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The [NiFe]-hydrogenase accessory chaperones HypC and HybG of
Escherichia coli are iron- and carbon dioxide-binding proteins
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[NiFe]-hydrogenase accessory proteins HypC and HypD form a complex that binds a Fe–(CN)2CO
moiety and CO2. In this study two HypC homologues from Escherichia coli were purified under
strictly anaerobic conditions and both contained sub-stoichiometric amounts of iron (approx.
0.3 mol Fe/mol HypC). Infrared spectroscopic analysis identified a signature at 2337 cm�1 indicating
bound CO2. Aerobically isolated HypC lacked both Fe and CO2. Exchange of either of the highly con-
served amino acid residues Cys2 or His51 abolished both Fe- and CO2-binding. Our results suggest
that HypC delivers CO2 bound directly to Fe for reduction to CO by HypD.

Structured summary of protein interactions:
HypC and HypC bind by comigration in sds page (View interaction)
HybG and HybG bind by comigration in sds page (View interaction)
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1. Introduction

[NiFe]-hydrogenases catalyze both H2 evolution as well as H2

oxidation [1]. The catalytic subunit of the enzyme harbours a
NiFe–(CN)2CO cofactor and its synthesis requires the coordinated
activities of a number of highly conserved Hyp accessory proteins
[2,3]. The cyanide ligands (CN�) are derived from carbamoylphos-
phate [4,5], while the metabolic origin of the carbonyl ligand (CO)
is still unresolved.

Recent studies have revealed that biosynthesis of the Fe–(CN)2-

CO moiety is likely to occur on an assembly platform comprising
minimally the HypC, HypD and HypE proteins, with HypD forming
the key scaffold [6–8]. Fourier-transform infrared (FT-IR) analysis
of an anaerobically isolated complex of HypC and HypD (HypCD)
revealed signatures for CO and two CN� ligands [6,7]. Moreover,
an additional contribution at 2337 cm–1 was identified, which is
consistent with the asymmetrical stretch vibration of CO2 [6].
The peak is characteristic of bound CO2 and can be clearly
distinguished from CO2 dissolved in water (2342 cm�1) and gas-
eous (2349 cm�1) CO2 [9,10].

Once the Fe–(CN)2CO group is synthesized, it is proposed that
the moiety is transferred by HypC to a precursor form of the
hydrogenase large subunit [3,11]. This proposition is based on
the fact that as well as forming a complex with HypD [11,12], HypC
also has been isolated in complex with the hydrogenase large sub-
unit [13]. The combined results of these studies have led to a for-
mulation of the HypC cycle in which the 10 kDa protein acts as a
chaperone shuttling between the iron–sulfur protein HypD and
the hydrogenase large subunit apo-protein [11].

The HypC/HupF superfamily comprises proteins of approxi-
mately 90 amino acid residues [14–16]. Early mutagenesis studies
revealed that HypC has a highly conserved cysteinyl residue at
amino acid position 2, which is essential for complex formation
with HypD and for maturation activity [11,17]. The crystal struc-
ture of HypC [18] revealed that this N-terminal cysteinyl residue
is located in an OB-fold and is in proximity to a conserved histidine
residue (His51 in Escherichia coli). It has been suggested that these
two residues coordinate the iron ion of the Fe–(CN)2CO cofactor
[19].

Many organisms that synthesize multiple hydrogenases have
more than one HypC homolog, e.g., E. coli synthesizes the homologs
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HypC and HybG [20]. Mutants lacking hypC fail to complete
hydrogenase 3 (Hyd-3) maturation and consequently lack an active
hydrogen-evolving formate hydrogenlyase (FHL) complex [2,20].
The hybG gene, in contrast, is located within the hyb operon encod-
ing both structural and accessory components of Hyd-2 [21]; HybG
is required for biosynthesis of both Hyd-1 and Hyd-2, and interacts
with both apo-large subunits [20,22].

