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Among optogenetic tools, channelrhodopsins, the light gated ion channels of the plasma

membrane from green algae, play the most important role. Properties like channel

selectivity, timing parameters or color can be influenced by the exchange of selected

amino acids. Although widely used, in the field of neurosciences for example, there is

still little known about their photocycles and the mechanism of ion channel gating and

conductance. One of the preferred methods for these studies is infrared spectroscopy

since it allows observation of proteins and their function at a molecular level and in

near-native environment. The absorption of a photon in channelrhodopsin leads to

retinal isomerization within femtoseconds, the conductive states are reached in the

microsecond time scale and the return into the fully dark-adapted state may take

more than minutes. To be able to cover all these time regimes, a range of different

spectroscopical approaches are necessary. This mini-review focuses on time-resolved

applications of the infrared technique to study channelrhodopsins and other light

triggered proteins. We will discuss the approaches with respect to their suitability to the

investigation of channelrhodopsin and related proteins.

Keywords: infrared spectroscopy, time-resolved spectroscopy, FTIR, IR-spectrometer, retinal proteins,

channelrhodopsin

Introduction

Marked with the first description of channelrhodopsin as a light-gated ion channel in 2002 (Nagel
et al., 2002) the new field of optogenetics emerged and has since gone through rapid development.
It utilizes light sensitive proteins like channelrhodopsins, bacteriorhodopsin, rhodopsin, blue light
receptors (BLUF) (Kennis and Mathes, 2013), phytochromes (Yang et al., 2013), or engineered
proteins (Möglich and Moffat, 2010) as tools to control some defined events in living cells by light
(Zhang et al., 2006).

The most commonly used channelrhodopsin is composed of the 7-helical apoprotein opsin
and a retinal chromophore, covalently attached by a protonated Schiff base. Light causes
retinal isomerization which in turn triggers conformational changes of opsin then forming
the ion conductive pore. First information on the channelrhodopsin photocycle came from
electrical measurements and from time-resolved UV-visible spectroscopy (Stehfest and Hegemann,
2010). Further structural information was revealed by the X-ray structure (Kato et al., 2012).
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However, still to date a little is known about its exact gating
mechanisms and photocycles.

Providing information on a molecular level, infrared (IR)
spectroscopy has become an important tool for investigation of
structure/function relationships in proteins. An overview of its
applications in biophysics is given in (Siebert and Hildebrandt,
2008). The most commonly used spectral region is between∼800
and ∼2500 cm−1 (4–12.5µm) (Barth, 2007) and a resolution
better than 8 cm−1 is usually desired. One advantage over other
commonly used methods, EPR, NMR, or X-ray crystallography
for instance, is that IR investigates systems in their native
environment. However, a drawback of this technique is that
the extinction coefficients of most functional groups are low
(see Barth, 2007). To compare, in the UV-visible region, the
protonated Schiff base absorbs near 500 nm with an extinction
coefficient of ∼40,000M−1 cm−1 (Bridges, 1971) whereas in
the IR-spectrum, the Schiff base protonation can be indirectly
assigned by the strong protonated carboxylate C=O stretching
mode of the corresponding counter ions. For a glutamate or
aspartate, the extinction coefficient (∼200–300M−1 cm−1) is
over 100 times lower. This mini-review focuses on current IR-
spectroscopic techniques and their applications to the study of
proteins like channelrhodopsin.

IR-spectroscopy of Channelrhodopsin

IR-spectroscopy was among the first techniques used to obtain
structural information on the channelrhodopsin photocycle
(Ritter et al., 2008; Radu et al., 2009). Since 2008, several bands
have been assigned by biophysical methods such as site-directed
mutagenesis, H2O/

