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Abstract

We study quantum phase transition from the superfluid to a Mott insulator in optical lattices us-

ing a Bose-Hubbard Hamiltonian. For this purpose we have developed a field theoretical approach

in terms of path integral formalism to calculate the second-order quantum corrections to the energy

density as well as to the superfluid fraction in cubic optical lattices. Using present approach the

condensate fraction and ground state energy are calculated as functions of the s-wave scattering

length. In contrast to the Bogoliubov model, which is technically speaking a one-loop approxi-

mation, we carry the calculation up to two loops, and improve the result further by variational

perturbation theory. The result suggests that the quantum phase transition exists.
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I. INTRODUCTION

Optical lattices are known as the gases of ultracold atoms trapped in periodic potentials

created by standing waves of laser light. The actuality of experimental and theoretical

investigations of these artificial crystals bound by light can be justified by following two

factors [1]:

1) Neutral atoms in these optical lattices have a number of affective futures that make

them interesting candidates for the realization of a quantum computer [2].

2) They may be used to stimulate various lattice models of fundamental importance to

condensed matter physics to study in a controlled way in solid-state physics, since one is

able to finely tune the properties and geometry of the lattices. In particular, it is possible

to control the Hamiltonian parameters and study various regimes of interest. Similarly to

the ordinary Bose - Einstein Condensation (BEC) of gases, the quantum phase transitions

in optical lattices were first predicted theoretically [3] and have recently been observed

experimentally [4].

Most of the theoretical investigations are based on Bose-Hubbard Hamiltonian:

H = −J
∑

<i,j>

ĉ†i ĉj +
U

2

Ns
∑

i

ĉ†i ĉ
†
i ĉiĉi +

Ns
∑

i

(εi − µ)ĉ†i ĉi (1)

where ĉi
† and ĉi are the bosonic creation and annihilation operators on the site i; the sum

over < i, j > includes only pairs of nearest neighbors; J is the hopping amplitude, which is

responsible for the tunneling of an atom from one site to another neighboring site; U is the

on site repulsion energy; Ns - number of sites. Presently it is well established that at very

low temperature (T → 0) a system of bosons described by the Hamiltonian (1) could be on

superfluid (SF) or in Mott insulator (MI) phase. Clearly there would be a quantum phase

transition between these two phase depending on parameters U and J . Particularly, when

the hopping term is dominated, U/J ≪ 1, the system prefers to be in the SF phase. On the

other hand when the repulsion prevails the kinetic term, U/J ≫ 1, the system would be in

MI phase where each atoms is absolutely localized near a site.

Clearly the superfluid phase may consist not only of condensed particles with a number

N0, but also of N1 uncondensed ones, whose sum N0 + N1 = N is the total number of

particles. The critical interaction strength κcrit ≡ (U/J)crit = 29.34 and κcrit = 3.6, for

D = 3 and D = 1 respectively, of the quantum phase SF → MI transition estimated
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by Monte Carlo calculations [5, 6] at filling factor ν = 1 is in good agreement with the

experimental data.

To make easier further reading we clarify some specific features of these two phases:

SF phases is characterized by long-range correlation, a continuous (gapless) excitation spec-

trum and a finite compressibility. Since there exists a condensate with a number of particles

N0 6= 0, the gauge symmetry is spontaneously broken in accordance with Bogoliubov and

Ginibre theorems. In contrast, in the Mott insulator phase, there is no long-range correlation

neither breaking of gauge symmetry. The excitation spectrum has a gap and the system is

incompressible, since there is a fixed number of atoms per-site. This new state of matter

can survive only at zero temperature and integer filling factor ν.

It is interesting to note that there are two kinds of experiments observing above quantum

phase transition, depending on the starting point. In the experiments by Greiner et al [4]

one first creates a BEC in a conventional harmonic trap and then adiabatically adds the

periodic optical potential. In the second method, pioneered by the Florence group [7] one

uses a conventional protocol for evaporative cooling in a magnetic trap down to temperatures

just above the threshold for BEC. At this point the optical lattice potential is switched on

and evaporative cooling continues. In this way, the system condenses directly into a ground

state of the harmonic plus periodic potential. It seems to be that the first method is good

to observe SF→MI while the second one is good for MI→SF transitions.

Similarly, most of theoretical approaches can be divided into two classes: SF→MI and

MI→SF ones. The latter are based on the Ginzburg - Landau theory as describes for

instance in Ref. [8]. They are well suited to analyze the time-of light pictures and the

resulting visibility at zero and finite temperatures. In the former class (SF→MI) one uses a

perturbative scheme [9] within a decoupling (or single site) approximation due to Gutzwiller.

This variational appoach which was first proposed for a fermion system [10], and further

developed for bosons in Refs. [11, 12], has the following drawbacks [13] (see also last lines

of Sec. IV):

• The mean field Hamiltonian which features single boson terms does not conserve the

total number of bosons [14];

• Tunneling of uncondensed atoms is neglected;

• The critical value κcrit does not depend on the lattice dimension.
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Nevertheless, the prediction of decoupling approximation for κcrit = 34.98 at filling factor

ν = 1 is in agreement with the well established value given above. Some years ago an

application of the Hartree-Fock-Popov approximation (which is widely used to study BEC

of atomic gases and even triplons [15]) to optical lattices was presented by Stoof et al. [16].

