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Abstract

Transcriptional/translational feedback loops drive daily cycles of expression in clock genes and clock-controlled genes,
which ultimately underlie many of the overt circadian rhythms manifested by organisms. Moreover, phosphorylation of
clock proteins plays crucial roles in the temporal regulation of clock protein activity, stability and subcellular localization.
dCLOCK (dCLK), the master transcription factor driving cyclical gene expression and the rate-limiting component in the
Drosophila circadian clock, undergoes daily changes in phosphorylation. However, the physiological role of dCLK
phosphorylation is not clear. Using a Drosophila tissue culture system, we identified multiple phosphorylation sites on dCLK.
Expression of a mutated version of dCLK where all the mapped phospho-sites were switched to alanine (dCLK-15A) rescues
the arrythmicity of Clkout flies, yet with an approximately 1.5 hr shorter period. The dCLK-15A protein attains substantially
higher levels in flies compared to the control situation, and also appears to have enhanced transcriptional activity,
consistent with the observed higher peak values and amplitudes in the mRNA rhythms of several core clock genes.
Surprisingly, the clock-controlled daily activity rhythm in dCLK-15A expressing flies does not synchronize properly to daily
temperature cycles, although there is no defect in aligning to light/dark cycles. Our findings suggest a novel role for clock
protein phosphorylation in governing the relative strengths of entraining modalities by adjusting the dynamics of circadian
gene expression.
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Introduction

A large variety of life forms manifest circadian (>24 hr)

rhythms in behavior and physiology that are driven by endoge-

nous cellular clocks or pacemakers [1,2]. Perhaps the most

biologically relevant property of circadian clocks is that they can

be synchronized (entrained) to local time by external time cues, a

feature that endows organisms with the ability to anticipate

environmental changes and hence perform activities at optimal

times during the day. The main environmental synchronizing

agents of circadian clocks in nature are the daily cycles in light/

dark and ambient temperature. In general, photic cues are the

most potent synchronizing agent for organisms, whereas thermal

entrainment is less powerful [3,4]. Work in the last 20 years using a

variety of model organisms has revealed that the molecular logic

underlying circadian clock mechanisms is highly conserved [2].

Circadian clocks are based on intracellular mechanisms that

involve a core transcriptional translational feedback loop (TTFL)

composed of central clock proteins that drive daily oscillations in

their own gene expression as well as downstream clock-controlled

genes (ccgs). Daily oscillations in the transcript levels of ccgs

ultimately drive many of the rhythmic behaviors and physiologies

manifested by organisms.

The rate-limiting component of the main TTFL in Drosophila is

the basic-helix-loop-helix (bHLH) PAS domain containing tran-

scription factor termed dCLOCK (Drosophila CLOCK; dCLK)

[5], which forms a heterodimer with CYCLE (CYC), another

bHLH-PAS containing clock transcription factor [6]. The dCLK-

CYC heterodimer binds to E box DNA elements inducing the

expression of the clock genes period (per) and timeless (tim), in

addition to other clock genes and ccgs. Subsequently, the PER and

TIM proteins interact in the cytoplasm and after a time-delay
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translocate to the nucleus where they function with other factors to

inhibit the transcriptional activity of dCLK-CYC. Eventually, the

levels of PER and TIM decline in the nucleus, facilitating another

round of dCLK-CYC-mediated transcription. In a ‘‘secondary’’

stabilizing TTFL, the dCLK-CYC heterodimer induces the

expression of PAR domain protein 1e (pdp1e) and vrille (vri),
whose protein products (i.e., PDP1e and VRI) in turn activate and

repress the expression of dClk, respectively, leading to daily cycles

in dClk mRNA levels [7,8]. Mammalian clocks also use a

CLOCK-based transcription factor in their main TTFL, which

involves a heterodimer comprised of mCLOCK (mammalian

CLOCK; mCLK) and BMAL1 (homolog of CYC) that governs

rhythmic expression of the negative regulators Per1-3, in addition

to other clock genes and ccgs [9].

Although TTFLs constitute a major molecular framework for

the oscillatory behavior of cellular clocks, posttranslational

modifications of clock proteins are central to maintain proper

timekeeping functions by regulating clock protein stability, sub-

cellular localization and activity [10–14]. A well-studied example

of clock protein phosphorylation is the progressive phosphoryla-

tion of PER, which has a critical role in setting the pace of the

clock and controlling temporal changes in dCLK-CYC-mediated

transcription by regulating PER stability, timing of nuclear entry

and how long it persists in the nucleus [15–22]. Newly synthesized

PER is present as non-to-hypo-phosphorylated isoforms in the late

day/early night and undergoes progressive increases in the extent

of phosphorylation, culminating in the appearance of mostly or

exclusively hyper-phosphorylated isoforms in the late night/early

day that are recognized for rapid degradation by the 26S

proteasome [10]. Numerous PER-relevant kinases have been

identified, with DOUBLETIME [DBT; homolog of vertebrate

casein kinase Id/e (CKId/e)] [21,23] operating as the major

kinase regulating temporal changes in the stability of PER. Other

kinases include SHAGGY [SGG; homolog of vertebrate glycogen

synthase kinase 3b (GSK3b)] [24], casein kinase 2 (CK2) [25,26]

and NEMO [15,27].

dCLK also undergoes circadian changes in phosphorylation

state, but in a manner different from that of PER [28,29]. dCLK is

present in a mostly intermediate phosphorylated state throughout

the day, converting to largely hyper-phosphorylated isoforms in

the late night/early day. DBT stably interacts with PER

throughout most of its daily life-cycle and this association likely

facilitates the ability of DBT to regulate dCLK [28–31]. Although

the role(s) of dCLK phosphorylation is not clear it appears that

hyper-phosphorylated isoforms have decreased stability and

possibly reduced transcriptional activity [28–30]. In addition to

DBT, several kinases such as protein kinase A (PKA), CaMKII,

MAPK, and NMO have been implicated in regulating the activity

and/or levels of dCLK [27,32]. More recently CK2 was reported

to act directly on dCLK, stabilizing it while reducing its activity

[33]. The mammalian CLOCK protein also manifests circadian

oscillations in phosphorylation in vivo [34,35], which is triggered

by hetero-dimeric complex formation with BMAL1 [34,35]. Mass

spectrometric analysis of purified mCLK from the mouse liver

identified Ser38, Ser42, and Ser427 as sites phosphorylated in vivo
[36]. Ser38 and Ser42 are located in the bHLH region and

phosphorylation of those residues down-regulates transcriptional

activity of mCLK via decreasing binding activity to E box element

[36]. Phosphorylation of Ser427 is reported as being dependent on

GSK-3b activity and relevant for degradation of mCLK [37].

PKG and PKC have been implicated as mCLK kinases regulating

phase resetting [38,39]. Despite these advances using several

animal model systems, it is still unclear how CLOCK phosphor-

ylation impacts the function of circadian timing systems at the

organismal level.

In this study, we used a simplified Drosophila S2 cell culture

system in combination with mass spectrometry to map phosphor-

ylation sites on dCLK. Our results indicate that dCLK is highly

phosphorylated (at least 14 phospho-sites). In S2 cells, mutated

versions of dCLK where all the mapped Ser/Thr sites were

switched to Ala (herein referred to as dCLK-15A) manifested

increased E box dependent transcriptional activity without

affecting interactions with other core clock partners such as

CYC and PER. In flies, dCLK-15A protein is exclusively hypo-

phosphorylated suggesting that we identified, at the very least, a

major portion of the total phosphorylation sites found on dCLK in

flies. Expression of dCLK-15A rescues the arrhythmicity of Clkout

flies yet with an approximately 1.5 hr shorter period. Consistent

with a role in regulating protein stability, the levels of dCLK15A

are substantially higher compared to the control situation, which

along with increases in transcriptional activity likely explains the

faster pace of the clock. The daily peak levels in per/tim mRNA

and protein reached higher values in dCLK-15A expressing flies,

further supporting the notion that dCLK levels are normally rate-

limiting in the clock mechanism. Surprisingly, the clock-controlled

daily activity rhythm in dCLK-15A mutant flies fail to maintain

synchrony with daily temperature cycles, although there is no

defect in aligning to light/dark cycles. Together, our findings

indicate that in animal systems, the post-translational modification

of a master circadian transcription factor plays a critical role in

setting the pace of the clock and regulating circadian entrainment.

Results

Identification of dCLK phosphorylation sites in cultured
Drosophila cells

As an initial attempt to better understand the role(s) of dCLK

phosphorylation we sought to map phosphorylation sites using

recombinant protein production in cultured Drosophila S2 cells.