The combined action of the carbamoyl transferase HypF and the
ATP-dependent dehydratase HypE supplies the cyanyl ligands and
HypD is the enzyme that assembles the Fe–(CN)2CO moiety [8].
The metabolic origin and route of delivery of the carbonyl ligand
are both unclear. Moreover, little is known about how the iron
ion in the Fe–(CN)2CO moiety is supplied to HypD, as recent evi-
dence suggests that the route is independent of the FeS biosyn-
thetic machinery [23]. Here we present evidence that the HypC
superfamily represents a new class of Fe- and CO2-binding pro-
teins, suggesting that HypC delivers Fe along with CO2 to the re-
dox-active HypD scaffold protein where reduction to CO probably
takes place.

2. Materials and methods

2.1. Bacterial strains, plasmids and growth conditions

The E. coli strains used included MC4100 [24], DHB-G (DhybG)
[20], DHP-C (DhypC) [2], BEF314 (DhypB-E) [2], DHP-H2 (DhypF)
[25] and BL21(DE3) [26]. The plasmids used included phypDHis
[8], pT-hypDEFCStrep [12], pASK-hybG encoding C-terminally
Strep-tagged HybGStrep, pT-hypC plasmid coding for HypCStrep,
phypCHis and pHishypC, encoding C- and N-terminally His-tagged
HypC, respectively and phybGHis encoding HybGHis. The hybG gene
was amplified from the chromosome of MC4100 using appropri-
ately designed oligonucleotides (Table S1) and the PCR product
was subsequently digested with BsaI and ligated into the BsaI
restriction site of pASK-IBA3 (IBA, Göttingen, Germany), to gener-
ate pASK-hybG encoding HybGStrep. Restriction digestion of pT-
hypDC [12] with NdeI removed the hypD gene and re-ligation of
the plasmid backbone delivered plasmid pT-hypC coding for
HypCStrep. Plasmid pT-hypC was used as template for site-directed
mutagenesis of the hypC gene (QuikChange procedure of Strata-
gene) and the oligonucleotide primers are listed in Table S1.

To construct plasmids coding for N-terminally His-tagged
HisHypC protein, chromosomal DNA from MC4100 was used as
the template for PCR-amplification of hypC (primers listed in
Table S1) and it was ligated into NdeI-/HindIII-digested pET28A
(Novagen) to generate the plasmid phypC. To generate plasmids
coding for C-terminally His-tagged HypCHis and HybGHis, EcoRI-
and HindIII-digested pET30 (Novagen) was used and the resulting
DNA fragments carrying the complete hypC or hybG genes were li-
gated into pET30 to generate the plasmids phypCHis and phybG-
His, respectively.

E. coli strain BL21(DE3) transformed with the appropriate plas-
mid was grown in modified TB medium [6], containing
100 lg ml�1of ampicillin or 50 lg ml�1 kanamycin as appropriate
at 37 �C on a rotary shaker until an optical density of 0.4 at
600 nm was reached. Gene expression was induced by the addition
of either 0.3 mM IPTG or 0.2 lg ml�1 anhydrotetracyclin followed
by incubation at 30 �C for 3–5 h. Cells were harvested (OD600nm

of 1.0) by centrifugation for 30 min at 50000�g at 4 �C and cell pel-
lets were used either immediately or stored at �20 �C until use.

2.2. Protein purification

Unless stated otherwise, all steps were carried out under anaer-
obic conditions in an anaerobic chamber (Coy Laboratories, Grass
Lake, USA). His-tagged and Strep-tagged proteins and protein com-
plexes were purified exactly as described previously [6,8].

2.3. FTIR spectroscopy

Fourier-transform infrared (FT-IR) spectroscopy was performed
exactly as described [8] using on a Tensor27 (Bruker Optik, Ettlin-
gen, Germany) equipped with a three-reflection silicon crystal
attenuated total reflection (ATR) cell (Smith Detection, Warrington,
USA). Protein samples (typically 1 ll of 10 mg ml�1 HypC or HybG)
were dried on top of the ATR crystal under pure N2 or air by help of
home made gas mixers. HybG isolated from BEF314 (DhypBCDE)
was probed on a one-reflection germanium ATR cell (Pike Technol-
ogies, Madison, USA). To extract Fe ions from HybG, samples were
incubated with up to 20 mM EDTA in buffer W for 5 min prior to
ATR analysis of the mixture. Oxidation of HypC or HybG by H2O2

was performed on wetted films [8]. All spectra were recorded at
room temperature.