Studying the dependence of the condensate number N0 on κ = U/J , i.e. N0(U/J) they

observed that N0 never reaches zero for finite values of κ, implying that this approximation

is unable to predict a possible phase transition to a Mott-insulator phase. Moreover, a

Hartree-Fock-Bogoliubov (HFB) approximation applied to the Bose-Hubbard Hamiltonian

gives no quantum phase transition for optical lattices [17]. Hence we find it interesting to

study the possibility of such a transition if we go beyond these approximations.

In the present work we shall investigate BEC in optical lattices by applying a two-loop

approximation and treating the result by variational perturbation theory (VPT) [18]. It

will be shown that, while the ground state energy is rather sensitive to the filling factor in

commensurate situations, this is not so for arbitrary condensate fractions n0 = N0/N . We

find that n0 goes to zero at κ ∼ 6 ÷ 6.5 for ν = 1, 2, 3 in D = 3 dimensions. In D = 1

dimension, this happens at κ ∼ 4.

The plan of this paper is as follows. In Sec. II the basic equations in functional formalism

for Bose-Hubbard Hamiltonian are formulated. In Sec. III we derive explicit expressions for

the effective potential in two-loop order. In Sec. IV we obtain condensate fraction vs input

parameters U, J, ν . The quantum corrections to the energy of the system is discussed in Sec.

V. In Sec. VI we present numerical results and discussions. The last Sec. VII summaries

our results.

II. THE ACTION AND PROPAGATORS IN BOSE-HUBBARD MODEL

The action at zero temperature, (T = 0) that describes a gas of atoms in a periodic

potential is given by

S(ϕ†, ϕ) =
∫

dtdx

[

ϕ†i∂tϕ+ ϕ†
~∇2

2m
ϕ+ µϕ†ϕ− Vext(x)ϕ

†ϕ

]

− 1

2

∫

ϕ†(x)ϕ†(x′)V (x− x′)ϕ(x)ϕ(x′)dtdxdx′ (2)
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where the isotropic optical lattice potential is described by [4]

Vext(x) = V0

D
∑

α=1

sin2
(

2πxα

λ

)

(3)

with λ the wave length of the laser light. The lattice points lie at the positions [19]

xi = i a, (4)

where a is the lattice spacing, and

i ≡ (i1, i2, . . . , id) (5)

are integer-valued vectors. It can be shown [9, 13] that the Wannier representation of the

Hamiltonian corresponding to the action (2) is equivalent to well known Bose-Hubbard

model (1).

The on-site energy, εi, the amplitude of hopping – J and on-site interaction strength U

are related to Vext(x) and V (x− x′) as follows:

εi =
∫

dxω†
0(x− xi)

{

− h̄2∇2

2m
+ Vext(x)

}

ω0(x− xi) (6)

Ji,j = −
∫

dxω†
0(x− xi)

{

− h̄2∇2

2m
+ Vext(x)

}

ω0(x− xj) (7)

U =
∫

dx
∫

dx′ω†
0(x− xi)ω

†
0(x− xi)V (x− x′)ω0(x

′ − xi)ω0(x
′ − xi) (8)

where ωn(x) are Wannier functions. In the tight-binding limit and pseudopotential approx-

imation, V (x− x′) = 4πaδ(x− x′)/m the equations (7), (8) are simplified as:

J =
4√
π
Er

(

V0

Er

)3/4

exp

{

−2
(

V0

Er

)1/2
}

(9)

U =
2πωa

l
√
2π

(10)

where Er = 2π2/mλ2, a is the s-wave scattering length, and l =
√

1/mω = (Er/V0)
1/4λ/4π

is the harmonic oscillator length.

In terms of parameters J and U the action (2) can be rewritten as follows:

S(ϕ†, ϕ) =
∫

dt

{

∑

i

ϕ†(xi, t)[i∂t + µ]ϕ(xi, t) + J
∑

<i,j>

ϕ†(xi, t)ϕ(xj, t)

− U

2

∑

i

ϕ†(xi, t)ϕ
†(xi, t)ϕ(xi, t)ϕ(xi, t)

}

(11)
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The grand-canonical partition function Z, and the effective potential at zero temperature,

V, can be found as [20]:

Z =
∫

Dϕ†DϕeiS(ϕ
†,ϕ) (12)

V =
i

T
lnZ (13)

where
∫

dt = T is the total time interval. Note that, in accordance with the background

field method [21], which will be used below, in evaluation of the effective potential only

connected single - particle irreducible Feynman diagrams should be included. The ground

state expectation value of an operator Â(ϕ†, ϕ) can be expressed as a functional integral:

〈Â〉 = 1

Z

∫

Dϕ†DϕÂ(ϕ†, ϕ)eiS(ϕ
†,ϕ) (14)

At zero temperature the system could undergo into BEC state. The necessary and sufficient

condition for Bose-Einstein condensation is the spontaneous gauge-symmetry breaking which

is established by Bogoliubov shift [13]:

ϕ(xi, t) =
√
νn0 + ϕ̃(xi, t) (15)

where ν = N/Ns– filling factor,and the condensate fraction, n0 = N0/N , is constant for

regular lattice without magnetic trap.

