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Abstract

Cell lines matching the source epithelium are indispensable for investigating porcine intestinal transport and barrier
properties on a subcellular or molecular level and furthermore help to reduce animal usage. The porcine jejunal cell line
IPEC-J2 is established as an in vitro model for porcine infection studies but exhibits atypically high transepithelial resistances
(TER) and only low active transport rates so that the effect of nutritional factors cannot be reliably investigated. This study
aimed to properly remodel IPEC-J2 and then to re-characterize these cells regarding epithelial architecture, expression of
barrier-relevant tight junction (TJ) proteins, adequate TER and transport function, and reaction to secretagogues. For this,
IPEC-J2 monolayers were cultured on permeable supports, either under conventional (fetal bovine serum, FBS) or species-
specific (porcine serum, PS) conditions. Porcine jejunal mucosa was analyzed for comparison. Main results were that under
PS conditions (IPEC-J2/PS), compared to conventional FBS culture (IPEC-J2/FBS), the cell height increased 6-fold while the
cell diameter was reduced by 50%. The apical cell membrane of IPEC-J2/PS exhibited typical microvilli. Most importantly, PS
caused a one order of magnitude reduction of TER and of trans- and paracellular resistance, and a 2-fold increase in
secretory response to forskolin when compared to FBS condition. TJ ultrastructure and appearance of TJ proteins changed
dramatically in IPEC-J2/PS. Most parameters measured under PS conditions were much closer to those of typical pig
jejunocytes than ever reported since the cell line’s initial establishment in 1989. In conclusion, IPEC-J2, if cultured under
defined species-specific conditions, forms a suitable model for investigating porcine paracellular intestinal barrier function.
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Introduction

In intensive pig farming, a significant fraction of piglets die after

weaning, in many cases due to infectious diarrhea [1]. Intense

research efforts are therefore made to reduce mortality in animal

breeding. For molecular studies on mechanisms and signaling

pathways between germ exposure and diarrheal effect, porcine cell

cultures are highly desirable. However, these cultures are only

suitable if they closely match the properties of pig small intestinal

epithelium. Thus, for research on intestinal barrier function, cell

models have to meet specific physiological requirements: reflecting

epithelial architecture, displaying adequate transepithelial resis-

tance (TER) and transport properties, reacting to secretagogues,

and expressing bowel-relevant tight junction (TJ) proteins. If these

prerequisites have been achieved, the model system will be

potentially suitable for studying effects of e.g. nutritional factors.

Non-transformed continuous epithelial cell lines of only few

species and gut sections are available so far, e.g. IEC-6 from rat

small intestine [2], IEC-18 from rat ileum [3], IPEC-1 from pig

ileum and jejunum [4], IPEC-J2 from pig jejunum [4], and PSI

from pig small intestine [5].

In contrast to cultures of rodent cells, a unique side aspect of

porcine cell culture models is the potential application for human

purposes because the pig gastrointestinal tract physiology is highly

comparable to that of humans [6]. It immediately stands out,

compared to other commonly used intestinal cell lines (CMT-93,

TER: 400 V?cm2 [7]; HT-29/B6, TER: 500 V?cm2 [8]) and pig

bowel mucosa (Repi: 55 V?cm2, [9]), that all porcine cell lines

mentioned above exhibit extraordinarily high TER values (1 to

15 kV?cm2) when believed to be fully differentiated by the

respective author [5,10-12]. TER is a key parameter of epithelial

tightness and is determined by para- and by transcellular processes

[13]. The paracellular pathway between enterocytes is limited by

the TJ which is formed by opposing transmembrane TJ proteins

and mediates different degrees of tightness. The TJ is of central

interest as it forms a barrier against uptake of putatively

immunogenic macromolecules and an excessive passage of water,

small ions, and other solutes [14]. The transcellular pathway
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through enterocytes is defined by tissue-specific channels and

carriers, passive diffusion of lipophilic solutes, and complex

transcytosis of large molecules. The jejunal layer is a leaky

epithelium which is defined by a ratio of para- and transcellular

resistances as Rpara/Rtrans,1 [15]. With respect to the observed

high TER values it is questionable whether IPEC-1, IPEC-J2, and

PSI could serve as appropriate models reflecting porcine small

intestinal epithelium, however, they are often employed as such.

Before using an in vitro cell culture model as an in vivo substitute,

it has to be characterized functionally, morphologically, and on a

molecular level. So far, most work has been carried out on IPEC-

J2. Generated in 1989 by Berschneider, IPEC-J2 were judged as a

usable model for research on jejunocyte differentiation and ion

transport. This result was based on confluent monolayers of

cuboidal to columnar-shaped jejunocytes, the presence of typical

cell-cell contacts and marker enzymes, inducible Cl2 secretion,

and adequate TER (549639 V?cm2). In the following 17 years

little research was done on IPEC-J2. However, during that

interval, IPEC-J2 electrophysiology appears to have changed, as in

2006 Schierack et al. re-characterized the cell line and found a

strongly increased TER (1.2 to 6.5 kV?cm2, depending on

membrane support material) [16]. Nonetheless, a lot of further

studies, mainly on microbe-associated adhesion/invasion, were

performed, based on the sustained suitability for this research field

because relevant parameters had remained unaltered [16–20].

However, IPEC-J2 are also used for virus, nutrition, and toxicity

research and when transport function and/or barrier properties

are relevant, it has to be guaranteed that trans- and paracellular

routes represent the in vivo situation as closely as possible.

As conventionally cultured IPEC-J2 monolayers differ consid-

erably from porcine intestine, we aimed to establish a porcine

jejunocyte cell culture model which closely matches (electro-

)physiological pig jejunal properties and epithelial architecture in

order to apply it in swine research on transepithelial transport and

paracellular intestinal barrier function.

Materials and Methods

Cell culture conditions
The non-transformed cell line IPEC-J2 (intestinal porcine

epithelial cells from jejunum) were originally derived from jejunal

epithelia of unsuckled piglets as described by Berschneider et al.