This simplified cell culture system was successfully used to identify

Author Summary

Circadian clocks are synchronized to local time by daily
cycles in light-dark and temperature. Although light is
generally thought to be the most dominant entraining cue
in nature, daily cycles in temperature are sufficient to
synchronize clocks in a large range of organisms. In
Drosophila, dCLOCK is a master circadian transcription
factor that drives cyclical gene expression and is likely the
rate-limiting component in the transcriptional/translation-
al feedback loops that underlie the timekeeping mecha-
nism. dCLOCK undergoes temporal changes in phosphor-
ylation throughout a day, which is also observed for
mammalian CLOCK. However, the role of CLOCK phos-
phorylation at the organismal level is still unclear. Using
mass-spectrometry, we identified more than a dozen
phosphorylation sites on dCLOCK. Blocking global phos-
phorylation of dCLOCK by mutating phospho-acceptor
sites to alanine increases its abundance and transcriptional
activity, leading to higher peak values and amplitudes in
the mRNA rhythms of core clock genes, which likely
explains the accelerated clock speed. Surprisingly, the
clock-controlled daily activity rhythm fails to maintain
synchrony with daily temperature cycles, although there is
no observable defect in aligning to light/dark cycles. Our
findings suggest a novel role for clock protein phosphor-
ylation in governing the effective strengths of entraining
modalities by adjusting clock amplitude.

Phosphorylation and Modality-Specific Circadian Entrainment
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physiologically relevant phosphorylation sites on Drosophila PER

[15,16,18,40]. Prior work showed that production of recombinant

dCLK in S2 cells leads to significant shifts in electrophoretic

mobility that are due to phosphorylation [29]. Thus, we established

S2 cell lines stably expressing HA-dClk-V5 under the inducible

metallothionein promoter (pMT). Total cell lysates were subjected

to immunoprecipitation with anti-V5 antibody, followed by multi-

protease digestion, titansphere nanocolumn phosphopeptide en-

richment, and tandem mass spectrometry, as previously described

[16,41]. We identified 14 phosphorylation sites on dCLK, all of

which are at Ser residues, with the possible exception of Tyr607

(Table 1). Many of the identified phosphorylation sites are in the C-

terminal half of dCLK, which contains several Q-rich regions that

might function in transcriptional activation (Figure 1A). Phosphor-

ylation was also detected at sites close to the N- and C-terminus of

the dCLK protein. Interestingly, no phosphorylation sites were

found in any of the known functional domains of dCLK; e.g.

bHLH, PAS domains and Q-rich regions (Figure 1A and Table 1).

In preliminary studies we individually mutated each of the

identified phosphorylated Ser residues to Ala residues but did not

see major effects on dCLK electrophoretic mobility, except for the

S859A mutant version of dCLK, which manifested slightly faster

electrophoretic mobility. (Figure S1A and B). The transcriptional

activities of most single site mutants were somewhat increased (#2

fold), except for the S924A mutant version of dCLK, which

manifested a slight but reproducible decrease (Figure S1C).

Overall, our initial studies in S2 cells were not able to identify

whether certain individual phospho-sites are particularly signifi-

cant in regulating dCLK metabolism or activity. While ongoing

work is aimed at better understanding the roles of individual

phospho-sites, in this study we focused on more global aspects of

dCLK phosphorylation by generating a mutant version wherein

all the Ser phospho-acceptor sites identified by mass spectrometry

were switched to Ala. Since the mass spectrometry data did not

unambiguously identify which Ser among amino acids 209–211 is

phosphorylated, we switched all 3 Ser to Ala. In addition, although

Tyr 607 or Ser 611 is phosphorylated, to focus on Ser

phosphorylation, we only mutated Ser 611 to an Ala. By using

site-directed mutagenesis, we serially mutated the aforementioned

16 Ser to Ala (dCLK-16A). The electrophoretic mobility of

dCLK-16A is indistinguishable from that of l-phosphatase treated

wild-type dCLK and was not altered by l-phosphatase treatment

(Figure 1B), indicating that we mapped most, if not all, the sites on

dCLK phosphorylated by endogenous kinases in S2 cells.

dCLK-16A interacts with either CYC or PER proteins to a

similar extent as that observed for the wild-type version (dCLK-

WT), demonstrating that dCLK-16A is not grossly misfolded

(Figure 1C). In addition, our findings suggest that the phosphor-

ylated state of dCLK is not a major signal regulating interactions

with core clock partners. Consistent with prior work, we observed

increases in non/hypo-phosphorylated isoforms of dCLK when

dPER is co-expressed (Figure 1C, compare lane 1 and 6) [31].

With regards to transcriptional activity, dCLK-16A is more potent

compared to dCLK-WT in stimulating E-box dependent tran-

scription (Figure 1D), while still maintaining its sensitivity to

inhibition by dPER (Figure 1E). Earlier findings showed that

hyper-phosphorylated dCLK is less stable and that DBT might

contribute to this instability, although the exact role of DBT is not

clear [28–30]. We compared the stabilities of dCLK-16A and

dCLK-WT under a variety of conditions, including overexpressing

DBT, but did not detect a significant difference (Figure S2A and

B), suggesting we did not map one or more phosphorylation sites

critical for regulating dCLK stability and/or the pathway for

dCLK degradation in S2 cells is not identical to that in flies (see

below). Taken together, the results obtained using well-established

S2 cell based assays indicate that dCLK-16A retains key clock-

relevant biochemical functions and suggest that global phosphor-

ylation of dCLK reduces its transactivation potential.

Flies expressing dCLK-15A display behavioral rhythms
with short periods

To investigate whether the dCLK phosphorylation sites we

identified play a physiological role in the Drosophila circadian

timing system, we first evaluated the ability of a novel wildtype

dClk transgene to rescue behavioral rhythms in the arrhythmic

Clkout genetic background (herein, termed as p{dClk-WT};Clkout).

Clkout is a newly described arrhythmic null mutant that does not

produce dCLK protein (Mahesh et al., submitted). The transgene

was constructed with a 13.9 kb genomic fragment that contains

the dClk gene, which we modified by introducing a V5 epitope tag

at the C-terminus of the dClk open reading frame for enhanced

protein surveillance. Flies were exposed to standard entraining

conditions of 12 hr light:12 hr dark cycles [LD; where zeitgeber

time 0 (ZT0) is defined as lights-on] at 25uC, followed by several

days in constant dark conditions (DD) to measure free-running

behavioral periods. In the behavioral analysis, p{dClk-WT};Clkout

flies manifested robust locomotor activity rhythms with normal

,24 hr periods (Table 2, Mahesh et al., submitted), indicating

that the circadian clock system functions properly in these flies.

Next, we sought to generate transgenic flies harboring a dCLK-

16A version of the dClk rescue transgene. However, because of

technical difficulties in generating a version that also included

replacing Ser5 with Ala, we made a dClk version wherein the other

15 Ser residues were switched to Ala, termed dClk-15A. In S2

cells, dCLK-15A behaves similar to dCLK-16A, including no

observable effect of phosphatase treatment on electrophoretic

mobility and enhanced E-box dependent transcriptional activity

(Figure S3). Although phosphorylation of Ser5 might affect dCLK

function in a manner that is not revealed in the S2 cell based

assays we used, the CLK-15A protein contains the majority of

Table 1. Identification of phosphorylation sites on dCLK
produced in Drosophila S2 cells.

dCLKa

S5b

[S209,S210,S211]c

S444

S450

S487

S504

[Y607,S611]c

S645

S859

S902

S924

S934

S938

S1018

aStable cell line expressing dClk under the control of pMT-inducible promoter.
bAmino acids are numbered according to sequence of dCLK (amino acids 1–
1027), GenBank accession number NP_001014576.
cOnly one site in the bracket is phosphorylated.
doi:10.1371/journal.pgen.1004545.t001
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phosphorylation sites and should address if global phosphorylation

of dCLK plays an important role in the circadian timing system.

Two independent lines of transgenic flies harboring the dClk-15A

transgene were obtained and circadian behavior was monitored in

the Clkout genetic background (referred to as p{dClk-15A}, 2M;

Clkout and p{dClk-15A}, 6M; Clkout). In sharp contrast to flies

harboring the control version of dClk, the two independent lines of

p{dClk-15A};Clkout flies manifested generally weaker behavioral

rhythms that are approximately 1.5 hr shorter compared to their

wild-type counterparts (Table 2).