Substituting (15) into (11) and parameterizing quantum field ϕ̃(xi, t) in terms of two

real-valued quantum fields ϕ1(xi, t) and ϕ2(xi, t) as

ϕ̃(xi, t) =
1√
2
(ϕ1(xi, t) + iϕ2(xi, t))

ϕ̃†(xi, t) =
1√
2
(ϕ1(xi, t)− iϕ2(xi, t)) (16)

one may separate the action as follows

S = S0 + S(1) + S(2) + S(3) + S(4) (17)

S0 = Ns

∫

dt
[

µνn0 + Jz0νn0 −
U

2
ν2n2

0

]

(18)

S(1) =
√
2νn0

[

Jz0 + µ− Uνn0

]
∫

dt
∑

i

ϕ1(xi, t) (19)

S(2) =
1

2

∫

dt
∑

i

∑

a,b=1,2

[

− εabϕa(xi, t)∂tϕb(xi, t)− ϕa(xi, t)Xaϕb(xi, t)δab

]

+
J

2

∫

dt
∑

<i,j>

∑

a=1,2

ϕa(xi, t)ϕa(xj, t) (20)
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S(3) = −U
√
2νn0

2

∫

dt
∑

i

[

ϕ1(xi, t)ϕ
2
2(xi, t) + ϕ3

1(xi, t)
]

(21)

S(4) = −U

8

∫

dt
∑

i

[

ϕ4
1(xi, t) + ϕ4

2(xi, t) + 2ϕ2
1(xi, t)ϕ

2
2(xi, t)

]

. (22)

In (20) εab is the antisymmetric tensor with ε12 = 1, ε21 = −1, and

X1 = −µ + 3Uνn0

X2 = −µ + Uνn0 (23)

For a homogenous system the condensate is uniform and it is convenient to decompose

the fluctuations into a Fourier series [22, 23]

ϕa(xj, t) =
1

√

Nd
s

∑

q

∫

dω

(2π)
ϕa(~q, ω)e

−iωt exp

[

2iπj

Ns

q

]

(24)

where q = {q1, q2 . . . qd} with qi running from 1 to Ns − 1 is an integer-valued vector field

associated with all wave vectors in the Brioullin zone: ~q = 2π q/a, and

1

Ns

∑

q

≡ 1

Nd
s

Ns−1
∑

q1=1

Ns−1
∑

q2=1

. . .
Ns−1
∑

qd=1

. (25)

The ~q = 0 mode, i.e. the Goldstone mode, is omitted from the sum, to achieve orthogonality

between the condensate and noncondensed modes. In momentum space the quadratic term

S(2) as follows:

S(2) =
1

2

∫

∑

q,q′

ϕa(q, ω)Mab(q, ω,q
′, ω′)ϕb(q

′, ω′)
dωdω′

(2π)2
(26)

M11(q, ω,q
′, ω′) = −[X1 + ε(q)− Jz0]δ(ω + ω′)δq,−q′, M12(q, ω,q

′, ω′) = iω, (27)

M22(q, ω,q
′, ω′) = −[X2 + ε(q)− Jz0]δ(ω + ω′)δq,−q′, M21(q, ω,q

′, ω′) = −iω, (28)

with z0 being the number of nearest neighbors. From this we extract the Fourier transfor-

mation of the propagator of the fields ϕ1, and ϕ2 as the 2× 2 matrix:

G(ω,q) =
i

ω2 − E2(q) + iǫ







X2 + ε(q)− Jz0 −iω

iω X1 + ε(q)− Jz0





 (29)

where

E(q) =
√

(X1 + ε(q)− Jz0)(X2 + ε(q)− Jz0)

ε(q) = 2J
(

d−
d
∑

α=1

cos(2πqα/Ns)
)

(30)
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In coordinate space for a regular lattice the propagator is translational invariant

Gab(xi, t;xj, t
′) ≡ Gab(xi − xj, t− t′) = 〈ϕa(xi, t)ϕb(xj, t

′)〉 (31)

Note that, in deriving (26)-(30), the following relations have been used:

∑

<m,j>

exp

[

i2π

Ns
(j · q−m · p)

]

= 2Nsδq,p

d
∑

α=1

cos(2πqα/Ns),

∑

j

exp

[

i2πj

Ns
(q− p)

]

= Nsδq,p

∑

<i,j>[1] = z0 = 2d,
∑

q[1] = Ns,
∑

i[1] = Ns.

(32)

III. THE EFFECTIVE POTENTIAL IN TWO-LOOP APPROXIMATION

To organize the quantum corrections in a two-loop expansion, we separate the terms in

the action (17) into a free part and interaction parts following Jackiws pioneering work [20]

S = Scl + Sfree + Sint (33)

Scl = S0 = Ns

∫

dt
{

µνn0 + Jz0νn0 −
U

2
ν2n2

0

}

(34)

Sfree =
1

2

∑

i,j

∫

dtϕa(xi, t)Mab(xi, t;xj, t)ϕb(xj, t) (35)

Sint =
∫

dt
∑

i

Lint(ϕ1(xi, t), ϕ2(xi, t)) (36)

Lint(ϕ1(xi, t), ϕ2(xi, t)) = v3[ϕ1(xi, t)ϕ
2
2(xi, t) + ϕ3

1(xi, t)]

+v4[ϕ
4
1(xi, t) + ϕ4

2(xi, t) + 2ϕ2
1(xi, t)ϕ

2
2(xi, t)] ≡ L3 + L4

(37)

where 2× 2 matrix Mab is given by Eqs. (27), (28) , v3 = −U
√

νn0/2, v4 = −U/8.