[4]. Properties of this cell line were characterized by Schierack et

al. [16]. IPEC-J2 of our present study were a kind gift of Dr. Peter

Schierack (Hochschule Lausitz, Senftenberg, Germany) and were

used between passage 65 and 80. Cells were either cultured

conventionally with 10% fetal bovine serum (FBS) (e.g. [4,21]) and

1% penicillin/streptomycin (both PAA, Cölbe, Germany) in

Dulbecco’s Modified Eagle Medium (DMEM)/F-12/HAM (Sig-

ma, Steinheim, Germany) or cells were cultured species-specifi-

cally with 5% adult pig serum (PS) (Sigma), 1% penicillin/

streptomycin, 1% insulin/transferrin/selenium (ITS) (1006;

Gibco, Germany), and 5 ng/ml epidermal growth factor (EGF)

(Sigma) in DMEM/F-12/HAM. Cultures were split weekly in 25

or 75 cm2 culture flasks (Beckton Dickinson, France) using

Trypsin/EDTA (16; Sigma). For experiments, cells were seeded

(IPEC-J2/PS: 26105 cells/cm2, IPEC-J2/FBS: 1.86105 cells/

cm2) on six-well plates (Nunc, Germany) or on membrane

supports (MillicellH-HA culture plate inserts, area: 0.6 cm2, pore

size: 0.45 mm; Millipore, Ireland). Three to five supports in each

petri dish were cultured for 2 to 3 weeks until TER values were

stable and monolayers were analyzed. When cells were grown in

six-well plates, growing time necessary to obtain stable TER values

was determined from parallel cultures on membrane supports.

Cells were grown at 37 uC, 5% CO2, and 95% relative humidity.

They were fed every other day.

In addition, the following culture media were tested: DMEM/F-

12/HAM containing 1% penicillin/streptomycin and 10% PS and

DMEM/F-12/HAM containing 1% penicillin/streptomycin, 1%

ITS, and 5 ng/ml EGF, supplemented with either 5% FBS, adult

goat serum (GS) or adult bovine serum (ABS) (all PAA).

Ethic statement
Experiments were conducted on intestinal tissue of weaned

piglets in strict accordance with the German law for the care and

use of experimental animals. All procedures involving animal

handling were approved by the local state office of occupational

health and technical safety (Landesamt für Gesundheit und

Soziales Berlin, Permit Number: G 0347/09).

Jejunal tissue preparation
Piglets were housed and fed control diets. At age 5461 days,

piglets were sedated with 20 mg/kg BW of ketamine hydrochlo-

ride (Ursotamin, Serumwerk Bernburg) and 2 mg/kg BW of

azaperone (Stresnil, Jansen-Cilag) and killed by intracardial

injection of 10 mg/kg BW of tetracaine hydrochloride, mebezo-

nium iodide, and embutramide (T61, Intervet) and exsanguination

(see also [22]). The mid jejunum was removed, cut open, and

rinsed with and transported in cooled saline solution (0.9% NaCl,

1 mM CaCl2). Jejunal tissue was stripped off the muscle layer and

explants either were mounted in Ussing chambers, fixed in 2%

paraformaldehyde (PFA) or frozen in liquid nitrogen.

Solutions and reagents
Standard Ringer solution was used (i) plain (113.6 mM NaCl,

5.4 mM KCl, 1.2 mM MgCl2, 1.2 mM CaCl2, 21 mM NaHCO3,

0.6 mM NaH2PO4, 2.4 mM Na2HPO4, 10 mM D(+)-glucose; pH

7.4 when equilibrated with carbogen), (ii) glucose-free, (iii)

phosphate-free, (iv) bicarbonate-free, and (v) supplemented with

substrates and antibiotics (2.5 mM glutamine, 10 mM D(+)-

mannose, 0.5 mM b-OH-butyrate, 50 mg/l piperacillin, 4 mg/l

imipenem).

In order to block apical Na+ and K+ channels in IPEC-J2,

amiloride (Sigma, final concentration 10 mM), tetraethylammoni-

um (Sigma, 5 mM), and barium chloride (Merck, Darmstadt,

Germany, 5 mM) were added apically prior to basolateral

administration of forskolin (Calbiochem, Merck, 10 mM) or apical

addition of phlorizin (Sigma, 0.5 mM) in plain Ringer bath

solution. Apical administration of glucose (Roth, Karlsruhe,

Germany, 10 mM) followed cation channel block in glucose-free

standard solution. In jejunal tissue studies forskolin, phlorizin, and

glucose were applied without previous cation channel block in

standard Ringer solution supplemented with substrates and

antibiotics or glucose-free standard solution, respectively.

Electrophysiological measurements
TER progression of IPEC-J2 monolayers was monitored over

weeks using a chopstick electrode with automatic height control

[23]. TER measurements were corrected for membrane and

culture medium resistance and multiplied by the effective

monolayer area.

For Ussing chamber experiments, IPEC-J2 monolayers

(0.6 cm2 effective area) grown on membrane supports were

directly mounted [24], whereas stripped jejunal explants were

glued to PlexiglasTM rings (0.28 cm2 effective area) before being

mounted [25]. Ussing chambers and water-jacketed gas lifts were

kept at 37uC. Preparations were allowed to equilibrate for 30

IPEC-J2, an Improved Model for Pig Jejunum
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(monolayer) or 45 min (tissue), respectively. Resistance of bath

solutions alone and electrode offsets were recorded prior to each

experiment and subtracted from experimental data. Data

produced via chopsticks and in the Ussing chamber were fully

compatible.

In order to determine Na+/Cl2 permeability ratios of IPEC-J2

and jejunal tissue, dilution potential measurements were conduct-

ed in the Ussing chamber. After equilibrating monolayers/tissue in

phosphate-free Ringer solution, dilution potentials were evoked by

iso-osmotically partially replacing NaCl with mannitol. Perme-

ability ratios to Na+/Cl2 were calculated using the Goldman-

Hodgkin-Katz equation as reported before [26]. Dilution potential

measurements were performed at 37 uC, except for IPEC-J2/FBS,

where part of the experiments were carried out at 25 uC in order

to minimize interfering potentials from active, transcellular

transport. Nevertheless, values of dilution potentials at both

temperatures were not significantly different.

Permeability to fluorescein was determined in the Ussing

chamber under voltage clamp conditions. After equilibrating cell

layers in standard Ringer solution, fluorescein (Sigma) was added

apically (final concentration 100 mM). After 0, 10, 20, 30, 40, and

50 min post administration basolateral samples were taken and

replaced with Ringer solution. Fluorescein concentrations were

determined at 525 nm fluorescence emission (Infinite M200,

Tecan, Crailsheim, Germany) and permeabilities were calculated.