Under standard conditions of LD at 25uC, D. melanogaster
exhibits a bimodal distribution of activity with a ‘‘morning’’ and

‘‘evening’’ bout of activity centered around ZT0 and ZT12,

respectively. Although p{dClk-15A};Clkout flies manifest the

typical bimodal distribution of locomotor activity, the onset of

both the morning and evening bouts of activity were earlier

(Figure 2, compare panels B and C to A), consistent with the

shorter free-running periods. The Clkout flies only showed a

‘‘startle’’ response to the lights-on transition but no rhythmic

behavior (Figure 2E). In constant dark conditions, the downswing

in evening activity is clearly earlier in p{dClk-15A};Clkout flies, in

agreement with the shorter free-running period (Table 2, Figure 2

and S4). We also examined the locomotor behavior of flies

harboring the dClk-WT transgene in a wild-type genetic

Figure 1. Blocking phosphorylation at multiple phospho-sites on dCLK prevents global phosphorylation but does not impair
several key clock-relevant activities. (A) Schematic diagram of dCLK protein. Phosphorylation sites on dCLK identified in this study are indicated
as red vertical lines. Horizontal line at bottom indicates relative positions of amino acid residues. (B, C) S2 cells were transiently transfected with
500 ng of pMT-HA-dClk (WT) or pMT-HA-dClk-16A (16A), either singly or in combination with 500 ng of pAct-cyc-V5 or pAct-per-V5 as indicated.
Expression of dCLK was induced 24 hr after transfection by adding 500 mM CuSO4 to the medium. Cells were harvested 24 hr after induction, and
protein extracts were first subjected to immunoprecipitation using anti-HA (12CA5) antibody (B), the anti-epitope tag antibodies (V5 or HA) as
indicated on top of the blots (C). Immune complexes were directly analyzed by immunoblotting (C) or further incubated in the absence (2) or
presence (+) of l phosphatase followed by immunoblotting (B). (D, E) S2 cells were transiently co-transfected either singly with pMT-dClk-V5 (WT) and
pMT-dClk-16A-V5 (16A) (D), or in combination with increasing amount of pAct-per (E). Shown are the average values from three independent
experiments for relative E box dependent luciferase activity in the absence (2) or presence (+) of pMT-dClk-V5. *p,0.05; error bars denote SEM.
doi:10.1371/journal.pgen.1004545.g001
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background, resulting in flies with four copies of the dClk gene

(herein referred to as p{dClk-WT};+/+). The circadian period was

shortened to approximately 23 hr (Table 2 and Figure 2D), which

is well correlated with previous reports demonstrating that

increasing the copy number of dClk shortens the circadian period

of behavioral rhythms [42,43].

A hallmark property of circadian rhythms is that the period

length is very constant over a wide range of physiologically

relevant temperatures, termed temperature compensation [44]. To

investigate whether phosphorylation of dCLK might have a role in

temperature compensation, we analyzed behavioral rhythms at

three standard temperatures (i.e., 18u, 25u and 29uC). Although we

noted a decrease in rhythmicity for dClk-15A;Clkout flies at 29uC,

the periods were quite similar over the temperature range tested

(Table 2), suggesting that global phosphorylation of dCLK does

not play a major role in temperature compensation.

dCLK-15A is exclusively hypo-phosphorylated and very
abundant in flies

We examined the temporal profiles of dCLK protein by

analyzing head extracts prepared from p{dClk-WT};Clkout and

p{dClk-15A};Clkout flies in LD conditions (Figure 3A and C). dCLK-

WT protein undergoes daily changes in phosphorylation that are

consistent with earlier results probing endogenously produced dCLK;

namely, hypo- to medium- phosphorylated isoforms present during

the mid-day/early night (e.g., ZT 8 to ZT 16) and mostly hyper-

phosphorylated isoforms present in the late night/early day (e.g.,

ZT20 to ZT4) (Figure 3A) [28,29]. However, the mobility of dCLK-

15A was similar throughout a daily cycle (Figure 3A), and co-

migrated with l phosphatase treated dCLK-WT (Figure 3B). Thus,

similar to results in S2 cells, dCLK-15A exhibits little to no

phosphorylation in vivo, suggesting that the phospho-sites we

identified by mass spectrometry comprise, at the very least, a major

portion of the total phosphorylation sites found on dCLK in flies (it is

also possible that one or more of the phospho-sites we mutated are

required for phosphorylation at other sites, but this would still result in

a mainly hypo-phosphorylated dCLK protein). Intriguingly, the levels

of dCLK-15A were substantially higher compared to dCLK-WT

throughout a daily cycle. Quantification of immunoblots indicated

that the average daily levels of dCLK-15A are about 2.5 times more

than those of dCLK-WT (Figure 3C).

To examine whether the high levels of dCLK-15A proteins

results from elevated mRNA abundance, we measured dClk
transcript levels. As reported previously, although the overall daily

abundance of dCLK-WT protein is essentially constant through-

out a daily cycle, dClk-WT mRNA levels oscillate with peak

amounts attained during the late night-to-early day and reaching

trough values around ZT12 [45,46]. The daily oscillation in dClk-

15A mRNA abundance is similar to the wild-type situation and

even seemed to have lower peak levels (Figure 3D). These results

indicate that in general global phosphorylation of dCLK decreases

its stability in vivo, consistent with prior findings using S2 cells

[28,29].

To further examine the status of the clockworks, we measured

the daily profiles in per and tim transcripts and protein levels. Both

per and tim mRNA levels in p{dClk-15A};Clkout flies were

reproducibly higher, especially during the daily upswing that

occurs between ZT4 – 12 (Figure 4A and B). These result further

support the notion that dCLK levels are normally rate-limiting for

circadian transcription and suggest that despite the increased

abundance of dCLK-15A there is sufficient PER to engage in

normal repression of dCLK-15A/CYC activity. Indeed, PER

protein levels were reproducibly higher in p{dClk-15A};Clkout flies

(Figure 4C and D), consistent with the increased transcript levels.

In p{dClk-15A};Clkout flies, TIM protein levels were slightly but

reproducibly increased (Figure 4E and F). The increased daily

upswing in tim mRNA levels in p{dClk-15A};Clkout flies might

have a smaller effect on overall TIM protein levels because light

induces the rapid degradation of TIM [47], possibly limiting the

ability of TIM to accumulate during the early night prior to the

start of transcriptional feedback repression. Taken together, we

show that the stability of dCLK in flies is strongly increased by

blocking phosphorylation at one or more sites. Moreover,

augmenting the total abundance of dCLK accelerates the daily

accumulation of per/tim transcripts and increases their peak levels,

indicative of higher overall dCLK-CYC-mediated transcription.

In addition, increased in vivo transcriptional activity of dCLK-

15A may also contribute to higher dCLK-CYC-mediated

transcription, as is the case in S2 cells (Figure 1D). These results

Table 2. Behavioral analysis of p{dClk-15A}; Clkout flies following light/dark entrainment.a

Genotype Temp (6C) Numberb Tau ± S.E.M. (h) Rhythmicity (%)c Powerd

p{dClk-WT}, A;Clkout 18 30 24.060.08 66.7 39.8

p{dClk-15A}, 2M; Clkout 18 28 22.260.09 71.4 47.8

p{dClk-15A}, 6M; Clkout 18 42 22.160.12 33.3 43.0

Clkout 25 19 AR AR AR

p{dClk-WT}, A;Clkout 25 63 24.060.08 87.3 114.7

p{dClk-15A}, 2M; Clkout 25 39 22.360.07 61.5 67.4

p{dClk-15A}, 6M; Clkout 25 42 22.760.08 73.8 67.2

p{dClk-WT}, A;+/+ 25 29 23.060.07 48.3 62.8

p{dClk-WT}, A;Clkout 29 30 24.160.05 83.3 113.5

p{dClk-15A}, 2M; Clkout 29 24 22.560.5 12.5 86.4

p{dClk-15A}, 6M; Clkout 29 14 22.360.12 35.7 51

aFlies were kept at indicated temperatures (18uC, 25uC, 29uC) and exposed to 4 days of 12:12 LD followed by 7 days of DD.
bTotal number of flies that survived until the end of the testing period.
cPercentage of flies with activity rhythms having a power value of $10 and a width value of $2.
dMeasure of the strength or amplitude of the rhythm.
doi:10.1371/journal.pgen.1004545.t002
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demonstrate that dCLK phosphorylation plays a key role in setting

the amplitudes of the per mRNA and protein rhythms, molecular

oscillations that are central to the primary TTFL and circadian

speed control in Drosophila [16,48].

Flies expressing dCLK-15A manifest a defect in
behavioral synchronization to daily temperature cycles

Besides light-dark cycles, daily changes in temperature can also

synchronize (entrain) circadian rhythms in a wide variety or

organisms [49]. Prior work showed that D. melanogaster can

entrain to daily cycles of alternating 12 hr ‘warm’/12 hr ‘cold’

cycles that differ by as little as 2–3uC [50–52]. To determine if flies

expressing dCLK-15A have a defect in entraining to temperature

cycle, flies were kept in constant darkness, exposed to 12 hr:12 hr

temperature cycles of 24uC:29uC (TC) and locomotor activity

rhythms analyzed (Table 3 and Figure 5). The daily distribution of

activity in p{dClk-15A};Clkout flies is strikingly different compared

to the wild-type control. As previously observed for wildtype

strains of D. melanogaster entrained to daily temperature cycles

[50–52], p{dClk-WT};Clkout flies exhibit the classic ‘‘anticipatory’’

rise in activity just prior to the low-to-high and high-to-low

temperature transitions, similar to what is observed in light-dark

cycles around ZT0 and ZT12 (Figure 5 and S5; there is a ‘‘startle’’

response at the transition from low-to-high temperature that is also

observed in Clkout flies, analogous to the transient burst in activity at

lights-on in a LD cycle). In sharp contrast, during the beginning of the

temperature entrainment regime although p{dClk-15A};Clkout flies

also manifest two activity peaks, they occur much earlier at around

the middle of the warm- and cryo-phases (Figure 5B).