The perturbative framework is based on the propagator Gab(k, ω) given in (29). The

effective potential V can be evaluated by the Eq. (13), where the only connected, irreducible

diagrams in the partition function Z =
∫ Dϕ1Dϕ2 exp (iS(ϕ1, ϕ2)) should be taken into

account. The grand thermodynamic potential i.e. free energy, Ω(n0, µ), corresponds to the

minimum of V(n0, µ), such that n0 is a solution of the equation ∂V(n0, µ)/∂n0 = 0 [24].
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Now using (34)-(36) and making expansion by Lint one can represent Z as follows:

Z = eiS0
∫

Dϕ1Dϕ2e
iSfree+iSint

= eiS0
∫

Dϕ1Dϕ2e
i

2
ϕaMabϕb

{

1 + i
∑

i

∫

dtLint(ϕ1(xi, t), ϕ2(xi, t))

+
i2

2

∑

i,j

∫

dtdt′Lint(ϕ1(xi, t), ϕ2(xi, t))Lint(ϕ1(xj, t), ϕ2(xj, t))

}

=
eiS0

√
DetG

{

1 + i
∑

i

〈Lint(ϕ1(xi, t), ϕ2(xi, t))〉0dt

+
i2

2

∑

i,j

∫

dtdt′〈Lint(ϕ1(xi, t), ϕ2(xi, t))Lint(ϕ1(xj, t), ϕ2(xj, t))〉0
}

(38)

where we introduced the following notation

〈Â(ϕa(xi, t), ϕb(xi, t))〉0 = Â

(

δ

iδja(xi, t)
,

δ

iδjb(xi, t)

)

e
− i

2
jαGαβjβ

∣

∣

∣

∣

∣

∣

∣

j=0

, (39)

suppressing the summation and integration signs over lattice sites and times t and t′ in

quandratic forms, for brevity.

The classical contribution to V is given by factor exp (iS0) in (38)

V0 =
i

T
ln eiS0 =

Nsνn0

2
[Uνn0 − 2(µ+ Jz0)] (40)

The one-loop contribution to the thermodynamic potential - V1L, can be obtained by using

the free part of the action (35) in (38), neglecting interaction terms:

V1L =
i

2T
Tr lnDetM̂ =

i

2

∑

q

∫

dω

(2π)
lnDetM(ω,q) (41)

where M(ω,q) is given by (28). One notices that the frequency sum, and with it the ω

integration, is divergent. In fact, to evaluate the frequency sum such as
n=∞
∑

n=−∞

ln(a2 + ω2
n),

with ωn = 2πnT one differentiates it with respect to a and, after performing the summation

over n, integrates it over a. This procedure gives an additional divergent constant which

may be removed by an additive renormalization of the energy [25]. Therefore, in the case

of optical lattices, where the momentum integration is performed within a finite volume

there is no additional ultraviolet divergency coming from q integration, but there is an

infinite constant coming from the frequency summation [26]. This divergent constant can

be removed by subtraction from V the thermodynamic potential for the ideal gas [27]:

Vren
1L = V1L(U)− V1L(U = 0) =

1

2

∑

q

E(q)− 1

2

∑

q

E(q)
∣

∣

∣

∣

∣

U=0

=
1

2

∑

q

[E(q)− ε(q) + µ+ Jz0], (42)
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where we have used Eqs.(23), (30) and performed integration by ω using formulas given in

the Appendix. Further, for simplicity, we shall suppress the superscript in Vren
1L .

The two-loop contributions to V are involved in second and third terms of (38) as

V2L =
i

T
ln

{

1 + i
∑

i

∫

〈Lint〉0dt+
i2

2

∑

i,j

∫

dtdt′〈LintLint〉0
}

(43)

The former includes L3(ϕ1, ϕ2) which does not contribute to Z, since it is in odd power of

ϕa, and hence:

〈Lint〉0 = 〈L4〉0 = v4{〈ϕ4
1〉0 + 〈ϕ4

2〉0 + 2〈ϕ2
1ϕ

2
2〉0} (44)

The same is true for 〈L3(ϕa(xi, t))L4(ϕb(xi, t))〉0 coming from the third term of (38). As to

the term L4(ϕa(xi, t))L4(ϕa(xi, t)) it also should be omitted since its contribution is beyond

two-loop corrections. Therefore

V2L =
i

T
ln

{

1 + i
∑

i

〈L4(ϕ1(xi, t), ϕ2(xi, t))〉0

+
i2

2

∑

i,j

∫

dtdt′〈L3(ϕ1(xi, t), ϕ2(xi, t))L3(ϕ1(xj, t), ϕ2(xj, t))〉0
}

(45)

.

The second term in the logarithm in Eq.(45) can be expressed in terms of propagator as

〈L4〉0 = v4
[

3(G2
11(0) +G2

22(0)) + 2G11(0)G22(0) + 4G2
12(0)

]

(46)

where we used the following abbreviation x = (x, t) and the formulas

〈ϕa(x)ϕb(x
′)〉0 = Gab(x− x′),

〈ϕ4
a〉0 = 3G2

aa(0),

〈ϕ2
1ϕ

2
2〉0 = G11(0)G22(0) + 2G2

12(0), (47)

and introduced the notation

Gab(0) = Gab(x, x) =
1

Ns

∑

q

∫

dω

(2π)
Gab(ω,q)e

iω(t−t′)

∣

∣

∣

∣

∣

t→t′

(48)

Note that G12(0) is the constant (see the Appendix)

G12(0) =
1

Ns

∑

q

∫

dω

2π

ω

ω2 − E2(q) + iǫ
=

i

2Ns

∑

q

[1] = −G21(0) =
i

2
. (49)
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The third term,

〈L3L3〉0 = v23
[

〈ϕ1(x)ϕ
2
2(x)ϕ1(y)ϕ

2
2(y)〉0 + 2〈ϕ1(x)ϕ

2
2(x)ϕ

3
1(y)〉0 + 〈ϕ3

1(x)ϕ
3
1(y)〉0

]

(50)

includes averages with six ϕa. These may be evaluated via Wick theorem to yield

〈ϕ3
1(x)ϕ

3
1(y)〉0 = 6G3

11(x, y)

〈ϕ3
1(x)ϕ1(y)ϕ

2
2(y)〉0 = 6G11(x, y)G

2
12(x, y)

〈ϕ1(x)ϕ
2
2(x)ϕ1(y)ϕ

2
2(y)〉0 = 4G22(x, y)G12(x, y)G21(x, y) + 2G2

22(x, y)G11(x, y).