Impedance spectroscopy
In order to discriminate between epithelial (Repi) and subepi-

thelial (Rsub) resistances, one-path impedance spectroscopy was

performed as described previously [25]. Briefly, membrane

supports or jejunal explants were mounted in Ussing chambers

modified for impedance measurements [27]. A total of 48

frequencies of alternating current (1.3 Hz to 65 kHz) were applied

and resulting voltages analyzed through a programmable

frequency generator/response analyzer in combination with an

electrochemical interface (1250 and 1286, Solartron, Schlumber-

ger, Farnborough, UK). Complex impedance values were plotted

as Nyquist diagrams and fitted by circular arcs using least square

analysis. The arc intercept with the x-axis at low frequency

represents TER and that at high frequencies equals Rsub. TER

minus Rsub represents the true epithelial resistance, Repi. The

frequency at which the semicircle has its minimum is used to

calculate the epithelial capacitance (Cepi) [8]. For splitting Repi in

trans (Rtrans)- and paracellular (Rpara) resistances, two-path

impedance spectroscopy was conducted as described by Krug et

al. [8]. In brief, this technique combines one-path impedance

spectroscopy and flux measurements of a paracellular marker (i.e.

fluorescein) during a Ca2+ switch experiment.

Live cell imaging
Membrane supports covered with IPEC-J2 monolayers were cut

out, positioned on a cover slip (apical side down), and covered by a

small volume of bicarbonate-free Ringer solution. 20 ml of 4 kDa

FITC-dextran (TdB, Upsala, Sweden, 25 mM) were added from

the basolateral (upper) side to let the dye flood the paracellular

space and surroundings. An inverted confocal laser-scanning

microscope (LSM 510 Meta, Zeiss, Jena, Germany) was used to

take images in xy and xz plane, which were processed using fiji

imaging software [28]. Cell heights of three independent seedings

were measured applying Zeiss LSM 510 META software.

Transmission electron microscopy (TEM)
IPEC-J2 monolayers grown to confluence on membrane

supports were stored in Karnovsky’s fixative, washed with sodium

cacodylate buffer (0.1 M sodium cacodylate, Roth; adjusted to

pH 7.4 using HCl), fixed in osmium tetroxide (1% in 0.2 M

sodium cacodylate buffer (pH 7.4), ChemPur, Germany), and

washed again. Afterwards, samples were dehydrated (increasing

ethanol series, propylene oxide (VWR, Darmstadt, Germany)) and

resin-embedded (12.4% Agar 100 resin (w/v), 7.3% dodecenyl

succinic anhydride (v/v), 3.6% methylnadic anhydride (v/v), 0.6%

benzyldimethylamine (v/v), all Agar Scientific, Essex, UK). The

resin was allowed to polymerize at 45 and 60 uC for 24 h each.

Ultrathin (70 nm) sections were cut (UltraCut S, Leica, Wetzlar,

Germany) and contrasted with uranyl acetate (Serva, Heidelberg,

Germany) and lead citrate (Laurylab, Saint-Fons Cedex, France).

Images were taken using a transmission electron microscope (EM

902 A, Zeiss). The length of well oriented microvilli and the

number of microvilli along .10 mm apical cell membrane of

IPEC-J2 in total were obtained from 3 different cells analySISH
software (Version 3.0, Münster, Germany).

Freeze-fracture electron microscopy (FFEM)
Confluent IPEC-J2 monolayers (grown on 6-well plates) and

stripped jejunal tissue were fixed by incubation in 2.5 and 4%

phosphate-buffered glutaraldehyde (25% stock solution in water,

Serva). Subsequently, preparations were incubated in glycerol (10

and 30%) and finally frozen in liquid nitrogen-cooled Freon 22.

Freeze-fracture electron microscopy and morphometric analysis

were performed as described before [29].

Cryosections
PFA-fixed jejunal tissue was dehydrated (stepwise, 10, 20, and

30% sucrose), frozen in liquid nitrogen-cooled methylbutane, and

embedded in TissueTek (Sakura, Alphen aan den Rijn, Nether-

lands). Jejunal tissue directly frozen in liquid nitrogen was

immediately embedded in TissueTek. Samples were cut (CM

1900, Leica) in 5 mm thin sections and positioned on glass slides.

Immunofluorescence staining (IF)
Cell culture. IPEC-J2 grown on membrane supports were

washed with phosphate-buffered saline containing calcium and

magnesium chloride (PBS+; Sigma), fixed in methanol at –20 uC
for 10 min (or fixed in 2% PFA for 20 min at room temperature

(RT) for staining with phalloidin), and washed again. Membranes

were stamped out of the plastic support and subsequently

incubated with primary antibodies in 0.5% Triton X-100 in

PBS+ for 2 h at RT, washed, and incubated with secondary

antibodies (Table S1), 4’,6-diamidino-2-phenylindole dihydro-

chloride (DAPI, 1 mg/ml; Roche, Grenzach-Wyhlen, Germany),

and optionally with Phalloidin-Atto 647N (1:200, Sigma) in 0.5%

Triton X-100 in PBS+ for 2 h at RT. Membranes were washed

with PBS+ followed by doubly distilled water and mounted using

ProTaqs Mount Fluor (Biocyc, Luckenwalde, Germany).

Jejunal tissue. Slices of PFA-fixed tissue were boiled in

ethylenediaminetetraacetic acid buffer (1 mM EDTA, pH 8.0

adjusted with NaOH; Merck) for 15 min and then washed in

PBS+, whereas slices from tissue directly frozen in liquid nitrogen

were fixed in methanol at –20uC for 10 min and subsequently

washed in PBS+. Tissue slices were then permeabilized (5 min,

0.5% Triton X-100 in PBS+, RT) and blocked in 5% goat (PAA)

or donkey serum (Sigma) plus 1% bovine serum albumin (Roth)

for 1 h. Tissue sections were incubated with primary antibodies in

blocking solution for 1.5 h at RT, washed, and incubated with

secondary antibodies for 1.5 h at RT (Table S1). After washing

with PBS+ and doubly distilled water, slices were embedded using

ProTaqs Mount Fluor.

IPEC-J2, an Improved Model for Pig Jejunum
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Images were taken with a confocal laser-scanning microscope

and software as introduced above. A defined image area

($400 mm2) of IPEC-J2 grown on three independent membrane

supports was used to determine cell width assuming an ideally

hexagonally shaped cell corpus. Pig jejunal epithelium morphom-

etry was assessed correspondingly using IF staining images.

Paraffin sections, PAS staining, Morphometry
IPEC-J2 monolayers were fixed in 4% formalin, embedded in

paraffin, and sliced transversely in 5 mm thin sections. Slices were

deparaffinized and rehydrated (xylene, decreasing ethanol series)

prior to periodic acid-Schiff (PAS) reaction. After PAS staining,

IPEC-J2 sections were mounted using Corbit-Balsam (I. Hecht,

Germany). Images were taken using a conventional fluorescence

microscope (BX 60, Olympus, Hamburg, Germany).