Interestingly, while the timing of the ‘‘startle’’ response at the

transition from low-to-high temperature remained constant in

p{dClk-15A};Clkout flies, the timing of the major activity peak

occurring during the mid-warm phase appeared to progressively

advance on subsequent days in TC (Figure 5B). Analysis of

individual activity records also confirmed this trend (Figure 5E).

The abnormal behavioral pattern under temperature cycles for

p{dClk-15A};Clkout flies was also observed when flies were exposed

to a temperature cycle after first treating them with constant light for

Figure 2. (A–E) The p{dClk-15A};Clkout flies manifest short period behavioral rhythms. Each panel represents the average activity of male
flies for a given genotype during the third and fourth day of 12 hr light:12 hr dark entrainment (LD) followed by 4 days of constant darkness (DD).
White vertical bars represent locomotor activity during light phase and black vertical bars represent locomotor activity during dark phase in LD. Gray
vertical bars represent locomotor activity during the subjective light phase in DD. White horizontal bars and black horizontal bars below each panel
indicate 12 hr periods of lights-on and lights-off, respectively. Arrowheads indicate the times in a daily cycle when trough levels of activity were
attained following the evening bout of activity. Standard error of the mean is indicated as dots above each bars.
doi:10.1371/journal.pgen.1004545.g002
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6 days to abolish the circadian timing system (Figure S6). Thus, the

defective entrainment of p{dClk-15A};Clkout flies to TC is not

dependent on the status of the clock at the time that the temperature

entrainment was initiated. Furthermore, although the main activity

bout in p{dClk-15A};Clkout flies advanced on subsequent days

during TC, the rate of advancement was clearly greater during free-

running conditions following TC (Figure S5), suggesting partial

entrainment during TC. Following entrainment to TC, the free-

running period of dCLK-15A producing flies is about 1.5 hr shorter

compared to the wild type dCLK-WT control (Table 3 and Figure

S5). The faster running clock in p{dClk-15A};Clkout flies during

free-running conditions after exposure to TC is consistent with

results obtained following entrainment to LD (Table 2). Thus, it

appears that when exposed to daily temperature cycles p{dClk-

15A};Clkout flies can adopt some alignment with the entraining

conditions, albeit without a normal phase relationship, but that this

entrainment is weak and the flies partially free-run at their shorter

endogenous periods, leading to progressive advances in their

behavioral rhythm relative to the 24 hr entraining regime. Although

not as dramatic, the timing of the warm-phase activity bout in

p{dClk-WT};+/+ flies also advanced during TC (Figure 5F),

whereas this was not the case for p{dClk-WT};Clkout flies

(Figure 5D). In addition, the clock in p{dClk-WT};+/+ runs about

1 hr faster than the control situation, strongly suggesting that

augmenting dCLK levels (Figure S7) impairs the ability of the

circadian timing system to entrain to daily temperature cycles.

Temperature cycles can entrain behavioral rhythms in Dro-
sophila exposed to constant light (LL) despite the fact that LL

normally abolishes circadian rhythms [51,53,54]. Intriguingly,

constant light exposure rescues the ability of the p{dClk-

15A};Clkout flies to maintain a more stable 24-hr phase

relationship with the temperature cycle (Figure 5, panels G–J),

further supporting the notion that entrainment to temperature but

not light is specifically impaired in these flies. Taken together,

these data suggest that in the absence of light, the dCLK

phosphorylation program is required for the proper entrainment

of behavioral rhythms to daily temperature cycles and reveal an

unanticipated role for a central clock transcription factor in

modality-specific entrainment.

Molecular oscillations in p{dClk-15A};Clkout flies differ
from those in control flies after prolonged exposure to
temperature cycles

In p{dClk-WT};Clkout flies, hypo/intermediate-phosphorylated

dCLK isoforms are present throughout the thermo phase in TC

(Figure 6A, lane 2 and 3), while hyper-phosphorylated dCLK

isoforms are only observed during the latter half of the cryo phase

(Figure 6A, lane 5 and 6). This temporal pattern in dCLK

phosphorylation is similar to that observed in LD cycles and is

consistent with prior work showing that the circadian clock

mechanism in Drosophila can be synchronized by daily temper-

Figure 3. The levels of dCLK are substantially higher and hypo-phosphorylated at all times of the day in p{dClk-15A};Clkout flies. (A–
C) Adult flies of the indicated genotype were collected at different times of day (ZT), head extracts prepared and directly analyzed for
immunoblotting (A) or processed for immunoprecipitation with anti-V5 Ab (B). b-Actin (ACTIN) served as a loading control. Immune complexes were
further incubated in the absence (2) or presence (+) of l phosphatase and immunoblotted with anti-V5 antibody, as indicated (B). Filled arrowheads
denote hyper-phosphorylated isoforms of dCLK and open arrowhead denotes hypo-phosphorylated isoforms of dCLK (A). (C) Relative levels of dCLK
were determined by measuring staining intensities using image J software. Shown are the average values from three independent experiments. (D)
Total RNA was extracted from fly heads, and quantitative real-time RT-PCR was performed to measure the relative levels of dClk transcripts. Shown are
the average values from three independent experiments using p{dClk-15A}, 6M;Clkout flies. Error bars denote SEM.
doi:10.1371/journal.pgen.1004545.g003
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ature cycles [50,51]. As expected and similar to results using LD

cycles, dCLK-15A attains higher overall daily levels and does not

exhibit significant phosphorylation in p{dClk-15A};Clkout flies

exposed to temperature cycles (Figure 6A).

Since p{dClk-15A};Clkout flies display altered entrainment to

TC cycles that becomes progressively more abnormal with

prolonged duration, we tested whether the molecular clock might

also exhibit a more defective status with increasing time by

measuring the levels of the tim mRNA at both early (e.g., day 3)

and later (e.g., day 6) days of exposure to TC. We chose tim
mRNA levels as a surrogate marker for clock dynamics because it

normally has a robust high amplitude rhythm (Figure 4A, B; [55]),

facilitating measuring changes in molecular oscillations over the

course of several days. Although the daily average levels in tim
mRNA were higher in p{dClk-15A};Clkout flies on day three of

TC compared to the wild-type situation (Figure 6B), consistent

with findings in LD (Figure 4B), both genotypes showed similar

and robust cycling patterns. However, by day six of TC, the tim

Figure 4. Higher amplitude rhythms of per mRNA and protein in p{dClk-15A};Clkout flies. Adult flies of the indicated genotype were
collected at the indicated times (ZT) during a day and total RNA (A, B) or protein extracts (C to F) prepared. (A, B) Quantitative real-time RT-PCR was
performed to measure the relative levels of per (A) or tim (B) transcripts. Shown are the average values from three independent experiments. (C to F)
Immunoblotting was performed using anti-PER (Rb1) or anti-TIM (TR3) Ab. O-GlcNAc transferase (OGT) served as a loading control. Relative levels of
PER and TIM proteins were determined by measuring band intensities of immunoblot using image J software (D, F). Shown are the average values
from three independent experiments using p{dClk-15A}, 6M;Clkout flies. *p,0.05; error bars denote SEM.
doi:10.1371/journal.pgen.1004545.g004

Phosphorylation and Modality-Specific Circadian Entrainment

PLOS Genetics | www.plosgenetics.org 8 August 2014 | Volume 10 | Issue 8 | e1004545



mRNA oscillation pattern in p{dClk-15A};Clkout flies became

significantly different from that observed for p{dClk-WT};Clkout

flies (Figure 6C). Most notably, while tim mRNA cycling still

manifested high-amplitude cycling in p{dClk-WT};Clkout flies on

day six of TC, tim mRNA levels during the upswing phase were

significantly higher in p{dClk-15A};Clkout flies, resulting in an

abnormal cycling pattern. Although we did not establish a causal

relationship between the observed loss in normal tim mRNA

cycling and the defective behavioral entrainment in p{dClk-

15A};Clkout flies during TC, the results clearly show that

prolonged exposure to TC is not only associated with increasingly

altered phasing of rhythms at the behavioral level (Figure 5) but

also at the molecular level.

As with behavioral rhythms prior work showed that circadian

molecular cycles can be synchronized to TC in the presence of

constant light [51,53]. In agreement with the observation that

constant light exposure enabled p{dClk-15A};Clkout flies to more

robustly synchronize to temperature cycles (Figure 5), daily

rhythms in the levels of tim mRNA for both genotypes were quite

similar even after six days in constant light during TC (Figure 6D

and E), indicating the clock in p{dClk-15A};Clkout flies is

functioning in a more wild-type manner under these conditions.