(51)

We have omitted one-particle reducible diagrams such as G22(0)G11(x, y)G11(0).

Now, using (46), (50)-(51) in (45), we finally obtain:

V2L =
UNs

8

[

3G2
11(0) + 3G2

22(0) + 2G11(0)G22(0) + 4G2
12(0)

]

− iU2νn0

2T

∑

i,j

∫

dtdt′
[

G2
22(xi, t;xj, t

′)G11(xi, t
′;xj, t

′)

+ 3G3
11(xi, t;xj, t

′) + 6G11(xi, t;xj, t
′)G2

12(xi, t;xj, t
′)

+ 2G12(xi, t;xj, t
′)G21(xi, t;xj, t

′)G22(xi, t; ,xj, t
′)
]

≡ V(1)
2L + V(2)

2L . (52)

The two-loop diagrams that contribute the thermodynamic potential are shown in Fig. 1.

FIG. 1: Vacuum diagrams in a two-loop approximation. The solid and dashed lines correspond to

G11 and G22 respectively, while the mixed line corresponds to G12 (or G21).
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We now pass to momentum space, and perform integrations over energy variables ω to

obtain following analytic expression (see Appendix):

V(1)
2L (n0, µ) =

U

8
Ns

(

3I210 + 3I220 + 2I10I20 − 1
)

, (53)

V(2)
2L (n0, µ) = −U2νn0

8Ns

(

I1 + 3I2 − 6I3 + 2I4
)

. (54)

where following integrals are introduced

I10(n0, µ) =
1

Ns

∑

q

(−µ̃ + 3Uνn0 + ε(q))

2E(q) = G22(0),

I20(n0, µ) =
1

Ns

∑

q

(−µ̃ + Uνn0 + ε(q))

2E(q) = G11(0),

I1(n0, µ) =
∑

q1 6=q2

(−µ̃+ 3Uνn0 + ε(q1))(−µ̃+ 3Uνn0 + ε(q2))(−µ̃ + Uνn0 + ε(q3))

E(q1)E(q2)E(q3)(E(q1) + E(q2) + E(q3))
,

I2(n0, µ) =
∑

q1 6=q2

(−µ̃+ Uνn0 + ε(q1))(−µ̃ + Uνn0 + ε(q2))(−µ̃ + Uνn0 + ε(q3))

E(q1)E(q2)E(q3)(E(q1) + E(q2) + E(q3))
,

I3(n0, µ) =
∑

q1 6=q2

(−µ̃+ Uνn0 + ε(q3))

E(q3)(E(q1) + E(q2) + E(q3))
,

I4(n0, µ) =
∑

q1 6=q2

(−µ̃+ 3Uνn0 + ε(q3))

E(q3)(E(q1) + E(q2) + E(q3))

(55)

and E(q) =
√

(−µ̃+ 3Uνn0 + ε(q))
√

(−µ̃+ Uνn0 + ε(q)), µ̃ = µ− Jz0, q3 = q1 − q2.

Therefore the full effective potential in a two-loop approximation is given by

V(µ, n0) = V0(µ, n0) + V1L(µ, n0) + V(1)
2L (µ, n0) + V(2)

2L (µ, n0) (56)

where V0, V1L, V(1)
2L , V(2)

2L are given by equations (40), (42), (53), (54) respectively. Note

that for the homogenous Bose gas. Eqs. (53)-(56) were calculated before by Braaten and

Nieto [28].

IV. THE CONDENSATE FRACTION IN VPT

To evaluate the condensate fraction n0 as an explicite function of U/J and ν we shall use

following strategy referred as a variational perturbation theory[18]:

1. With fixed values of input parameters introduce an auxiliary parameter, loop counter,

η (η=1 at the end of calculations) to represent V in Eq. (56) as:

V(µ, n0) = V0(µ, n0) + ηV1L(µ, n0) + η2V2L(µ, n0) (57)
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with V2L(µ, n0) = V(1)
2L (µ, n0) + V(2)

2L (µ, n0)

2. Impose the extremalization condition:

∂V(µ, n0)

∂n0
= O(η3) (58)

and solve this equation with respect to n0. Let the solution of the equation is n̄0(µ).

Clearly the latter can be also represented in powers of η:

n̄0(µ) = n00(µ) + ηn01(µ) + η2n02(µ) (59)

with

n01(µ) = −V ′
1L(µ, n00)

V ′′
0 (µ, n00)

n02(µ) = −n2
01(µ)V ′′′

0 (µ, n00) + 2V ′
2L(µ, n00) + 2n01(µ)V ′′

1L(µ, n00)

2V ′′
0 (µ, n00)

(60)

where the prime denotes the derivative with respect to n0, e.g. V ′
1L(µ, n00) =

[∂V1L(µ, n0)/∂n0]|n0=n00
and n00 is the solution to the equation V ′

0(µ, n0) = 0.

