Schlüsselrolle im Filmbildungsprozeß, da dadurch die Adhesion der Polymerpartikel an die Substratoberfläche und die darauf folgende Deformation und Koaleszenz erleichtert ist.

Das Freisetzungsverhalten aus Ethylcellulose überzogenen Pellets kann durch Zusatz von wasserlöslichen Polymeren wie z.B. HPMC weiter angepasst werden. Mikronisiertes HPMC mit 20 % Anteil als Mischung mit Ethylcellulose erhöht die Wirkstofffreisetzung nur gering. Mit 33 % Anteil hingegen wird die Freisetzung merklich beschleunigt, ohne sich durch eine thermische Nachbehandlung wieder zu verändern.