Taken together, while this molecular analysis is of limited scope, it

suggests that constant light exposure facilitates the ability of

p{dClk-15A};Clkout flies to entrain to TC by enhancing normal

clock function.

Discussion

Phosphorylation of clock proteins plays diverse roles in

circadian oscillatory mechanisms by regulating numerous aspects

of clock protein metabolism/activity, including time-of-day

dependent changes in stability, transcriptional activity and

subcellular localization [10–12]. Although dCLK, the master

transcription factor in the Drosophila circadian clock [43,56],

undergoes daily changes in phosphorylation, the physiological role

of dCLK phosphorylation was not clear. As a means to address

this issue, we first identified phosphorylation sites on dCLK

purified from cultured Drosophila S2 cells (Table 1 and Fig-

ure 1A). To examine the in vivo significance of dCLK phosphor-

ylation, we generated transgenic flies expressing dCLK-15A

wherein 15 serine residues that were identified as sites (or possible

sites) of phosphorylation were switched to alanine, and examined

circadian behavior in a Clkout genetic background. Our results

indicate that global phosphorylation of dCLK is an important

aspect of setting clock speed by regulating the daily levels and/or

activity of dCLK. This is consistent with earlier work suggesting

dCLK is the rate-limiting component in the central transcription-

al/translational feedback loop (TTFL) in the Drosophila clock

mechanism, and that increasing the levels of dCLK lead to shorter

behavioral periods [5,42,43]. A surprising finding is that entrain-

ment to daily temperature cycles but not light-dark cycles are

highly dependent on dCLK phosphorylation. These results suggest

a novel role for phosphorylation in circadian timing systems;

namely, the effective strength of an entraining cue can be

modulated by adjusting the dynamics of the TTFL via controlling

the levels/activity of a master circadian transcription factor (see

below).

In this study, we show that dCLK undergoes multi-site

phosphorylation. Among the phospho-sites identified, seven serine

residues are situated immediately N-terminal to a proline,

indicating a major role for the CMGC group of kinases. Indeed,

studies using cultured S2 cells suggested that dCLK is a potential

target of several distinct CMGC kinases [32]. More recent work

also identified the pro-directed kinase NEMO as a dCLK-relevant

kinase [27]. Ongoing work is aimed at identifying the kinases

responsible for targeting the different phospho-sites on dCLK. It

should be noted that in this study we mapped phosphorylation

sites on dCLK expressed in S2 cells, which when resolved by SDS-

polyacrylamide gel electrophoresis is mainly observed as two

major electrophoretic mobility bands corresponding to non/hypo-

phosphorylated isoforms and an ‘intermediate’ more highly

phosphorylated slower migrating species [29]. Although DBT is

endogenously expressed in S2 cells, the addition of exogenous

DBT and/or the inhibition of protein phosphatases leads to the

detection of hyper-phosphorylated isoforms of dCLK in S2 cells

[29]. Thus, it is likely that we did not identify all the phospho-sites

on dCLK. However, we cannot rule out the possibility that there

were minor levels of hyper-phosphorylated dCLK in our

preparations that were above the detection limit for phospho-site

mapping by mass spectrometry. Irrespective, the phospho-sites

that we identified in S2 cultured cells make a clear contribution to

the daily dCLK phosphorylation program in flies and contribute

to the circadian timing system.

Elimination of phosphorylation sites from dCLK (dCLK-15A)

leads to significant increases in the overall daily levels of dCLK in

flies, which is well correlated with previous reports in S2 cells

showing that hyper-phosphorylated dCLK is sensitive to degra-

dation [28,29]. In general, global phosphorylation appears to

reduce the stabilities of clock proteins by generating one or more

phospho-degrons that are recognized by E3 ubiquitin ligases,

which ultimately leads to the accelerated degradation of the

phosphorylated isoforms via the proteasome pathway [13]. The

E3 ligase termed CTRIP appears to directly regulate the levels of

dCLK (and possibly PER), although the role of dCLK phosphor-

ylation in this mechanism, if any, is not clear [57]. When assayed

in S2 cells the stability of dCLK-16A was similar to that of dCLK-

WT (e.g., Figure 1 and Figure S2). Because differences in

Table 3. Behavioral analysis of p{dClk-15A}; Clkout flies following temperature cycles.a

Genotype Numberb Tau ± S.E.M. (h) Rhythmicity (%)c Powerd

p{dClk-WT}, A;Clkout 38 23.760.12 73.7 122.9

p{dClk-15A}, 2M; Clkout 8 21.960.13 50 83.4

p{dClk-15A}, 6M; Clkout 14 22.060.27 35.7 69.5

p{dClk-WT}, A;+/+ 37 23.160.67 59.5 72.2

aFlies were kept in constant darkness and exposed to 12 hr:12 hr temperature cycles of 24uC:29uC for 9 days and followed by 7 days of constant 24uC.
bTotal number of flies that survived until the end of the testing period.
cPercentage of flies with activity rhythms having a power value of $10 and a width value of $2.
dMeasure of the strength or amplitude of the rhythm.
doi:10.1371/journal.pgen.1004545.t003
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Figure 5. Impaired behavioral entrainment of p{dClk-15A};Clkout flies in daily temperature cycles. Adult male files of the indicated
genotype were entrained in 12 h:12 h temperature cycles of 24uC:29uC in the absence (A–F) or presence (G–J) of constant light. (A–C, G, H) Each
panel represents the daily average activity beginning on the third day of TC followed by 7 consecutive days. Orange vertical bars represent locomotor
activities during the thermo phase and black vertical bars represent locomotor activities during the cryo phase. Red and blue horizontal bars indicate
thermo- and cryo-phases, respectively. (D–F, I, J) Red and blue shades indicate thermo-and cryo-phases, respectively. The vertical black bars on each
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transcript levels cannot explain the significantly higher levels of

dCLK-15A in flies compared to dCLK-WT (Figure 3), it is almost

certain that dCLK-15A is a more stable protein in clock cells.

Thus, it appears that S2 cells do not fully recapitulate the in vivo
role of phosphorylation on dCLK degradation. If we did miss

mapping some sites on hyper-phosphorylated dCLK that are

critical for regulating stability it is possible that these sites can still

be phosphorylated on dCLK-15A expressed in S2 cells but not in

flies. For example, hyper-phosphorylation of dCLK might depend

on prior phosphorylation at one or more of the 15 phospho-sites

we identified, and this dependency might be more strict in flies

compared to the S2 cell over-expression system. Hierarchical

phosphorylation has been demonstrated for other clock proteins,

such as Drosophila PER and mammalian CLK [15,37,40]. Future

work will be required to determine if there are other phospho-sites

besides those we identified that regulate dCLK stability in flies.

Figure 6. Molecular rhythms in p{dClk-15A};Clkout flies show increased alterations after prolonged entrainment to temperature
cycles. Adult flies of the indicated genotype were entrained in 12 hr:12 hr of 24uC:29uC temperature cycle in the absence (A–C) or presence of light
(D, E). During the third (A, B, D) and sixth day (C, E) of TC, flies were collected and protein (A) or RNA (B–E) was extracted from fly heads. Protein
extracts were analyzed by immunoblotting using anti-V5 Ab to probe dCLK. Quantitative real-time RT-PCR was performed to measure the relative
levels of tim mRNA. Shown are the average values from three independent experiments using p{dClk-15A}, 6M;Clkout flies. *p,0.05; error bars denote
SEM. Red horizontal bars represent thermo phase, blue horizontal bars represent cryo phase, black horizontal bars represents constant dark
conditions, and white horizontal bars represents constant light conditions.
doi:10.1371/journal.pgen.1004545.g006

row of the actogram depict fly activity (measured in 30 min intervals). HD, hash density of the actogram (for example, HD = 10 signifies that 10
activity events are required to produce a hash mark). To better visualize rhythmic behavior, each row of an actogram was double plotted. To better
visualize the progressive advancement of the main activity bout in p{dClk-15A};Clkout flies, a vertical line was drawn across the activity offsets.
doi:10.1371/journal.pgen.1004545.g005
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Besides regulating the stability of core clock transcription

factors, phosphorylation modulates trans-activation potential

[36,37,58–61]. dCLK-15A expressed in S2 cells exhibited normal

binding to CYC (and PER) but exhibits more potent transcrip-

tional activity, at least in the context of a simple E-box driven

expression (Figure 1D). Consistent with this, the levels of dper and

tim mRNAs in p{dClk-15A};Clkout flies are higher compared to

the control situation (Figure 4A, B). Of course, phosphorylation

also affects the levels of dCLK-15A in flies, so at this stage it is not

possible to determine how much the increased per/tim transcript

levels are due to changes in the levels or activity of dCLK-15A.