To determine the epithelial enlargement factor provided by the

villus and crypt surface with reference to the lamina muscularis

mucosae, jejunal tissue of 13 piglets was fixed in triplicate for 26 h

in Zamboni’s fixation solution, dehydrated in graded series of

ethanol, embedded in paraffin, cut to 5 mm thin sections,

deparaffinized, and rehydrated. Three slides were prepared for

each sample and stained according to H&E standard staining

protocols [30]. Five section areas, where at least four villi were cut

completely from top to bottom and crypts were cut vertically were

analyzed at 50-fold magnification. Enlargement factors were

measured according to Wiese et al. [31] using the image analysis

program NIS-Elements (Nikon, Düsseldorf, Germany).

Western blot (WB) analyses
WB analyses were performed using standard techniques on

IPEC-J2 of four consecutive passages or on stripped jejunal

explants of four animals. Primary and secondary antibodies are

given in Table S1.

The Lumi-LightPLUS Western Blotting Kit (Roche) was used to

detect relevant protein bands via the Fusion FX 7 image

acquisition system (Vilber Lourmat, Eberhardzell, Germany).

Densitometric signal analysis was performed using AIDA software

(Raytest, Berlin, Germany).

Polymerase chain reaction (PCR)
mRNA of IPEC-J2 grown in culture flasks and stripped pig

jejunal tissue was extracted using peqGOLD RNAPureTM

(peQlab, Erlangen, Germany) and purified using the NucleoSpinH

RNA/Protein kit (Macherey-Nagel, Düren, Germany). Reverse

transcription was performed via High Capacity cDNA Reverse

Transcription (Applied Biosystems, Warrington, UK), and PCR

mixtures were prepared using the HotStarTaqH DNA Polymerase

(Qiagen, Hilden, Germany). The primer pairs and the anticipated

PCR product sizes were: claudin-2 (for: GTTGCCAT-

GCTGCTCCCCAGCTG, rev: TCACACATACCCCGTCAG-

GCTGTAG; 626 bp), claudin-12 (for: ATGGGCTGTCGG-

GATGTCCACGCA, rev: TTAGGTGGTGTGGGAAACTA-

CTGG; 734 bp), claudin-15 (for: CACGGGAACGTCATCAC-

CACCA, rev: TCCAGGCCCCCAATGTTGGTGC; 223 bp).

DNA amplification was performed thermo cyclically providing

gene-specific thermal profiles. Gel pictures were captured using

the Luminescent Image Analyzer LAS-1000 (FujiFilm, Düsseldorf,

Germany). Signals were verified by sequencing.

Proliferation assay
Cell proliferation was measured using the Cell Proliferation

Reagent WST-1 (Roche) by quantifying the number of metabol-

ically active cells.

IPEC-J2 of four different passages were seeded at a density of

104 cells/well in 96-well microplates and maintained in a cell

incubator for either 4 or 72 h. After each growing period, WST-1

Reagent was added and cells were incubated for 1 hour before the

absorbance was measured at 450/630 nm using an ELISA reader

(Bio-Rad, Munich, Germany). The absorbance at time point 4 h

was set as 100%.

Statistical analysis
Data are expressed as means 6 standard error of the mean

(SEM). Statistical analyses were carried out using either a two-

tailed, unpaired Student’s t-test or a one-way ANOVA with Tukey

HSD post hoc test (SPSS, version 20, Chicago, Illinois).

Significances are depicted as: *, p,0.05; **, p,0.01; ***,

p,0.001.

Results

PS culture reduces transepithelial resistance
IPEC-J2 cultured in medium supplemented with FBS (IPEC-

J2/FBS) and grown on permeable membrane supports exhibit

huge TER values in the range of 1–15 kV?cm2 either in a peak

(e.g. [19]) or as plateau value (e.g. [32]; Fig. 1A, black and grey

squares). In order to compare TER values of IPEC-J2 with values

from pig jejunal epithelia, the jejunal surface enlargement by villi

and crypts has to be taken into account. Morphometric studies

revealed a surface enlargement factor (11.360.5, n = 13; range 8.7

to 14.7) which was set 10 for practicability reasons. Having

corrected cell culture values (TERcorr) for the effective jejunal

epithelial surface area, values measured in vitro and ex vivo are

directly comparable. As shown in Fig. 1B, TERcorr of IPEC-J2/

FBS (384612 V?cm2, n = 20) still differs by one order of

magnitude from TER of pig jejunal epithelium (2865 V?cm2,

n = 15).

While improving the cell culture protocol to obtain more

physiological cell characteristics, fetal bovine serum was replaced

by serum from adult pigs. As a striking result, 10% PS instead of

FBS prevented cells from developing extreme TER over a time

period of at least three weeks (Fig. 1A, grey triangles, black

squares). However, culturing IPEC-J2 with culture medium

containing 5% PS, ITS, and EGF (Fig. 1A, black triangles)

resulted in a more regular cell layer (data not shown). Notably,

under PS condition TER developed a maximum around day 7

post seeding and reached a lower plateau level (200–400 V?cm2) at

around day 14 post seeding which was maintained for several days.

To determine whether the effect of lower TER was serum

species-specific, brought about by age of the blood donor animal

or was caused by medium supplementation with ITS and EGF,

appropriate medium compositions were tested (Fig. 1A). Neither

medium supplemented with 5% FBS, ITS and EGF nor the use of

adult bovine or adult goat serum considerably affected TER values

and course compared to the 10% FBS condition. In addition, the

use of porcine serum obtained from another company (Biochrom,

Berlin, Germany) corroborated the effect of lower TER (data not

shown). Resulting from this, 10% FBS and 5% PS with ITS and

EGF (conventional and species-specific condition, respectively)

were chosen for further comparative experiments. Pig jejunal TER

(2865 V?cm2, n = 15, p,0.001) and TERcorr of IPEC-J2/PS

(2761 V?cm2, n = 20) did not differ significantly (Fig. 1B). When

FBS condition was replaced by PS condition (and vice versa) two

weeks post seeding, IPEC-J2 immediately started to develop

respective serum-typical TER values (Fig. 1C), whereas switches

induced by PS were much faster than those induced by FBS.

IPEC-J2, an Improved Model for Pig Jejunum
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IPEC-J2 form a leaky epithelium
Repi (21116356 VNcm2, n = 6) of IPEC-J2/FBS is composed of

Rpara (332361145 VNcm2, n = 6) and Rtrans (41686967 VNcm2,

n = 6). Similarly but at much lower levels, Repi (242628 VNcm2,

n = 6) of IPEC-J2/PS consists of Rpara (411662 VNcm2, n = 6) and

Rtrans (6796113 VNcm2, n = 6) (Fig. 1D). In IPEC-J2 of both kind

the ratio Rpara/Rtrans is below 1 (IPEC-J2/FBS, 0.8560.2, n = 6;

IPEC-J2/PS, 0.6960.1, n = 6; see also [33]). Despite the high

absolute resistances, Rpara/Rtrans,1 indicates a "leaky" epithelium

[15] characteristic for the jejunal lining.