3. Inserting n̄0(µ) back to the effective potential (57) determines the free energy of the

system Ω(µ) = V(n̄0, µ)

4. Introducing a variational parameter M as

µ = M + rη (61)

with the abbreviation

r =
µ−M

η
(62)

and inserting (61) into Ω(µ) reexpand this Ω(M,µ, r) in powers of η at fixed r.

5. Reinserting back r from (62) optimize Ω(M,µ) with respect to the variational param-

eter M . This will fix µ as a function of the optimal M = Mopt, with

Mopt = Uν − Jz0 (63)

6. Finally, inserting this µ into (59) one finds an explicit expression for n0 as n0 =

n0(U/J, ν).

13



Below we consider each step in detail. First, taking partial derivative with respect to n0

from Eq. (57) one presents (58) as

∂V(n0, µ)

∂n0

=
∂V0(n0, µ)

∂n0

+ η
∂V1L(n0, µ)

∂n0

+ η2
∂V(1)

2L (n0, µ)

∂n0

+ η2
∂V(2)

2L (n0, µ)

∂n0

= 0 (64)

∂V0(n0, µ)

∂n0
= −Ns

[

νµ̃− Uν2n0

]

(65)

∂V1L(n0, µ)

∂n0
= −Uν

2

∑

q

(2µ̃− 3Uνn0 − 2ε(q)

E(q) (66)

∂V(1)
2L (n0, µ)

∂n0

=
U2ν

4

∑

q

(µ̃− ε(q)) [(µ̃− 4Uνn0 − ε(q))I10(n0, µ)− (µ̃− ε(q))I20(n0, µ)]

E3(q)

(67)

where following relations are used

∂E(q)
∂n0

= − Uν

E(q)(2µ− 3Uνn0 − 2ε(q) + 2Jz0) (68)

∂I10
∂n0

=
Uν

2Ns

∑

q

(µ− ε(q) + Jz0)(µ− 3Uνn0 − ε(q) + Jz0)

E3(q)
(69)

∂I20
∂n0

= − Uν

2Ns

∑

q

(µ− ε(q) + Jz0)(µ− Uνn0 − ε(q) + Jz0)

E3(q)
(70)

In Eqs. (67) ∂V(2)
2L /∂n0 has a long expression and will be given later. Solving Eq. (64)

iteratively gives Eq. (59) with

n00(µ) =
µ+ Jz0

νU
,

n01(µ) = − 1

2ν
(3I20(µ) + I10(µ)) = − 1

2Nsν

∑

q

(µ+ Jz0 + 2ε(q))

2Eµ(q)
,

n02(µ) = − 1

NsUν2
∂Ω

(2)
2l (n0, µ)

∂n0

∣

∣

∣

∣

∣

n0 = n00

+
1

2Nsν

∑

q

[

−Uε2(q)(I10(µ) + I20(µ))

E3
µ(q)

+
2UI20(µ)ε(q)(µ + Jz0)

E3
µ(q)

+
U(µ + Jz0)

2(I10(µ)− I20(µ))

E3
µ(q)

]

,

(71)

where

I10(µ) = I10(n0, µ)|n0=n00
=

1

2Ns

∑

q

2µ+ 2Jz0 + ε(q)

Eµ(q)
,

I20(µ) = I20(n0, µ)|n0=n00
=

1

2Ns

∑

q

ε(q)

Eµ(q)
. (72)

In this step the Goldstone boson dispersion is correctly achieved:

Eµ(q) =
√

ε(q)
√

ε(q) + 2µ + 2Jz0 (73)
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Now inserting (59), (71) into (56) one gets Ω(µ) as a function of µ as

Ω(µ) = V(µ, n̄0) = Ω0(µ) + ηΩ1(µ) + η2Ω2(µ)

Ω0(µ) = −Ns(µ+ Jz0)
2

2U
,

Ω1(µ) =
1

2

∑

q

[Eµ(q) + µ− ε(q) + Jz0],

Ω2(µ) = V(2)
2L (µ, n00(µ)) +

UNs

8
[2I210(µ)− 4I10(µ)I20(µ)− 6I220(µ)− 1].

(74)

Performed one more step of VPT we finally obtain µ as an explicit function of the parameters

U, J, ν:

µ = µ0 + ηµ1 + η2µ2,

µ0 = Uν − Jz0,

µ1 =
U

2Ns

∑

q

ε(q) + E0(q)
E0(q)

= U

(

I20B +
1

2

)

,

µ2 =
U

Ns

∂V(2)
2L (µ)

∂µ

∣

∣

∣

∣

∣

µ=µ0

+
U(I10B − I20B)

2

4ν

+
U2(I10B + I20B − 1)

4Ns

∑

q

ε2(q)

E3
0 (q)

.

(75)

and also the normal fraction, n1 = 1− n̄0 as

n1 = n1L
1 + n2L

1 ,

n1L
1 =

1

2νNs

∑

q

[

ε(q) + Uν

E0(q)
− 1

]

,
(76)

n2L
1 =

1

NsUν2
∂V(2)

2L

∂n0

∣

∣

∣

∣

∣

n0=n00

− 1

νNs

∂V(2)
2L

∂µ

∣

∣

∣

∣

∣

µ=µ0

− (I10B − I20B)
2

4ν2

− U

4Nsν

∑

q

[

(I10B − I20B)(2U
2ν2 − ε2(q)) + Uνε(q)(2I20B − 1)

]

E3
0 (q)

(77)

In Eqs. (75), (77) E0(q), I10B and I20B are given by

E0(q) =
√

ε(q)
√

ε(q) + 2Uν,

I10B =
1

2Ns

∑

q

2Uν + ε(q)

E0(q)
,

I20B =
1

2Ns

∑

q

ε(q)

E0(q)
.