Nonetheless, our results strongly suggest that in wild-type flies the

levels and/or activity of dCLK act in a rate-limiting fashion during

the daily accumulation phase of per/tim transcripts and possibly

other targets. In addition, the phospho-sites that we identified do

not seem to be play a major determinant in feedback repression by

PER and associated factors. Strong repression was observed in S2

cells for the dCLK-15A version (Figure 1E) and the normal daily

downswing in per/tim levels occurred in p{dClk-15A};Clkout flies

(Figure 4A and B). However, it is possible that we missed some

phospho-sites that more specifically regulate the transcriptional

activity of dCLK.

At the behavioral level, p{dClk-15A};Clkout flies exhibit short

period rhythms, consistent with prior work showing that increasing

the dosage of dClk quickens the pace of the clock [42,43]. In light-

dark cycles, p{dClk-15A};Clkout flies maintain a stable phase

relationship with the entraining environment, displaying the

typical anticipatory bimodal activity pattern (Figure 2). Moreover,

in a daily light-dark cycle the timing of the morning and especially

evening peak of activity is shifted in flies with different endogenous

periods, appearing earlier in fast clocks and later in slow clocks

[52]. Indeed, the p{dClk-15A};Clkout flies follows this trend as the

evening (and morning) bout of activity in LD is earlier compared

to control flies (Figure 2). Together, these results indicate that

although global phosphorylation of dCLK is an important

determinant in setting clock speed, it plays little to no role in

photic entrainment.

Surprisingly, the elimination of phosphorylation sites on dCLK

strongly influences circadian behavior in daily temperature cycles

(Figure 5). Temperature cycles with amplitudes of only 2u to 3uC
robustly synchronizes circadian rhythms in Drosophila and other

organisms [51,52,62–66]. When exposed to temperature cycles of

24uC/29uC, control p{dClk-WT};Clkout flies manifested the typical

bimodal activity pattern with bouts of activity anticipating the two

temperature transition points, similar to that occurring during

entrainment to LD cycles (Figure 5A and S5A). However, even

during the first days in TC, p{dClk-15A};Clkout flies already exhibit

a very abnormal phase alignment with ‘morning’ and ‘evening’

bouts of activity that occur much earlier, around the middle of the

cryo- and thermal-phases, respectively (Figure 5B and S5B, C). The

advanced timing of the morning and evening bouts of activity is

much earlier than would be expected based solely on the 1.5 hr

shorter circadian period in p{dClk-15A};Clkout flies (Table 3). That

entrainment to TC is highly defective in p{dClk-15A};Clkout flies is

even more dramatically underscored by the progressive advances in

the evening component of activity on subsequent days (Figure 5).

Although not as apparent, flies with increased dosage of dClk
(p{dClk-WT};+/+ flies) also showed progressively earlier evening

activity bouts in thermal cycles (Figure 5C and F) but not LD cycles,

further suggesting that increased levels/activity of dCLK are

causally linked to the inability of maintaining a stable phase

relationship with TC. Because the timing of the evening activity in

both p{dClk-15A};Clkout and p{dClk-WT};+/+ flies occurs pro-

gressively earlier during TC, our results strongly suggest that these

flies are only weakly synchronized to TC and are partially free-

running at their faster endogenous periods.

In trying to determine why p{dClk-15A};Clkout flies might

exhibit a defect in temperature entrainment but not photic

entrainment, it is important to note that several lines of evidence

support the notion that light is a more potent synchronizer of the

clock in D. melanogaster compared to temperature entrainment,

including the use of out-of-phase light/dark and temperature

cycles [4]. In addition, lowering the levels/function of the key

photic entrainment photoreceptor CRYPTOCHROME (CRY)

increases the ability to synchronize to TC [67], suggesting the

dominance of light input under normal conditions. Also, it takes

many more days to shift the phase of the clock via TC compared

to LD cycles [50]. The overall strength of light in D. melanogaster
entrainment is not surprising given the ability of light pulses to

evoke the rapid degradation of TIM and the great sensitivity of

Drosophila CRY/TIM to light [68].

Indeed, constant light rescues the ability of TC to stably entrain

behavioral rhythms in p{dClk-15A};Clkout (Figure 5, G–J),

presumably by maintaining the clock in a more normal state

(Figure 6). Intriguingly, prior work showed a similar pattern for

the classic perS and perL mutants that display short (19 hr) and

long (29 hr) endogenous rhythms, respectively [66]. That is, while

wild-type flies entrain to TC in DD or LL, but perS and perL flies

only entrain to TC in LL [66]. This suggests that alterations in

the PER protein rhythm might preferentially disrupt thermal

entrainment. In the case of p{dClk-15A};Clkout flies the

amplitude of the PER abundance cycle is increased reaching

higher peak values (Figure 4). Clocks with higher amplitudes are

more resistant to entrainment by weak zeitgebers [69–71].

Relevant to this discussion, reducing CLOCK activity in mice

decreased the amplitude of the circadian pacemaker and per gene

expression, enhancing the ability to evoke phase shifts in

behavioral rhythms [72,73]. Thus, a simple model for our results

is that the increased per mRNA and protein rhythms in p{dClk-

15A};Clkout flies leads to an increase in pacemaker amplitude

minimizing their ability to synchronize to weaker entraining

signals such as TC. However, it should be noted that higher

amplitude rhythms of cycling mRNAs are highly suggestive but

not definitive proof of an increase in oscillator. A standard

approach to infer the relative amplitude of a clock is to increase

the strength of the entraining signal, which should enhance its

entrainment potential [69,70,74].

Although a change in the amplitude of the clock in p{dClk-

15A};Clkout flies offers a plausible explanation for the preferential

defect in temperature entrainment, there are other possibilities.

For example, CRY-positive clock cells are more important for

entraining to LD cycles, whereas CRY-negative clock cells are

more important for TC entrainment [4]. Thus, dCLK-15A could

have preferential effects in CRY-negative cells to lessen their

contribution, impairing TC entrainment. Another more specula-

tive idea is that the phosphorylation of dCLK can act as a thermal

sensor, although this would be specific to temperature entrainment

as temperature compensation appears normal in the p{dClk-

15A};Clkout flies (Table 2). Clearly, future studies will be required

to better address the mechanism underlying the impaired

synchronization of p{dClk-15A};Clkout flies to temperature cycles.

However, our findings reveal that phosphorylation of a key rate-

limiting circadian transcription factor is critical for entrainment to

daily temperature cycles. Indeed, the CLOCK protein in zebrafish

[65] was shown to be regulated by temperature, suggesting a

universal role for CLOCK in the adaptation of animal circadian

clocks to thermal cues.
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Materials and Methods

Plasmids for tissue culture
The pMT-dClk-V5, pMT-HA-dClk-V5, pMT-HA-dClk, pAct-

per, pAct-per-V5 and pMT-dbt-V5 plasmids were described

previously [20,29,31]. pMT-dClk15A-V5 and pMT-dClk16A-V5

were generated by serially changing codons for Ser to those of Ala

by using a Quick Change site-directed mutagenesis kit (Strata-

gene). All final constructs were verified by DNA sequencing.

Identification of dCLK phosphorylation sites by mass
spectrometry

Hygromycin-resistant stable Schneider 2 (S2) cell lines express-

ing pMT-HA-dClk-V5 were established for dCLK purification.

dClk expression was induced by adding 500 mM CuSO4 to the

medium and cells were harvested 24 hr post-induction. 200 ml of

culture (36106 cells/ml) was used and harvested cells were lysed

using modified-RIPA buffer (50 mM Tris-HCl [pH 7.5], 150 mM

NaCl, 1% NP-40, 0.25% Sodium deoxycholate) with the addition

of a protease inhibitor cocktail (Roche) containing 1 mM EDTA,

25 mM NaF, and 1 mM Na2VO3. To extracts, anti-V5 antibody

(Invitrogen) was added and incubated overnight with gentle

rotation at 4uC followed by the addition of Dynabeads Protein A

(Invitrogen) with a further overnight incubation. Beads were

collected using DynalMPC. dCLK was eluted with modified

Laemmli buffer (150 mM Tris-HCl [pH 6.8], 6 mM EDTA, 3%

SDS, 30% Glycerol) supplemented with 50 mM reducing agent

TCEP (Calbiochem) at 65uC for 20 min. Alkylation was

performed by adding 0.5M IAA (iodoacetamide) for 20 min at

room temperature in the dark. The eluate was resolved using 8%

SDS-PAGE, and all the detectable dCLK bands of differing

electrophoretic mobility excised (which under the conditions used

was mainly the ‘intermediate’ phosphorylated band), subjected to

protease digestion and analyzed by mass spectrometry. Mass

spectrometry was performed as described in Schlosser et al. 2005.

Data analysis was performed as described previously [41].