Proliferation rate is not affected by PS
Cell proliferation was not statistically different between IPEC-J2/PS

(172612%, n = 4) and IPEC-J2/FBS (16469%, n = 4) (Fig. S1).

PS improves transport properties
Typical features of jejunum in general are ion transport induced

by secretagogues as well as glucose absorption via sodium-glucose

transporter 1 (SGLT1). IPEC-J2/PS had a significantly stronger

secretory response to forskolin (nISC
corr, 4462 mA/cm2, n = 11,

p,0.01; cell culture values corrected for jejunal surface enlarge-

ment) than IPEC-J2/FBS (1963 mA/cm2, n = 10) but comparable

to that of porcine tissue (4868 mA/cm2, n = 9) (Fig. 2A). Glucose

absorption was either evaluated directly as glucose-stimulated

nISC or indirectly as nISC observed upon SGLT1 inhibition by

phlorizin. However, both alternatives did not demonstrate any

change in glucose-dependent ISC between PS and FBS condition

(data not shown).

PS alters cell morphometry and substructure
TER values depend on TJ composition as well as TJ length and

cell membrane area per area of the membrane support, whereas

ISC depends on the latter only. Total membrane area follows from

cell morphology and is reflected by epithelial capacity (Cepi). Cepi

was increased by a factor of four in IPEC-J2/PS (4.0660.25 mF/

cm2, n = 15, p,0.001), compared to IPEC-J2/FBS

Figure 1. PS reduces transepithelial, transcellular, and paracellular resistance of IPEC-J2. (A) Time course of transepithelial resistance
(TER) of IPEC-J2, which were cultured using different culture media (FBS, fetal bovine serum; ABS, adult bovine serum; GS, adult goat serum; PS, adult
porcine serum; ‘+’ indicates supplementation with ITS and EGF) as indicated in the key. PS prevented cells from developing extremely high TER values
over a time period of at least three weeks. Note the TER time course of PS (5% +), which developed a maximum around day 7 and reached a lower
plateau level at day 14 post seeding. (n = 4–5 each) (B) TER values of IPEC-J2/FBS (white bar) and IPEC-J2/PS (light grey bar) were corrected for surface
enlargement by villi and crypts of porcine jejunum (factor 10) (TERcorr) for comparison with pig jejunal values (dark grey bar). IPEC-J2/FBS exhibited
higher TERcorr values (n = 20) than pig jejunum (n = 15; ***, p,0.001), whereas TERcorr of IPEC-J2/PS (n = 20) was not significantly (n.s.) different from
porcine values. (C) TER time courses of IPEC-J2/FBS and IPEC-J2/PS were monitored two weeks before and after culture conditions were exchanged as
indicated by ‘change’. IPEC-J2 immediately started to develop respective serum-typical TER values. (n = 4–5 each) (D) Two-path impedance
spectroscopy was employed to determine Rpara (light grey bars) and Rtrans (dark grey bars) of IPEC-J2/FBS and IPEC-J2/PS. Significant reduction of
both, Rpara (*, p,0.05, n = 6) as well as Rtrans (**, p,0.01, n = 6) occurred in PS when compared to FBS culture. Repi (white bars) is calculated as
Rpara?Rtrans/Rpara+Rtrans.
doi:10.1371/journal.pone.0079643.g001
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(1.1260.06 mF/cm2, n = 22) (Fig. 2B), and thus reached values

similar to cylindrical HT-29/B6 cells (3.5-4.5 mF/cm2) [34].

Changes in cell morphology were confirmed by live cell imaging.

PS caused IPEC-J2 to be smaller in diameter (21.861.1 mm, n = 3

independent seedings, analysis of $400 mm2 each; p,0.01) (Fig.
3A) and taller (17.462.2 mm, n = 3 independent seedings, analysis

of $6 cells each; p,0.001) (Fig. 3B) compared to IPEC-J2/FBS

(diameter: 42.263.3 mm, height: 3.060.3 mm; n = 3). Consequent-

ly, the TJ length per unit membrane support doubled when IPEC-

J2 were PS- instead of FBS-cultured. IPEC-J2/PS values

approximate those of pig jejunocytes (diameter: 8.261.0 mm,

p,0.01; height: 29.260.8 mm; p,0.01; n = 3 independent stain-

ings).

To gain further insight into these morphological changes, the

influence of both culture conditions was analyzed ultrastructurally.

IPEC-J2/PS exhibited a dome-shaped apical membrane with

numerous and long microvilli compared to IPEC-J2/FBS (density,

7.061.1 vs. 2.760.4 microvilli/mm, n = 3, p,0.05; length,

450630 nm, vs. 110610 nm, n = 3, p,0.01; n, number of cells,

analysis of .2 mm apical cell membrane each), (Figs. S2A, B).

Tight junctional structures were located at the apical-most part of

cell-cell contacts, but due to the dome shape of the apical cell

membrane, IPEC-J2/PS TJs did not represent the maximum cell

height (Figs. S2A, B). The amorphous substance (Fig. S2A,

labeled with M) which is mostly present in IPEC-J2/PS could be

identified as neutral mucopolysaccharides (Fig. S2C).

PS optimizes tight junction ultrastructure
Detailed analysis was performed for TJ ultrastructure. Neither

the TJ meshwork depth nor the number of horizontal strands were

significantly different between IPEC-J2/PS (meshwork depth,

302641 nm; number of horizontal strands, 4.5260.4; n = 22) and

porcine jejunocytes (meshwork depth, 315641 nm; number of

horizontal strands, 4.8860.35; n = 23) (Figs. 4A, B, C). In

contrast, IPEC-J2/FBS differed considerably (meshwork depth,

577670 nm, p,0.01; horizontal strands, 7.0060.53, p,0.05;

both n = 20) from jejunal tissue. The occurrence of continuous

type TJ strands was lowest in IPEC-J2/FBS, medium in IPEC-J2/

PS and high in pig jejunal epithelium, whereas an inverse

incidence of particle type structures was observed (Fig. 4D). Thus,

there was no correlation between the presence of continuous TJ

strands and high TER values.