2.4. Non-heme Fe determination

Iron content was determined by inductively coupled plasma
mass spectrometry (ICP-MS) exactly as described [6]. For ICP-MS
analysis 0.1 mg of purified HypC or HybG (1 mg ml�1) was used
and samples were analyzed for iron, nickel, zinc, and copper.

2.5. Other methods

SDS–PAGE was performed using 15% (w/v) polyacrylamide as
described [27] and polypeptides were transferred to nitrocellulose
membranes as described [28]. Determination of protein concentra-
tion was done as described [29].

UV–vis spectroscopy was performed as described [6]. The pro-
tein concentration of HypC or HybG variants was 5 mg ml�1.

3. Results and discussion

3.1. Oxygen-labile coordination of Fe by HypC and HybG

The HypCHis protein was readily purified from crude extracts of
BL21(DE3) and migrated as an approximately 10 kDa polypeptide
in SDS–PAGE (Fig. 1A). If cell disruption and affinity chromato-
graphic steps on Co2+–NTA Sepharose were performed aerobically,
enriched HypCHis was colorless and had no associated cofactors. If
oxygen was excluded from all steps, however, the resulting HypC
protein was brown in color. The Fe content of purified HypCHis

was determined by inductively coupled plasma-emission mass
spectrometry (ICP-MS) to be 0.32 ± 0.08 mol Fe per mol protein.
To rule out that Fe was non-specifically bound to the C-terminal
His-tag, a version of HypC was constructed with a Strep-tag in
the same position. After over-production in BL21(DE3) and anaer-
obic isolation on Streptactin–Sepharose HypCStrep had on average
0.31 ± 0.06 mol Fe associated with the protein. Isolation of the
tagged proteins in air resulted in a ten-fold decrease in Fe concen-
tration (<0.03 mol).

Fusion of the His-tag with Cys2 at the N-terminus of HypC re-
sulted in a protein that failed to restore hydrogenase 3 activity to
an E. coli hypC mutant (not shown) and when isolated by anaerobic
purification, HisHypC was essentially colorless and devoid of Fe
(<0.01 mol) as determined by ICP-MS. This result indicated that,
despite the Cys residue being present, no stable Fe bound to the
protein presumably because the amino terminus of the cysteinyl
residue was blocked by the His-tag.

To determine whether Fe-binding was a general feature of HypC
proteins, we isolated both C-terminally His- and Strep-tagged



Fig. 1. Biochemical analysis of HybG and HypC. (A) Purified HybG and HypC
variants (5 lg of each) were separated by SDS–polyacrylamide gel electrophoresis
(15% w/v polyacrylamide) and subsequently stained with Coomassie Brilliant Blue
(lanes 1 through 4) or transferred to a nitrocellulose membrane and challenged
with anti-His-tag antiserum (lane 5) or anti-Strep antiserum (lane 6). Both sets of
antibodies were used at a dilution of 1:3000. The position of a HypC and HybG
dimer species is indicated. Dimer formation after SDS–PAGE was unaffected by
oxygen. Lanes: M, PageRuler prestained marker in kDa (Fermentas #SM1811/2); 1,
HypCHis; lane 2, HypCstrep; lane 3, HybGHis; lane 4, HybGStrep; lane 5, HypCHis (2 lg);
lane 6, HybGStrep (2 lg). (B) UV–vis absorption spectrum of anaerobically purified
HybGStrep (5 mg ml�1).