Luciferase assay
S2 cells were obtained from Invitrogen and transfected using

effectene following the manufacturer’s protocol (Qiagen). Lucifer-
ase (luc) reporter assay was performed as described previously

[29,75]. Briefly, S2 cells were placed in 24-well plates and co-

transfected with 0–100 ng pMT-dClk-V5 and pMT-dClk-16A-V5

along with 10 ng of perEluc, 30 ng of pAct-b-gal-V5/His as

indicated. dPER mediated repression of dCLK dependent

transactivation was measured by transfecting 0–20 ng of pAct-

dper together with 2 ng of pMT-dClk-V5 or pMT-dClk-16A-V5.

One day after transfection, dClk expression was induced with

500 mM CuSO4 (final in the media), and after another day cells

were washed in phosphate buffered saline (PBS), followed by lysis

in 300 ml of Reporter Lysis Buffer (Promega). Aliquots of cell

extracts were assayed for b-galactosidase and luciferase activities

using the Luciferase Assay System and protocols supplied by the

manufacturer (Promega).

Transgenic flies
Clkout flies were generated in one of our laboratories (P.E.H.) as

follows: 5.2 kb deletion of dClk exon 1 and upstream sequences

was generated by FLP-mediated recombination between FRT sites

in the pBac Clk[f06808] and pBac Clk [f03095] [76,77]. Flippase

(FLP)-induced recombination was induced by a daily 1 h heat-

shock at 37uC given to hsFLP;;f06808/f03095 larvae and pupae.

Three recombinants were recovered, and each produced a

deletion rather than a duplication of intervening dClk sequences.

The remaining pBac insert was excised via pBac transposase

induced transposition resulting in white-eyed flies harboring the

deletion [78]. A DNA fragment containing the deleted sequences

was amplified using primers situated upstream of the f03095

insertion site (59 CGGAATATTGGACAACAAACAG 39) and

downstream of the f06808 insertion site (59CAGCAGTG-

GAATCTTAATACAG 39), and sequenced to confirm the

endpoints of the deletion. This new dClk deletion allele was

named Clkout.

To generate transgenic flies that produce wild-type dCLK

tagged with V5 at the C-terminus, dClk-containing P[acman]

transgene was generated using recombineering-mediated gap

repair [79]. To prepare the P[acman] vector, homology arms

were amplified from genomic DNA with primers clkLA-f

(ATGTGGCGCGCCGCCCCAAAAATCCATAAATGCT) and

clkLA-r (GTGTTGGATCCAGGGGTGTTATAGAGAGGGACA)

for the left arm and clkRA-f (GTGTGGATCCGCAGAGTGAAAC-

CTGTGCAA) and clkRA-r (ATATATGTGCGGCCGCTCCC-

GGTTATGAGTTTTTCG) for the right arm via PCR, and cloned

as AscI-BamHI and BamHI-NotI fragments into AscI and NotI

digested attB-P[acman]-ApR vector (modified to remove the SphI site)

to form attB-P[acman]ClkLARA. Recombination-competent SW102

cells harboring BAC clone RP98 5K6 (BACPAC Resource Center,

Oakland, Ca, USA), which contains the dClk genomic region, were

transformed with the attB-P[acman]ClkLARA vector (linearized with

BamHI). Recombinants containing 15.5 kb of genomic sequence

beginning ,8 kb upstream of the dClk translation start and ending

,2.5 kb downstream of the dClk stop codon were verified by PCR and

sequencing and termed attB-P[acman]-Clk. To introduce a V5 epitope

tag at the C-terminus of the dClk open reading frame (ORF), a 39

genomic fragment of dClk (from 351 bp upstream to 1580 bp

downstream of the translation stop) was cloned into pGEM-T vector

(Promega, Madison, WI). Sequences encoding V5 were introduced in-

frame immediately upstream of the dClk stop codon using the

Quickchange site directed mutagenesis kit (Stratagene, La Jolla, CA) to

create pGEM-T-dClk39V5. The 39 dClk genomic fragment in attB-

P[acman]- dClk was swapped with the 39 fragment in pGEM-T-

dClk39V5 using SphI and NotI to form attB-P[acman]- dClkV5. This

transgene was inserted into the VK00018 attP site on chromosome 2

via PhiC31-mediated transgenesis [79,80].

Transformation vector containing a genomic dClk wherein the

codons for the 15 identified phospho-serine were switched to those

for alanine was generated in multiple stages as follows: A genomic

dClk sub-fragment from NheI to SphI site was isolated from

P[acman]-dClk-V5 and subcloned into pSP72 vector where the

multi-cloning sites were mutagenized to introduce a NheI site, and

named this plasmid as pSP72-dClk(NheI/SphI). Next, we obtained

a dClk sub-fragment spanning from the NcoI to SphI sites by

restriction digestion of pSP72-dClk(NheI/SphI), subcloned the

released fragment into pSP72 where the multi-cloning sites were

mutagenized to introduce a NcoI site, and named this plasmid as

pSP72-dClk(NcoI/SphI). We performed serial site directed muta-

genesis with pSP72-dClk(NcoI/SphI) and finally made pSP72-

dClk(NCoI/SphI)-S11A wherein codons for the serine residues at

amino acids 209, 210, 211, 444, 450, 487, 504, 611, 645, 859, 902

on dCLK were all switched to those for alanine residues

[(GenBank accession number NP_001014576)]. We purified the

dClk(NCoI/SphI)-S11A insert by restriction enzyme digestion of

pSP72-dClk(NCoI/SphI)-S11A and replaced the wild-type

dClk(NcoI/SphI) insert, generating pSP72-dClk(NheI/SphI)-

S11A. Next, a more 39 genomic dClk sub-fragment from the

SphI to NotI sites was subcloned into pSP72 vector where the

multi-cloning sites were mutagenized to include NotI and NheI

sites, and named this plasmid as pSP72-dClk(SphI/NotI). We
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performed serial site directed mutagenesis with pSP72-dClk(SphI/

NotI) and made pSP72-dClk(SphI/NotI)-S4A wherein codons for

the serine residues at amino acids 924, 934, 938, 1018 were

switched to those for alanine. Finally, the genomic dClk(SphI/

NotI)-S4A fragment was ligated with pSP72-dClk(NheI/SphI)-

S11A generating pSP72-dClk(NheI/NotI)-S15A, and then

dClk(NheI/NotI)-S15A fragment was switched with wild-type

dClk(NheI/NotI) fragment in pacman-dClk-V5 plasmid yielding

P[acman]-dClk-15A-V5. Transgenic flies were generated by

BestGene Inc. (CA, USA). P[acman]-dClk-15A-V5 transformation

vector was injected into flies carrying the VK00018 attP docking

site on the second chromosome for site-specific integration [79].

Two independent germ-line transformants bearing the dClk-15A-

V5 transgene in a wild-type background were obtained and then

crossed into a Clkout genetic background to yield dClk-15A-

V5;Clkout.

Behavioral assays
The locomotor activities of individual flies were measured as

previously described using the Drosophila Activity Monitoring

system from Trikinetics (Waltham, MA). Young adult flies were

used for the analysis and exposed to 4 days of 12 h light followed

by 12 h dark [where zeitgeber time 0 (ZT0) is defined as the time

when the light phase begins] at 25uC and subsequently kept in

constant dark conditions (DD) for 7 days. Temperature entrain-

ment (temperature cycle, TC) was performed in constant dark

condition and in some cases, in the presence of constant light

(.2000lux). Temperature cycles were 12 h of 24uC (cryo phase)

followed by 12 h of 29uC (thermal phase) (where ZT0 is defined as

the time when the cryo phase begins) for 4 days and subsequently

kept at 24uC for 7 days. The locomotor activity data for each

individual fly was analyzed using the FaasX software (Fly Activity

Analysis Suite for MacOSX), which was generously provided by F.

Rouyer (CNRS, France). Periods were calculated for each

individual fly using chi-square periodogram analysis and pooled

to obtain a group average for each independent transgenic line or

genotype. Power is a quantification of the relative strength of the

rhythm during DD. Individual flies with a power $10 and a

‘width’ value of 2 or more (denotes number of peaks in 30-min

increments above the periodogram 95% confidence line) were

considered rhythmic. Actogram represents the locomotor activity

data throughout the experimental period. Vertical bars in the

actogram represent absolute activity levels for each 30 min

intervals averaged for each given genotypes of flies. The strength

of this measurement can be manipulated by using the function

called hash density, which represent the number of times fly need

to make beam crossing to be registered as one vertical bar. The

hash density of the actogram was varied for better comparison

depending on the activity levels of given genotypes of flies.