PS increases epithelial permeability
TJ composition implies structural aspects and is therefore

crucial for paracellular barrier properties including permeability to

fluorescein and inorganic ions. The permeability to fluorescein of

IPEC-J2/PS (0.9460.15 1026 cm/s, n = 7, p,0.001) was dra-

matically higher than of IPEC-J2/FBS (0.0460.004 1026 cm/s,

n = 8) and thus reached values similar to HT-29/B6 cells

(0.8660.14 1026 cm/s) [8] (Fig. 5A). By contrast, the permeabil-

ity ratio of sodium over chloride (PNa/PCl) between culture

conditions (IPEC-J2/PS, PNa/PCl = 1.1160.01, n = 13; IPEC-J2/

FBS, PNa/PCl = 1.0560.02, n = 11) was not significantly different

and did not reach the degree of porcine jejunal epithelial cation

selectivity (PNa/PCl = 1.4460.07, n = 12, p,0.001) (Fig. 5B).

PS elevates junctional and transport protein content
The composition of the junctional protein pool and the presence

of intestinal epithelial differentiation markers were studied by

immunofluorescence staining. In pig jejunal epithelium, typical TJ

proteins (claudin-1, -2, -3, -4, -5, -7, -8, -12, -15, tricellulin,

occludin) which were selected on the basis of studies in mouse and

rat small intestine [35–37], the TJ-associated protein Zonula

occludens 1 (ZO-1), and the adherens junction protein E-cadherin

(E-cad) were present and located within cell-cell contact complexes

(Figs. 6A, S3, S4A). Based on this, the expression patterns of

differently cultured IPEC-J2 were screened. In IPEC-J2, claudin-

1, -3, -4, -5, -7, and -8 could be detected within the TJ under both

conditions (Figs. 6A, S3), though claudin-7 localization within the

TJ was patchy and weak (Fig. S3). Claudin-2, -12, and -15 signals

were detected sporadically and faintly (Fig. S4A), but were not

detectable on Western blots (data not shown) and regarding

claudin-2 and -15 were also not present on mRNA level (Fig.
S4B). Under both culture conditions tricellulin was expressed at

tricellular junctions. However, bicellular localization was also

observed, which occurred more frequently in IPEC-J2/PS than in

IPEC-J2/FBS (Fig. 6A). Occludin, ZO-1, and E-cad were located

within the tight and adherens junction, respectively (Figs. 6A,
S4A). The quantification of proteins in Western blot analyses

revealed a diverse pattern. Whereas expression of claudin-4 and -5

was increased (p,0.05) in IPEC-J2/PS, the content of other TJ

proteins was not different from IPEC-J2/FBS (Fig. 6B).

In terms of epithelial polarization markers, the presence of ezrin

and SGLT1 within the porcine apical membrane as well as

GLUT2 and Na/K-ATPase within the basolateral membrane

could be confirmed (Fig. 7A) and the absence of vimentin, a

mesenchymal marker, within epithelial cells was verified (Fig. 7A).

Under both cell culture conditions, the expression of GLUT2 and

Na/K-ATPase within the basolateral membrane could be proved

(Fig. 7A), whereas the expression of ezrin and SGLT1 within the

apical membrane could be verified in IPEC-J2/PS only, since in

IPEC-J2/FBS imaging apical and basal membranes spatially

separately was difficult due to the low cell height (Fig. 7A).

However, against expectations, IPEC-J2 were positive for vimentin

(Fig. 7A). Protein quantities of ezrin and GLUT2 (p,0.01),

SGLT1 (p,0.05), and the mesenchymal marker vimentin

(p,0.01) were increased in IPEC-J2/PS, when compared to

IPEC-J2/FBS (Fig. 7B).

Figure 2. PS elevates active ion transport and membrane
capacitance of IPEC-J2. (A) Forskolin-induced short-circuit current
(nISC) of IPEC-J2/FBS (white bar) and IPEC-J2/PS (light grey bar) were
corrected for surface enlargement by villi and crypts of porcine jejunum
(factor 10) (nISC

corr) for comparison with pig jejunal values (dark grey
bar). Stimulation by forskolin resulted in an increased chloride secretory
response in IPEC-J2/PS (n = 11; **, p,0.01) compared to IPEC-J2/FBS
(n = 10), which almost reached porcine values (n = 9; n.s.). (B) Epithelial
capacitance (Cepi) of IPEC-J2/FBS (white bar) and IPEC-J2/PS (light grey
bar) was determined via impedance spectroscopy. In IPEC-J2/PS, Cepi

was increased (n = 15; ***, p,0.001) compared to IPEC-J2/FBS (n = 22).
doi:10.1371/journal.pone.0079643.g002
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Figure 3. PS optimizes cell dimension of IPEC-J2. (A) Horizontal and (B) vertical aspects of IPEC-J2 were visualized by live cell imaging using
FITC-dextran 4000 (FD4), those of pig jejunocytes by immunofluorescence staining of ZO-1 (A) and of E-cadherin (E-cad, B). Scale bar: 20 mm.
doi:10.1371/journal.pone.0079643.g003

Figure 4. PS approximates tight junction ultrastructure of IPEC-J2 to pig jejunum. (A) Freeze-fracture images of IPEC-J2/FBS, IPEC-J2/PS,
and pig jejunal tissue (scale bar: 200 nm). (B) Morphometric analysis of the TJ meshwork depth, (C) the number of horizontal strands, and (D) the TJ
strand type (continuous vs. particle type). IPEC-J2/PS, n = 22; IPEC-J2/FBS, n = 23; pig jejunum, n = 20; n.s., not significant; *, p,0.05; **, p,0.01.
doi:10.1371/journal.pone.0079643.g004
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Discussion

A cell culture model can serve as a powerful tool, provided it

behaves like a functional and structural equivalent of the respective

tissue. In case of the porcine small intestinal cell line IPEC-J2, cells

should exhibit jejunal enterocyte features. While conventionally

cultured IPEC-J2 were extremely large and flat and monolayers

exhibited TER values at kV?cm2 level, jejunal enterocytes are

small and columnar, and they exhibit TER values of only about

50 V?cm2. Considering that the jejunal lining is enlarged by villi

and crypts, cell culture values were corrected using an enlarge-

ment factor of 10 which had been obtained from cross-sections of

porcine jejunum. The resulting TER discrepancy between IPEC-

J2 and jejunal tissue still amounts to one order of magnitude. In

the current study we demonstrated that using a species-matched

serum caused IPEC-J2 to develop an improved morphology

accompanied by dramatically lower TER, resembling pig

jejunocyte features.