(78)

Now we compare present approximation with Gutzwiller’s.
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• In Gutzwiller approach the phonon dispersion for small ~q is quadraric in wave number

[12] rather than linear given in present approximation by Eq. (73).

• As it is seen from Eq.s (76) and (77) in Bogoliubov type approximations the uncon-

densed particles have momentum distribution nq =< a†qaq > varying as q−4 for large

momentum [29], while in Gutzwiller approach this distribution is independent of ~q

[12].

V. GROUND STATE ENERGY

The ground state energy of the system at zero temperature can be determined as

E = Ω(µ) + µN, (79)

where Ω(µ) in Eq. (80) can be rewritten as follows

Ω(U, J, ν) = Ω0(U, J, ν) + Ω1(U, J, ν) + Ω2(U, J, ν),

Ω0(U, J, ν) = −UNsν
2

2
, Ω1(U, J, ν) =

1

2

∑

q

[E0(q)− ε(q)] +Nsν

(

U

2
− µ1

)

,

Ω2(U, J, ν) = Ω
(2)
2L (U, J, ν) +

UNs

(

2I210B − 4I10BI20B − 6I220B − 1
)

8
+

Ns(µ
2
1 − 2Uνµ2)

2U

(80)

where Ω
(2)
2L is given by

Ω
(2)
2L (U, J, ν) = V(2)

2L (n0 = 1, µ = µ0)

= −NU2

4N2
s

∑

q1,q2

[

Uε3ν(ε1 + ε2 + 2Uν)

E0(1)E0(2)E0(3)E0T
+

2ε1ε2ε3 − 2E0(1)E0(2)(ε3 + Uν)

E0(1)E0(2)E0(3)E0T

]

, (81)

with E0(q) given in (78), and ε1 ≡ εq1
, E0(1) ≡ E0(q1), E0T ≡ E0(1) + E0(2) + E0(3).

After some algebraic manipulations one obtains for the energy per particle E/N following

expression

E

N
=

U(4ν2 + 4ν − 1)

8ν
+

µ2
1

2Uν
+

U(I10B + I20B)(I10B − 3I20B)

4ν
+

Ω
(2)
2L(U, J, ν)

N

+
1

2Nsν

∑

q

[E0(q)− ε(q)]. (82)

Here the energy of an ”ideal gas ” (when U = 0 in Bose-Hubbard Hamiltonian) has been

subtracted .
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VI. RESULTS AND DISCUSSIONS

Firstly we discuss the condensate fraction, n0 vs U/J . In Fig.2a it is presented in one-

and two-loop approximations, (dashed and solid curves respectively) for the filling factor

ν = 1 and D = 3. It is seen that in the one loop approximation n0 can not reach zero within

moderate values of U/J . More precisely n0[one loop] = 0 at U/J = 81.2 . On the other

hand, two-loop contributions coming from the diagrams in Fig. 1 are too large: quantum

phase transition occurs at U/J ≃ 6. Unfortunately this is rather far from the experimental

value: n0 = 0 at U/J ≃ 29.34 as pointed out in the Introduction. It is seen from Fig.2b that

in Gutzwiller approach n0 reaches zero at U/J ≃ 34.8 [30]. Note that the similar behavior

of n0 vs U/J with exactly the same κcrit has been found by Stoof et al. in decoupling

approximation in the second order perturbation theory [16].

0 3 6

0,5

1,0

n 0

U/J

a)

0 20

0,5

1,0

n 0

U/J

b)

FIG. 2: The superfluid fraction n0 as a function of U/J for ν = 1, D = 3. a)In one (dashed

line) and two loop approximations (solid line); b) Here the dashed line was obtained in Gutzwiller

approache while the solid line in the present one.

The superfluid fraction for two values of ν , ν = 1 (dotted line) and ν = 2 (solid line)

is shown in Fig. 3a and Fig. 3b for D = 3 and D = 1 respectively. It is seen that the

critical value of U/J as well as a whole n0(U/J, ν) are not so sensitive to the filling factor.

The fact that the superfluid fraction does not crucially depend on ν has been observed

also in Bogoliubov [9] as well as HFB [17] approximations. This is in contradiction with
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FIG. 3: The superfluid fraction as a function of U/J for ν = 1 (dashed line) and ν = 3 (solid line)

for a) D = 3 and b) D = 1 in a two-loop approximation.

the prediction by Gutzwiller single site approximation [10] where the dependence is rather

strong:

κcrit = z0[
√
ν +

√
1 + ν]2 = 2D[

√
ν +

√
1 + ν]2 (83)

Note that, although Eq. (83) gives a nice value for ν = 1, κcrit = 34.8, it can not be

considered as an absolute truth since , besides it’s drawbacks, outlined above, it takes into

account the lattice dimensionality in a rather simple way.

On the other hand as it is seen from Fig. 3b, for D = 1 the quantum phase transi-

tion, which , more strictly speaking, is a Berezinskii- Kosterlitz- Thouless transition, occurs

around U/J = 4. This is in good agreement with Monte- Carlo predictions [6]. Similar

results for D = 1 have been obtained by Danshita and Naidon in their time - evolving block

decimation (TEBD) method [23]. However, note that TEBD method takes several days of

computer calculations , while present approach does several minutes. In our calculations

we used Ns = 60, N = νNs, that is we considered finite size systems. This explains the

smoothness of n0(U/J) in Figs. 3a and 3b.