Immunoblotting and immunoprecipitation
Protein extracts from S2 cells were prepared as previously

described [31]. Briefly, the cells were lysed using modified-RIPA

buffer (50 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1% NP-40,

0.25% Sodium deoxycholate) with the addition of protease

inhibitor cocktail (GeneDEPOT) and phosphatase inhibitor

cocktail (GeneDEPOT). For detection of dCLK recombinant

protein, extracts were obtained using RIPA buffer 25 mM Tris-

HCl [pH 7.5], 50 mM NaCl, 0.5% Sodium deoxycholate, 0.5%

NP40, 0.1% SDS) and were sonicated briefly as previously

described [29]. Flies were collected by freezing at the indicated

times in light-dark (LD) or temperature cycles (TC) and total fly

head extracts prepared using modified-RIPA buffer or RIPA

buffer with sonication (for dCLK). Extracts were resolved by 5%

polyacrylamide gels or by 3–8% Tris-acetate Criterion gel (Bio-

Rad) in some case for dCLK, transferred to PVDF membrane

(Immobilon-P, Millipore), and immunoblots were treated with

chemiluminescence (ECL, Thermo). Primary antibodies were used

at the following dilutions; anti-V5 (Invitrogen), 1:5000; anti-HA

(12CA5, Roche), 1:2000; anti-OGT (H-300, Santa Cruz), 1:3000;

anti-PER, (Rb1) 1:3000; anti-TIM (TR3), 1:3000; anti-dCLK

(GP208) 1:3000. Quantification of band intensity was performed

using image J software.

For immunoprecipitation, cell extracts from S2 cells were

prepared and 3 ml of anti-HA (12CA5) or anti-V5 antibody was

added depending on the target protein sought, and incubated for

overnight at 4uC with gentle rotation. The next day, 20 ml of

Gammabind-sephase bead (GE healthcare) was added with a

further incubation of 3 hr at 4uC. The immune complexes were

eluted with 1X SDS-PAGE sample buffer. For l- phosphatase

treatment, the purified immune complexes were resuspended in l
protein phosphatase buffer (50 mM Tris-HCl [pH 7.5], 0.1 mM

EDTA, 5 mM DTT, 0.01% Triton X-100, 2 mM MnCl2, and

0.1 mg/ml bovine serum albumin), divided into two equal

aliquots. One aliquot of bead was treated with 200 units of l
protein phosphatase (NEB) and no addition was made to the other

aliquot. Both aliquots were incubated for 30 min at 30uC with

occasional shaking, and immune complexes analyzed by immu-

noblotting.

Quantitative real time RT-PCR
Total RNA was isolated from frozen heads using QIAzol lysis

reagent (QIAGEN). 1 mg of total RNA was reverse transcribed

with oligo-dT primer using Prime Script reverse transcriptase

(TAKARA) and real-time PCR was performed in Corbett Rotor

Gene 6000 (Corbett Life Science) using Quantitect SYBR Green

PCR kit (Qiagen). Primer sequences used here are as follows; dper
forward: 59-GACCGAATCCCTGCTCAATA-39; dper reverse:

59-GTGTCATTGGCGGACTTCTT-39; tim forward: 59-CCCT-

TATACCCGAGGTGGAT-39; tim reverse: 59-TGATCGAGT-

TGCAGTGCTTC-39; dClk forward: 59-CAGCCGCAATTCA-

ATCAGTA-39; dClk reverse: 59-GCAACTGTGAGTGGCT-

CTGA-39. We also included primers for the noncycling mRNA

coding for CBP20 as previously described, and sequences are as

follows; cbp20 forward: 59-GTCTGATTCGTGTGGACTGG-39;

cbp20 reverse: 59-CAACAGTTTGCCATAACCCC-39. Results

were analyzed with software associated with Rotor Gene 6000,

and relative mRNA levels were quantitated using the 22DDCt

method.

Supporting Information

Figure S1 Analysis of CLK phosphorylation site mutants for

electrophoretic mobility and transcriptional activity in S2 cells (A,

B) S2 cells were transiently transfected with 500 ng of wild-type

(WT) or serine to alanine mutated version of pMT-HA-dClk-V5.

Mutated sites are indicated on the top. Expression of dCLK was

induced 24 hr after transfection by adding 500 mM CuSO4 to the

medium. Cells were harvested 24 hr after induction, and protein

extracts were subjected to western blot analysis. dCLK was

visualized with anti-V5 Ab. Please note that the decrease in the

levels of dCLK S859A (A) was not reproducible as shown in (B).

(C) Shown are the average values for relative E box dependent

luciferase activity in the presence of 2 ng of wild-type (WT) or

serine to alanine mutated version of pMT-HA-dClk-V5. dCLK-

S875A was included as randomly chosen serine to alanine mutant.

(TIF)
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Figure S2 Stability of dCLK-WT and dCLK-16A protein in S2

cells. (A, B) S2 cells were transiently transfected with 300 ng of

pMT-HA-dClk (WT) or pMT-HA-dClk-15A (15A) singly (A) or in

combination with 600 ng of pMT-dbt-V5 (B). Expression of dCLK

and DBT was induced 24 hr after transfection by adding 500 mM

CuSO4 to the medium. 24 hrs post induction, 10 mg/ml of

cycloheximide (CHX) was treated to inhibit translation. Cells were

harvested at the indicated time points and protein extracts were

subjected to immunoblotting. dCLK was visualized with anti-HA

(3F10) antibody. Shown are the representative blots for each

analysis and relative levels of dCLK proteins were determined by

measuring band intensities of immunoblot using image J software.

(TIF)

Figure S3 dCLK-15A manifests similar alterations as dCLK-

16A compared to dCLK-WT in terms of stability and transcrip-

tional activity in S2 cells. (A) S2 cells were transiently transfected

with 500 ng of pMT-HA-dClk (WT) or pMT-HA-dClk-15A (15A).

Expression of dCLK was induced 24 hr after transfection by

adding 500 mM CuSO4 to the medium. Cells were harvested

24 hr after induction and protein extracts were first subjected to

immunoprecipitation using anti-HA (12CA5) antibody and

immune complexes were incubated in the absence (2) or presence

(+) of l phosphatase followed by immunoblotting. (B) Shown are

the average values from three independent experiments for relative

E box dependent luciferase activity in the absence (BL) or presence

of pMT-dClk-V5 (WT) or pMT-dClk-15A (15A).

(TIF)

Figure S4 (A–D) Representative daily locomotor activity

patterns of p{dClk-WT};Clkout and p{dClk-15A};Clkout flies in

light/dark cycles. Adult flies of the indicated genotype (as

indicated, top of panels) were entrained with 12 hr:12 hr light:-

dark cycles for 4 days followed by 8 days in DD. Black and white

bar on top of each actogram indicates when lights were off and on,

respectively. Red arrowhead indicates when DD starts. The

vertical black bars on each row of the actogram depict the activity

of the fly (measured in 30 min intervals). To better visualize

rhythmic behavior, each day’s worth of activity recordings was

double plotted. HD, hash density of the actogram.

(TIF)

Figure S5 (A–D) Representative daily locomotor activities of

p{dClk-WT};Clkout and p{dClk-15A};Clkout flies in temperature

cycles in the absence of light. Adult male files for a given genotype

(as indicated, top of panels) were entrained in 12 hr:12 hr

temperature cycles of 24uC:29uC for 9 days and maintained at

24uC for 7 days in the absence light. The vertical black bars on

each line of the actogram depict fly activity (measured in 30 min

intervals). Each day’s worth of activity recordings was double

plotted to better visualize rhythmic behavior. Red horizontal bars

and blue horizontal bars below each panel indicated thermo- or

cryo-phases, respectively. The results clearly indicate that the offset

in evening activity occurs progressively earlier in p{dClk-

15A};Clkout flies even during TC. HD, hash density of the

actogram.

(TIF)

Figure S6 (A–C) Representative daily locomotor activities of

p{dClk-WT};Clkout and p{dClk-15A};Clkout flies in temperature

cycles after exposure to constant light. Adult male files for a given

genotype (as indicated, top of panels) were exposed to constant

light for 6 days and then entrained in 12 hr:12 hr temperature

cycles of 24uC:29uC for 7 days in the absence light. The red

arrowhead indicates when the lights were turned off. The vertical

black bars on each line of the actogram depict fly activity

(measured in 30 min intervals). Each day’s worth of activity

recordings was double plotted to better visualize rhythmic

behavior. Flies became arrhythmic shortly after exposure to

constant light. The results clearly indicate that the offset in evening

activity occurs progressively earlier in p{dClk-15A};Clkout flies

during TC. HD, hash density of the actogram.

(TIF)

Figure S7 dCLK protein levels and phosphorylation in p{dClk-

WT};Clkout and p{dClk-WT};+/+ flies. Adult flies of a given

genotype (indicated at the top of panels) were collected at the

indicated time in LD (ZT) and protein extracts analyzed by

immunoblotting using the anti-dCLK antibody (gp208). Note that

the levels of dCLK are higher in p{dClk-WT};+/+ flies.

(TIF)
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