Relation between morphometry and TER
TER reflects two resistors in parallel, Rtrans and Rpara. Assuming

a constant Rpara per unit TJ length and a constant number of ion

channels per unit membrane, then cell layers consisting of small,

tall cells will have lower TER values than cell layers consisting of

large, flat cells. Microvilli and membrane invaginations which

enhance the membrane area of the cells will further decrease TER

[13]. Thus, it has been shown in a study which focused on a

porcine colonic cell culture model [38], that cell monolayers

possess adequate TER, which meet pig colonic tissue dimensions

when corrected for the respective epithelial enlargement by crypts.

Concomitantly, cells were found to exhibit appropriate cell

dimensions, abundant and well-shaped microvilli as well as tight

junctional and further intercellular contacts. A similar relationship

between morphometry and TER has been observed in differently

cultured human bronchial epithelial cells [39] as highly columnar

shaped Calu-3 cells exhibit lower TER than cuboidal ones. In

conventionally cultured IPEC-J2 monolayers, high TER values

which do not correspond to the ex vivo counterpart are mainly a

consequence of the enormous cell size. In addition, microvilli were

small and sparse. In contrast, species-specific cultivation remod-

eled large and flat IPEC-J2 into smaller and taller ones with

numerous long microvilli and this change in morphology was

paralleled by a dramatic change in TER.

Previous ultrastructural studies demonstrated a correlation

between the number of horizontal TJ strands and TER (or, more

exactly, Rpara) [40,41] even though other factors, such as TJ

protein composition, evidently interferes with this correlation [42].

Thus, although in the current study total TJ length appeared to be

the major determinant of TER, TJ ultrastructure may also have

affected TER, as number of TJ strands and network depth were

higher in IPEC-J2/FBS.

Besides TJ length and ultrastructure, the change in membrane

area is likely to contribute to the drastic differences in TER

between both culture regimes. These differences result from

increased cell height, microvilli length and number, apical

invaginations, and lateral infoldings in IPEC-J2/PS. The increase

in membrane area can be directly deduced from the increase in

epithelial capacitance observed during impedance measurements.

In IPEC-J2 of both kind, the ratio Rpara/Rtrans is smaller than 1.

Despite the high absolute resistances, this indicates a "leaky"

epithelium [15] as it is typical for the jejunal lining.

Generally, the ion permeability of tight junctions is strongly

augmented by the paracellular cation channels claudin-2 and

claudin-15. Both claudins were present in porcine jejunum but

were not detectable in IPEC-J2 of either kind. This may explain

the lower cation selectivity of IPEC-J2 compared to that of

jejunum.

Furthermore, forskolin-stimulated chloride secretion in IPEC-

J2/PS was enhanced compared to IPEC-J2/FBS, indicating

enhanced currents from the enlarged apical membrane area

(dome-shaped, microvilli). Potential effects of higher channel

density per unit membrane area were not investigated but may

add to the observed current.

Comparison of cell culture conditions inducing
morphometry changes

Cells grown on membrane supports are commonly fed by

medium from both the apical and the basolateral compartment.

Due to poor IPEC morphology, Nossol and co-workers [32]

suggested that the monolayer’s oxygen supply associated with

ATP-dependent cellular biochemical and transport processes may

be insufficient. In order to augment differentiation and function-

ality of IPEC monolayers, Nossol et al. performed ALI cultivation

which optimized the cell height/diameter relation of IPEC-1 but

did not improve these parameters in IPEC-J2. Inversely, TER of

IPEC-1 did not show relevant changes two weeks after switching

to ALI mode, whereas TER of IPEC-J2 declined by almost 50%,

nevertheless retaining values at kV?cm2 level. The fact that

morphometry and TER act contrarily to the TER/morphometry

hypothesis postulated above indicates that TJ structure and/or

membrane channel density must have changed greatly during ALI

culture. As yet, the mechanisms responsible for changes in cell

morphology under ALI conditions remain unclear.

Alternatively, it is not unlikely that morphological changes

observed under ALI conditions and in the presence of PS are two

sides of the same coin. Changes observed under ALI conditions

may be caused by an accumulation of apically secreted substances

within the very thin residual apical liquid layer. Thus, it can be

hypothesized that IPEC-1 are able to synthesize components

affecting cell morphology, whereas IPEC-J2 are not or only to a

minor degree, so that IPEC-1 effectively accumulate signaling

agents only when the apical extracellular volume is restricted. In

porcine serum, whose proteome is not yet fully analyzed [43], all

Figure 5. PS affects permeability to fluorescein but not charge
selectivity of IPEC-J2. (A) Paracellular permeability to fluorescein
(PFLU) of IPEC-J2/FBS (n = 7) and IPEC-J2/PS (n = 8). (B) Permeability ratio
for sodium and chloride (PNa/PCl), indicating paracellular charge
selectivity, as determined by dilution potentials measurements. The
broken line indicates no charge selectivity. Pig jejunal tissue (n = 12),
IPEC-J2/PS (n = 13), IPEC-J2/FBS (n = 11); n.s., not significant; ***,
p,0.001.
doi:10.1371/journal.pone.0079643.g005
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required signaling agents associated with differentiation/matura-

tion presumably are included, so that IPEC-J2 morphometry and

functionality was altered by replacing FBS with PS in culture

media.

In all, FBS seems to be insufficient as medium supplement for

IPEC-J2 culture although adequate cell morphometry and

electrophysiology had initially been shown by Berschneider [4].

Porcine serum by contrast, apparently has the ability to

compensate for a substance whose secretion by IPEC-J2 has been

lost with increased number of passages. It needs to be elucidated,

whether the saving serum agent is solely included in porcine serum

and thus does not exist in bovine or goat sera of any age or

whether its sequence differs between these species, leading to a loss

of function of the potential bovine/goat analog in porcine cell

culture.

Differentiation and maturation
Once arisen from pluripotent stem cells located in the deep

crypt epithelium, proliferative jejunocyte progenitor cells func-

tionally and structurally start to differentiate during their

migration along the crypt-villus axis. When the villous epithelium

is reached, enterocyte differentiation is completed and jejunocyte

maturation begins. The terms differentiation and maturation are

often used interchangeably. However, differentiation describes

Figure 6. PS does not affect junctional protein localization within cell-cell contacts but controls tight junction protein quantity of
IPEC-J2. (A) Confocal immunofluorescence images of IPEC-J2/FBS, IPEC-J2/PS, and cryosectioned pig jejunal mucosae. Cldn5, tric, and occl are
presented in green, counterstain in red, as indicated. Nuclei are presented in blue (DAPI). The broken line indicates different counterstain between
IPEC-J2 and pig jejunum. Scale bar: 20 mm. (B) Tight junction proteins of IPEC-J2/FBS and IPEC-J2/PS (n = 3 to 4 different cell passages) were analyzed
by Western blotting and were subsequently densitometrically quantified. To allow for different cell architecture, values were normalized to E-
cadherin. All signals of IPEC-J2/PS are given in relation to IPEC-J2/FBS values (100%). *, p,0.05.
doi:10.1371/journal.pone.0079643.g006
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quality changes, whereas maturation is the process of quantity

changes in cell phenotype [44]. In order to judge the differenti-

ation state of cultured epithelial cells, a variety of different markers

could be used. Markers comprise cell type specific proteins which

progressively complement the cell phenotype.