2H2O exchange or isotopic labeling. Figure 1
(light gray) shows the IR-spectrum of Channelrhodopsin-2 with
some important bands marked. For example, its overall helical
structure is typically discerned from the amide I and II bands
(∼1660 and ∼1550 cm−1) (Bandekar and Krimm, 1979; Byler
and Susi, 1986; Goormaghtigh, 1990). However, when only the
modes that undergo a change during conformational alterations
of the protein are of interest, the difference spectrum calculated
by subtracting the spectrum of the functional (illuminated) state
from the spectrum of the resting (dark) state is used (Figure 1,
black line). Hereby structural changes connected with the pre-
formation, opening or closing of the pore become visible. The
band at 1661 cm−1 indicates conformational changes of the
protein, the band pattern between 1100 and 1300 cm−1 reflects
the all-trans/13-cis chromophore isomerization (Nack et al., 2009;
Bruun et al., 2011), whereas changes in hydrogen bonding and
proton transfers of functional aspartates and glutamates are
seen between 1700 and 1800 cm−1. The protonation states and
hydrogen bonding of the Schiff base counter ions E123 and D253
(1760 cm−1) and the proton donor D156 (1737 and 1760 cm−1)
can be directly observed as well as the protonation state of E90
which, as a part of the central gate, plays a role in channel
selectivity. For further band assignments see for instance (Kuhne
et al., 2015; Lórenz-Fonfría et al., 2015) and citations therein.

The conductive state of channelrhodopsin arises
within∼200µs and decays within∼20ms (Ernst et al., 2008). In
contrast, the retinal isomerization occurs within femtoseconds

FIGURE 1 | Infrared spectroscopy of Channelrhodopsin. The absorption

spectrum (gray) of retinal proteins like Channelrhodopsin-2 reconstituted in

lipid vesicles shows bands associated with the lipid environment and

protonated carboxyl groups (∼1700–1800 cm−1 ), water (1644 cm−1) and the

overall helical structure of the protein (amide I ∼1650 cm−1; amide

II ∼1550 cm−1 ). Note, that the lipid vesicles allow a very dense packing of the

protein in the cuvette thus reducing the water content. Light induced

alterations are represented by the difference spectrum (black), where negative

bands (blue) occur due to the dark state while positive bands (red) are due to

the illuminated state, achieved by illumination with blue (480 nm) light. The

spectrum was recorded at cryogenic conditions where a mixture of species,

including the Schiff base deprotonated state and the conducting state is

observed. Note that, while total absorbance is in the order of 0.9 OD (left

scale, gray), largest changes in the difference spectrum are within 0.004 OD

(right scale, black). In the picture, some bands assigned so far to their

structural counterparts are marked. For details of the band assignments, see

(Eisenhauer et al., 2012; Lórenz-Fonfría et al., 2013, 2015; Kuhne et al., 2015).

(Neumann-Verhoefen et al., 2013), de- and re-protonation of
the Schiff base is faster than 1ms (Ernst et al., 2008), and the
recovery of the fully dark-adapted state, thereby closing the
photocycle, is accomplished within minutes (Ritter et al., 2008).
In addition, multiple photocycles with different reaction kinetics
exist in parallel (Hegemann et al., 2005), and depending on the
illumination conditions, additional side-ways can be populated
(Ritter et al., 2013). Therefore time-resolved methods covering
time-regimes from femtoseconds to minutes are necessary to
understand the structure-function relationships. In the following
chapters, we review IR-spectroscopic methods with focus on
temporal resolution, sample and technical requirements, as
applied to the study of proteins like channelrhodopsin.

Fourier-transform IR-spectroscopy

Rapid-scan Spectroscopy
In Fourier-transform infrared (FTIR) spectrometers the light
from a broadband IR-source passes an interferometer where the
incident beam is split by a beam splitter. The partial beams are
back-reflected to the beam splitter by two mirrors one of which
is a sliding mirror introducing a position-dependent phase-
shift. The beam splitter allows the partial transmission of the
reflected beams to the detector, where an interference signal is
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FIGURE 2 | Different types of IR spectrometers. (A) Basic concept of

a typical Fourier-transform infrared spectrometer showing light source

(Globar), beam splitter, fixed and movable mirrors and single element

infrared detector. Conformational changes in the sample are initiated by

the trigger laser. The conversion of the sample can then be followed with

a time resolution either determined by the sliding mirror movement

(rapid-scan) or by the rise-time of the detector (step-scan). (B) Concept

of a recently proposed dispersive device (Schade et al., 2014) with

Synchrotron light source, dispersive prism and focal-plane array detector.