The ground state energy per particle E/N vs U/J in units Jz0 in one (solid line) and

two (dashed line ) loops is presented in Fig. 4. It is normalized such that the appropriate

energy for the ideal case (U = 0 in the Bose-Hubbard Hamiltonian) is set to zero. It is seen
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E
/(N

Jz
0)

U/J

FIG. 4: The energy per atom in units Jz0 in one (solid line) and two-loop (dashed line) approxi-

mations for ν = 1 for D = 3.

that quantum corrections due to diagrams in Fig.1 are not significant for small U/J < 1.

The dependence of E/N on filling factor ν is illustrated in Figs. 5a, 5b. It is seen that E is

more sensitive to ν than n0 due to the leading term ( the first term in Eq. (82)) depending

on ν explicitly.

VII. SUMMARY AND CONCLUSIONS

We have developed a field theoretical approach in terms of path integral formalism to

calculate the second-order quantum corrections to the energy density as well as to the

superfluid fraction in cubic optical lattices. Instead of using the standard formalism with

complex field operatorsof condensed-matter literature, we find it more convenient to use two

real fields. The thermodynamics of the system is deduced from the effective potential V,
whose minimum gives free energy Ω.

The superfluid fraction, n0 , goes to zero at U/J ∼ 6 for ν = 1, 2, 3, and this is interpreted

as a quantum phase transition from the superfluid to the Mott insulator phase. For D = 1,

we have found a good description of the transition. Unfortunately, for D = 2 and D = 3 the

critical values for the parameters are rather far from the experiment: κexp
crit(D = 2) = 16.8
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FIG. 5: The energy per atom in units Jz0 for various values of the filling parameter ν for a) D = 3

and b) D = 1.

and κexp
crit(D = 3) = 29.34, for ν = 1. It appears that a more relaible value for κcrit for

D = 2, 3 can only be reached by going beyond the present two-loop approximation. We

expect that higher-order quantum corrections, for example post-Gaussian approximation

[21, 31], will improve the situation, but they are hard to calculate.

Thus we have shown that going beyond the Bogoliubov approximation employed by Stoof

et al. [16], one finds a quantum phase transition from a superfluid to a Mott insulator state.

Within a two-loop approximation we have derived explicit expression for the ground state

energy of the optical lattice.
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Appendix

In present work all the calculations are carried out in real time. Loop integrals are taken

over real energies ω and over three dimensional quasimomentum ~k which pertains to the

Brillouin zone −π/a ≤ kα ≤ π/a. So, three or six dimensional integrals, presenting in one or

two-loop calculations are finite and may be evaluated numerically by using Monte - Carlo

methods.

The integrals over ω are evaluated using contour integration. Some energy integrals

needed for one- and two-loop calculations can be easily evaluated directly by using residue

formulas:

∫ +∞

−∞

dω

2π

1

(ω2 − E2 + iǫ)
= − i

2E (84)

∫ +∞

−∞

dω

2π

1

(ω2 − E2 + iǫ)2
=

i

4E3
(85)

∫ +∞

−∞

dω

2π

ω2

(ω2 − E2 + iǫ)2
= − i

4E (86)

∫ +∞

−∞

∫ +∞

−∞

dω1dω2

4π2

1

[ω2
1 − E2

1 + iǫ][ω2
2 − E2

2 + iǫ][(ω1 + ω2)2 − E2
3 + iǫ]

=
1

4E1E2E3(E1 + E2 + E3)
(87)

∫ +∞

−∞

∫ +∞

−∞

dω1dω2

4π2

ω1ω2

[ω2
1 − E2

1 + iǫ][ω2
2 − E2

2 + iǫ][(ω1 + ω2)2 − E2
3 + iǫ]

=
1

4E3(E1 + E2 + E3)
(88)

In the last two integrals E1 ≡ E(q1), E2 ≡ E(q2), and E3 ≡ E(q1 + q2).

The integral

I12(q) =

∫

dω

2π

iω

(ω2 − E2(q) + iǫ)
(89)

needed for G12(0) = −(i/Ns)
∑

q I12(q) should be considered more carefully.To evaluate it

we use following formula given in the literature [26]

1

β

∞
∑

n=−∞

eiηωn(b+ iωn)

ω2
n + a2

∣

∣

∣

∣

∣

η→0

=
1

2

(

b

a
− 1

)

+
b

a(eβa − 1)
(90)

where ωn = 2πnT , β = 1/T . The zero temperature limit, T → 0, of (90) leads to

I12(q) = −1

2
(91)

so that G12(0) = (i/2Ns)
∑

q[1]. This constant enters into the evaluation of the constant

n1 ∼ 〈ϕ̃†ϕ̃〉, and produces a term −1 in the square brackets of Eq. (76). In a homogeneous

Bose gas, such a constant term can be ignored. But here, on an optical lattice, it becomes
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significant, so that in the evaluation of trace log term in Eq (41), it must be taken into

account properly. How to do that has been shown in the textbook [32]. Strictly speaking,

the integral

L(E) =
∫

dω

2π
ln(ω2 − E2) (92)

appearing in the trace log is divergent. To evaluate it, one may differentiate (92) with

respect to E2:
∂L(E)
∂E2

= −
∫

dω

2π

1

(ω2 − E2)
(93)

and use (84) to obtain
∂L(E)
∂E2

=
i

2E (94)

Integrating this once E2 gives

L(E) =
∫

dω

2π
ln(ω2 − E2) = iE + constant. (95)

Using the method of Ref. [32] we obtain the result of Section III where the constant leads

to a term term −1 in n1 (see Eq. 76).
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