We tested protein expression of exemplarily chosen marker

candidates, which are specific to polarized, barrier forming, and

transport-active jejunal epithelial cells.

It was evident that all epithelial marker molecules tested, except

claudin-2, -12, and -15, were qualitatively available under either

growing condition. This suggests that IPEC-J2/FBS and IPEC-J2/

PS display the same differentiation status. However, differences

existed in terms of marker quantity. Compared to FBS condition,

apical and basolateral marker proteins (ezrin, SGLT1, GLUT2)

were significantly higher expressed, suggesting an advanced

maturation state under PS culture.

Figure 7. PS approximates porcine jejunal marker patterns of IPEC-J2 to that of jejunum. (A) Confocal immunofluorescence images of
IPEC-J2/FBS, IPEC-J2/PS, and cryosectioned pig jejunal mucosae. Porcine jejunocyte marker proteins are presented in green, counterstain in red, as
indicated. Nuclei are presented in blue (DAPI). In IPEC-J2, GLUT2 and Na/K-ATPase could be detected within the basolateral membrane, whereas ezrin
and SGLT1 could be verified within the apical membrane of IPEC-J2/PS only. In addition, IPEC-J2 were positive for vimentin. The broken line indicates
that counterstain choice differed between IPEC-J2 and pig jejunum. Scale bar: 20 mm. (B) Marker proteins of IPEC-J2/FBS and IPEC-J2/PS (n = 3 to 4
different cell passages) were analyzed by Western blotting and were subsequently densitometrically quantified. To allow for different cell
architecture, values were normalized to E-cadherin, with the exception of vimentin, which was normalized to b-actin. All signals of IPEC-J2/PS are
given in relation to IPEC-J2/FBS values (100%). *, p,0.05; **, p,0.01.
doi:10.1371/journal.pone.0079643.g007
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Having shown that IPEC-J2 were differentiated, the mesenchy-

mal marker vimentin, against expectations, was excessively

expressed under both culture regimes. This phenomenon also

appears e.g. in differentiated bovine primary culture jejunocytes,

where it was attributed to a suppression of post transcriptional

inhibition of the vimentin synthesis [45]. The appearance of

vimentin may suggest an onset of epithelial-mesenchymal transi-

tion (EMT). EMT is triggered by several signaling pathways which

induce the transcription factor snail. This, in turn, transcriptionally

represses E-cadherin and TJ proteins [46] and in parallel increases

vimentin expression [47]. Since snail expression was not elevated

and junctional proteins were not down-regulated, a dedifferenti-

ation of IPEC-J2 can be excluded. Incidentally, many established

epithelial cell lines (MDCK-C7 [48], MDBK [49]) as well as

epithelial cells in vivo [50] also express vimentin.

Together with respective protein qualities and quantities, the

time course of TER reflects the differentiation/maturation state of

either culture conditions. TER of IPEC-J2/FBS and IPEC-J2/PS

reached highest values about one week post seeding which could

indicate complete differentiation. Under FBS condition, TER

values then remained at a more or less constant level, whereas

under PS condition TER declined and reached lower plateau

values arguing for a maturational process with leveled protein

composition. In the absence of evidence to the contrary we can

assume that the loss of internal maturational competence in IPEC-

J2 is one disadvantage of non-immortalized continuous cell lines.

In order to compensate such loss of function events, species-

specific cultivation represents possibly the most effective proceed-

ing.

Conclusion

IPEC-J2 represent a unique tool for investigating porcine

jejunal barrier function ex vivo. We describe an improved species-

specifically cultured model, which exhibits morphology and

barrier parameters close to the source tissue. This was urgently

needed in order to replace rodent, tumor-derived, and non-

physiologically behaving swine cell models in the field of pig small

intestine and digestive research.

Supporting Information

Figure S1 PS does not change IPEC-J2 proliferation.
Metabolically active cells were photometrically quantified 4 and 72

h post seeding by applying the WST-1 assay. The absorbance at

time point 4 h was set as 100%. n = 4 different cell passages; n.s.,

not significant.

(TIF)

Figure S2 PS improves subcellular structures in IPEC-
J2. (A) Transmission electron microscopical (TEM) images (scale

bar: 5 mm) of IPEC-J2/FBS and IPEC-J2/PS focusing on

subcellular structures. M, mucopolysaccharides; MS, membrane

support; MV, microvilli; N, nucleus. (B) More detailed TEM

images representing tight junctional structures (scale bar: 1 mm).

TJ, tight junction. (C) Paraffin sections of IPEC-J2/FBS and

IPEC-J2/PS were stained for mucus by PAS reaction (scale bar:

20 mm). Neutral mucopolysaccharides which mainly existed in

IPEC-J2/PS are depicted in pink and nuclei in dark blue.

(TIF)

Figure S3 PS does not alter tight junctional protein
localization in IPEC-J2. Confocal immunofluorescence images

of IPEC-J2/FBS, IPEC-J2/PS, and cryosectioned pig jejunal

mucosae. Cldn1, -3, -7, and -8 are presented in green, counterstain

in red, as indicated. Nuclei are presented in blue (DAPI). The

broken line indicates that counterstain choice differed between

IPEC-J2 and pig jejunum. Scale bar: 20 mm.

(TIF)

Figure S4 Lacking claudins of IPEC-J2. (A) Confocal

immunofluorescence images of IPEC-J2/FBS, IPEC-J2/PS, and

cryosectioned pig jejunal mucosae. Cldn2, -12 and -15 are

presented in green, counterstain in red, as indicated. Nuclei are

presented in blue (DAPI). The tested claudins were hardly

detectable. The broken line indicates that counterstain choice

differed between IPEC-J2 and pig jejunum. Scale bar: 20 mm. (B)

mRNA isolated from IPEC-J2/FBS, IPEC-J2/PS, and pig

jejunum was qualitatively analyzed by PCR. Cldn2, -12, and -15

mRNA bands (626 bp, 734 bp, 223 bp, respectively) of pig

jejunum were used as a reference for IPEC-J2 in which only

cldn12 could be verified. Negative controls are denoted by ‘/’.

(TIF)

Table S1 Antibodies.

(DOC)
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