(C) Laser based pump-probe setup. A first pulse from the pump laser

starts the photoreaction. A subsequent short pulse from the probe laser

probes the system. The probe pulse can be dispersed to obtain spectra;

however, spectral bandwidth is determined by the duration of the probe

pulse.

recorded as a function of the optical path difference (Griffiths
and De Haseth, 2007) (Figure 2A). This so-called interferogram
is converted into a spectrum by a Fourier transformation
(Herres and Gronholz, 1984). FTIR spectrometers benefit from
high-throughput (Jacquinot), multiplex (Fellgett), and high
registration precision (Connes) advantages (Perkins, 1987).
The temporal resolution is only limited by the speed, sliding
pathlength (corresponding to the resolution of the spectrum)
and reversal-time of the movable mirror. For a spectrum of
4 cm−1 resolution, 40ms time-resolution can be achieved (Smith
and Palmer, 2002). Due to the symmetry of the interferogram
around the position of equal optical path length (1s = 0),
one movement of the mirror yields two spectra by splitting
the interferogram at (1s = 0). Utilizing both forward- and
backward movement of the mirror for data acquisition, a time-
resolution of 10ms is achieved. Further improvement to 5ms
(8 cm−1 resolution) was reported with the rapid-sweep method
(Braiman et al., 1987). However, using slidingmechanismsmeans
that after data acquisition the mirror has to be stopped and
its direction reversed. This time-consuming process becomes
significant when fast processes are investigated and the mirror
is moved with high speed over a short distance. To avoid this,
different types of interferometers have been utilized. For instance,
a continuous rotarymotion of a tiltedmirror was used tomeasure
an interferogram in less than 1ms (4 cm−1 resolution) (Griffiths
et al., 1999). However, difficulties in maintaining the alignment

made an optical tilt-compensation necessary (Manning, 2002).
Due to the limited time-resolution, rapid-scan FTIR is only suited
to investigate the late stages of the channelrhodopsin photocycle.
The conducting state can only be observed by this technique in
exceptional cases, for example by cryotrapping or when slow-
cycling mutants (i.e., ChR2-C128T, Berndt et al., 2009) are used
(Stehfest et al., 2010).

Step-scan Spectroscopy
Here, time-courses at the particular interferogram data points
corresponding to distinct mirror positions are recorded
separately (Murphy et al., 1975). This is achieved by stopping
the movable mirror, initiating the reaction to be followed and
recording the time-trace while the mirror is at rest. The mirror
is then moved to the next position (“step”). This process is
repeated for each sampling point of the interferogram. Finally,
the interferograms corresponding to given times after light flash
are reconstructed using the intensities from the time-traces. This
means that the experiment has to be repeated at least as often
as the number of digital points of the interferogram which is
usually more than 1000 times. The time-resolution is then only
limited by the detector and the analog-digital converter of the
acquisition system. Additional noise sources that potentially
influence the experiments, for example instrument vibrations or
slow source drifts are described by Andrews and Boxer (2001).
To ensure sharp triggering (required for high time-resolution)
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and to minimize multi-photon processes, the reaction is
triggered by a laser flash usually shorter than the desired
time-resolution. Several techniques avoid the complicated
process of stopping the mirror by utilizing the time delay
between the subsequent digitized interferogram points. In these
synchronized continuous-scan measurements, the experiment
also has to be triggered for each interferogram data point (see
Fleischmann et al., 2003 and citations therein).

Siebert and coworkers described the set-up of a step-scan
device based on a commercial interferometer designed to study
the photoreaction of bacteriorhodopsin with µs time resolution
(Uhmann et al., 1991). With current set-ups, fast detectors
and electronics, time-resolutions down to nanoseconds have
been achieved (Garczarek and Gerwert, 2006). The step-scan
technique is ideal for investigation of fast cycling non-degrading
systems like bacteriorhodopsin, however its application to many
other light-sensitive proteins can be difficult. For instance, the
long recovery kinetics of most channelrhodopsins requires a
prolonged delay between two subsequent light flashes. The
recording time of a spectral data set with a resolution of
4–8 cm−1, a spectral width of ∼1000 cm−1 and appropriate
signal-to-noise ratio (∼1000 experiment repetitions) can be in
the order of days. For example, first results on channelrhodopsin
activation, with 6µs time-resolution took 5 days of accumulation
time (Lórenz-Fonfría et al., 2013). Later the time-resolution was
improved to the nanosecond range (Kuhne et al., 2015; Lórenz-
Fonfría et al., 2015), however long measuring times are still an
issue.