Fig. 2. FT-IR analysis of HypC and HybG variants and HypD complexes. (A) All
samples were dried under N2 and probed via ATR FT-IR in the absence of O2. The
displayed spectra are the average of 4096 scans recorded at a spectral resolution of
4 cm�1. For the spectrum shown in (f) 30720 spectra were averaged. Water
absorption was subtracted by a broad spline function. Spectra are scaled to amide II
band height. Spectra: (a) HypD with bands fit to 1955 cm–1 (CO), 2073 cm–1 (CN1),
and 2095 cm–1 (CN2); (b) HypCD complex with bands fit to 2324 cm�1 (hot-band as
indicated by ⁄) and 2337 cm�1 (v3 of CO2); (c) HypCHis; (d) HisHypC; (e) HybGHis; (f)
HypC_dBCDE. (B) FT-IR analysis of ‘natural’ CO2 in HybGHis as a function of EDTA
concentration (squares). The 2337 cm�1 peak height is plotted and fits exponen-
tially with R = 0.97. Circles represent the intensity of the 2337 cm�1 peak in HybGHis

samples treated with 1% (v/v) H2O2. This serves as a measure of Fe concentration
and is plotted against cEDTA (sigmoidal fit with R = 0.98). Both Fe and CO2 are lost
upon increasing the EDTA concentration. BSA serves as a negative control
(triangles).
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variants of the E. coli HypC homolog, HybG (Fig. 1A). It was noted
that purified HybGStrep revealed both a 10 kDa and a 20 kDa poly-
peptide upon SDS–PAGE analysis (Fig. 1A). Western blot analysis
with anti-Strep antiserum confirmed that the 20 kDa band con-
tains Strep-tagged polypeptide and mass spectrometry identified
the band as HybG. A similar observation was made for HypCHis,
suggesting that both HypC and HybG are capable of forming min-
imally homodimers; however, why they were resistant to denatur-
ation in SDS buffer remains to be resolved. Attempts to determine
the oligomeric state of HypC or HybG by anaerobic gel filtration or
native PAGE revealed no discrete peak but only multiple oligo-
meric species suggesting that native HypC readily forms higher-
order structures.

Metal analysis revealed a similar Fe ratio for HybGHis and
HybGStrep (0.3 ± 0.01 mol Fe/mol protein and 0.34 ± 0.01 mol Fe/
mol protein, respectively). UV–visible spectroscopy of HybGStrep re-
vealed an absorbance peak at 420 nm (Fig. 1B). Together, these
findings suggest that HypC might supply the Fe ion for biosynthe-
sis of the Fe–(CN)2CO moiety. This finding would be consistent
with recent results [23], which indicate that the Fe ion for cofactor
biosynthesis is not supplied by the Isc or Suf iron–sulfur cluster
biogenesis pathways.

3.2. Anaerobically isolated HypC and HybG reveal FT-IR signatures of
bound CO2

Recent studies revealed that in addition to absorption bands at
2095 cm�1, 2073 cm�1 and 1955 cm�1 characteristic of metal-
bound CO and CN� ligands the anaerobically isolated HypCD com-
plex also exhibited a signature at 2337 cm�1, which was assigned
to the asymmetrical stretch vibration (v3) of CO2 [6] (see also
Fig. 2A, spectrum b). Purified HypD shows signatures of CO and
CN� exclusively [8] (see Fig. 2A, spectrum a). Infrared analysis of
anaerobically isolated HypC and HybG revealed no signatures in
the CO/CN� region; however, a sharp peak at 2337 cm�1 was de-
tected (Fig. 2A, spectra c and e). As expected for CO2 binding
[30], a minor contribution could be fitted to the shoulder at
2326 cm�1 (mainly visible in Fig. 2A, spectra b and c). Both signa-
tures were absent in aerobically isolated HypC and HybG proteins
(not shown) and they were also not detected in N-terminally
tagged HisHypC (Fig. 2A, spectrum d).

To rule out that HypD, or any of the other Hyp accessory pro-
teins, was required for iron- and CO2� binding HybGStrep was puri-
fied anaerobically from strain BEF314 (DhypB-E) [2]. The protein
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had an iron content of approximately 0.3 (determined with two
independent preparations) and it revealed a sharp peak at
2337 cm�1 (Fig. 2A, spectrum f). Similar results were obtained
when HybGStrep was purified from DHP-F2 (DhypF) (data not
shown).