Non-cyclic systems can only be investigated using this
technique when each point of the interferogram is recorded
from a fresh sample. For liquid samples a flow-through cell is
advantageous (Kaun et al., 2006), however for non-liquid ones,
the sample has to be replaced once the time-course of a single data
point of the interferogram has been measured. Set-ups utilizing
rotating discs (Rödig and Siebert, 1999) or translational stages
(Rammelsberg et al., 1999) have been developed for such cases.
However, homogeneity of the samples is important here. For a
more detailed review of the step-scan and other FTIR techniques,
see (Kötting and Gerwert, 2005; Radu et al., 2011).

Synchrotron Based Dispersive Techniques

Dispersive spectrometer approaches have long been considered
outdated since they typically suffer from low light intensity due to
losses at the entrance slit and the dispersive grating and also from
low data acquisition speed limited by the grating movement.
Modern focal-plane-array (FPA) detectors allow simultaneous
measurements of all data points. The light from the entrance slit,
after passing through the grating, is imaged to the FPA where
each detector element is used to record its own spectral interval.

To achieve sufficient spectral resolution, echelle gratings with
higher diffraction orders are commonly used, particularly in
astronomical sciences (Lacy et al., 1989). The low light intensity,
and consequently the low signal-to-noise ratiomakes them rather
unsuitable for time-resolved IR-studies of proteins. Another
drawback of gratings in combination with planar arrays is the
significant curvature of the recorded spectral image (Pelletier

et al., 2005), a problem which has to be addressed to avoid
artifacts. Furthermore, array detectors require precise imaging
of the entrance aperture at the detector elements and thus a
highly brilliant light source such as that provided, for example
by synchrotron radiation is particularly attractive. A conceptual
design of a combined dispersive IR/X-ray spectroscopy set-up
for simultaneous time resolved measurements using synchrotron
light was proposed by (Marcelli et al., 2010). The high brilliance
of the synchrotron IR-light allows optimal utilization of the
spectrometer entrance aperture.Marcelli et al. calculated a signal-
to-noise ratio of >1000 for integration times >0.3µs using a
time-resolved grating spectrometer in combination with a focal
plane array and cooling all optical elements to 77 K.

A prism-based infrared spectrometer with synchrotron
source, designed for single-shot measurements of photosensitive
proteins like channelrhodopsin and enzyme rhodopsins is
currently being developed (Schade et al., 2014). Design goals
are microsecond time-resolution and a spectral resolution of
4–8 cm−1 in the 2000–950 cm−1 range while maintaining a
signal-to-noise ratio of 1000 in single-shot mode. The concept
is based on a Féry-spectrograph (Féry, 1911), where a prism
consisting of two spherical surfaces is used. A spherical mirror
behind the prism facilitates a second pass of the light (Figure 2B),
and all spherical surfaces follow aplanatic conditions (Warren,
1997). This arrangement guarantees a coma and aberration free,
non-tilted flat image of the entrance aperture in the image plane,
and a high spectral resolution (Wilson, 1969). The usage of a
prism rather than a grating has the advantage of higher optical
transmission and the absence of interferences caused by order
effects or stray light. The ray aberrations of this set-up were
calculated to be less than 15µm and therefore much smaller
than the corresponding Airy disk, demonstrating the diffraction-
limited operation over the whole spectral range. The expected
signal-to-noise ratio calculation was based on parameters suitable
for the IRIS Beamline at BESSY II (Peatman and Schade, 2001).
For 1µs accumulation time, a signal-to-noise ratio of ∼600 was
calculated for an operation temperature of 300 K, which improves
to ∼1000 when a cold-stop (77 K, f/1.5) in front of the detector
array is introduced. This however requires a re-imaging system
to map the image to the linear FPA through the cold-shield of the
detector housing.

A direct comparison of the signal-to-noise ratio to other time-
resolved methods like FTIR is rather complicated, since either
the time-resolution is not achieved (rapid-scan methods are only
applicable down to milliseconds), or the method is conceptually
based on thousands of repetitions of the same experiment (step-
scan). Using the data of (Schade et al., 2014) and neglecting other
sources of noise in the setup, a signal-to-noise ratio of 10,000
is theoretically achievable by accumulating 100 measurements,
corresponding to 100µs accumulation time. This is comparable
to the signal-to-noise ratio of rapid-scan FTIR experiments
in the millisecond time range (for example-spectra of single-
shot experiments, see Elgeti et al., 2008). The combination of
synchrotron light with FPA detectors is largely compensating for
the loss of FTIR advantages. This setup will allow for the direct
observation of the formation and decay of the channelrhodopsin
conductive state as well as crucial proton transfer reactions.
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For example, de- and re-protonation of the Schiff base, under
native environmental conditions can be observed in single-shot
mode thus avoiding possible sample degradation due to the
long recovery period necessary for repetition-based methods like
step-scan FTIR.

Spectroscopy with Lasers

Time-resolved infrared spectroscopy takes advantage of laser
light sources. For example, a PbS diode laser has been used
to record conformational changes of the Ras protein in the
nanosecond time regime with a flash-photolysis set-up (Lin
et al., 2014). The intensity of the laser beam was measured,
after passing through the sample, by an infrared detector. In
this case, the photoreaction was initiated by photolysis of caged
compounds through a UV laser flash. Such setups however only
allow the acquisition of signals at fixed wavelength. Quantum
cascade lasers (QCLs) emitting in the mid- and far-infrared range
are currently under heavy development. Their tunability and
high output intensity, while maintaining a narrow bandwidth,
make them ideal light sources for infrared spectroscopy. Intrinsic
temperature fluctuations however introduce noise that has to be
considered (Borri et al., 2011; Liu and Wang, 2011). Current
developments in laser absorption spectroscopy based on QCLs
are reviewed elsewhere (Zhang et al., 2014). They are becoming
more frequently used in spectrochemical imaging (Clemens et al.,
2014) and nanospectroscopy (Amenabar et al., 2013). A QCL-
based spectrometer has been applied to study the first steps of
the channelrhodopsin activation process (Lórenz-Fonfría et al.,
2015). The authors used a tunable QCL in a flash-photolysis
setup, where the laser is tuned to the desired wavelength,
the photoreaction then initiated by a VIS flash and the time-
dependent signal change recorded by an infrared detector. This
procedure has to be repeated for each desired wavelength. A time-
dependent dataset of channelrhodopsin in the range 1610 and
1680, and 1700 and 1780 cm−1 at a resolution of 1 and 0.5 cm−1

could thus be acquired with a repetition rate of 0.33Hz by using a
fast-cycling channelrhodopsin mutant (ChR2-E123T, Gunaydin
et al., 2010).

For time-resolutions of nanoseconds or better, pump-probe
technologies can be used. The photoreaction of a protein is
started by a first laser pulse, usually in the fs time regime.
A second pulse with a certain time delay probes the protein’s

response. For each pump-probe cycle, a difference spectrum
can be obtained when the probe pulse, after passing the
sample, is fed through a dispersive element and measured at an
infrared detector array (Hamm and Zinth, 1995) (Figure 2C).
An overview on how this is applied to dynamics of light-
triggered proteins is given in Groot et al. (2007). This
technique has been used to investigate ultrafast dynamics of
bacteriorhodopsin, photoactive yellow protein (see for example,
Van Wilderen et al., 2006), and LOV domains (Alexandre et al.,
2009). Channelrhodopsin-2 was also studied by Vis-pump/IR-
probe spectroscopy (Neumann et al., 2008) in the fs-timescale.
The experiments showed amide-I vibrational modes occurring
within ∼500 fs thus demonstrating a very strong protein-
chromophore coupling (Neumann-Verhoefen et al., 2013).

An alternative method to measure mid-infrared pulses is to
optically convert them into the UV-visible range where a broad
variety of array detectors is available. Zhu et al. (2012) used
chirped pulse upconversion facilitated by a non-linear optical
crystal. The authors investigated the photoreaction of BLUF
photoreceptors on a picosecond time scale and demonstrated the
method is suited for investigation of signal changes down to the
mOD range.

Summary/Outlook

While the time regime of milliseconds and slower can be accessed
by the rapid-scan FTIR technique for most biological samples,
for faster systems special considerations have to be taken into
account. Ultrafast alterations can be observed by pump-probe
spectroscopy. Step-scan FTIR facilitates a good signal-to-noise
ratio and a time-resolution down to nanoseconds but requires
perfectly cyclic systems under investigations. For non-cyclic
or slow cycling systems, fast time-resolved investigations are
challenging. However, developments addressing this problem by
QCL-based setups or dispersive spectroscopy in combination
with highly brilliant light sources are in progress.
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