3.3. Cys2Ala and His51Arg variants do not show the CO2 signature

A Cys2Ala variant of HypCStrep lacked iron (<0.01 mol Fe) and
FT-IR analysis of the anaerobically isolated protein showed no
absorbance band at 2337 cm�1 (spectrum similar to d in Fig. 2A).
Similarly, a His51Arg variant of HypCHis also lacked the absorption
band at the 2337 cm�1 wavenumber (not shown) and ICP-MS anal-
ysis showed that His51Arg-substituted HypCStrep does not bind
iron (<0.01 mol Fe). In a previous study it was reported that a Hi-
s51Arg variant of HypC lacked hydrogen gas production [31]. To-
gether, these data indicate that Cys2 and His51 are required for
coordination of both Fe and CO2.

3.4. Strong correlation between Fe- and CO2-binding suggested from
reactions with EDTA and H2O2

Treatment of either HypCStrep or HybGHis with EDTA resulted in
concomitant loss of bound Fe and the CO2 signature at 2337 cm�1.
To probe the loss of Fe spectroscopically, samples of HybGHis were
treated with up to 20 mM EDTA and a H2O2/water vapor mixture as
reported earlier [8]. In a process commonly referred to as Fenton
chemistry, H2O2 is reduced by Fe2+ to produce OH� radicals, which
rapidly oxidize the amino acid environment of the metal site [32].
The CO2 released in this reaction is detected as a transient off-gas
unspecifically bound to the protein film [33,34]. A new peak forms
at 2337 cm�1 whose height is a direct measure of Fe2+ concentra-
tion. As the m3 mode is vibrationally insensitive to the ligand of
CO2 [10,35], ‘natural’ and Fenton CO2 both appear at the same po-
sition. It is important to note that CO2 was detected in as-isolated
samples only under strictly reducing conditions. Thus, contamina-
tion of the natural signal with Fenton CO2 is highly unlikely. Fig. 2B
shows the decrease of Fenton CO2 (circles) as a function of EDTA
concentration in comparison to the loss of ‘natural’ CO2 (squares)
in as-isolated HybGHis. Both natural and Fenton-generated CO2

were sequentially measured on the same sample. Bovine serum
albumin (BSA, triangles) was used as a negative control to ensure
that the CO2 released in the H2O2 assay depended exclusively on
Fe and was not directly affected by incubation with EDTA. The
bending mode of gaseous CO2 in the far-IR (667 cm�1) is more suit-
able to analyze the chemical nature of the binding partner [10,36];
however, we failed to detect the m2 absorption band in HypC and
HybG due to low signal intensity.

Together, these results are consistent with the proposal [37]
that metabolic CO2 could be the origin of the CO ligand. This is also
in accord with 13C-labeling studies in which exogenously supplied
CO2 failed to result in a red-shift in the absorption band of CO at
1955 cm�1 [38]. Despite being highly characteristic, the asymmet-
ric stretch vibration of CO2 is not informative with regard to liga-
tion partners. Mascetti and Tranquille reported that CO2 binds to
transition metals like Fe via the carbon atom, leaving the m3 vibra-
tion largely unaffected [35]. Both the observation of a concerted
loss of Fe and CO2 upon EDTA treatment plus the precise overlap
of natural and Fenton CO2 at 2337 cm�1 in Fig. 2B supports this
coordination model.

4. Conclusions

The findings presented in this study demonstrate that HypC/
HybG binds both Fe and CO2 and this is independent of the other
Hyp accessory proteins. Residues Cys2 and His51 of HypC are both
essential for binding of CO2 and Fe. Together with our recent dem-
onstration that HypD is the scaffold on which the Fe–(CN)2CO moi-
ety is assembled [8], the findings presented here strongly suggest
that HypC proteins deliver an Fe with bound CO2 to the redox-ac-
tive HypD where reduction to CO occurs. Future studies will be re-
quired to prove that both the Fe ion and CO2 attached to HypC are
the direct precursors of the Fe–(CN)2CO moiety.
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