
de la Garza et al. BMC Bioinformatics (2016) 17:127
DOI 10.1186/s12859-016-0978-9

SOFTWARE Open Access

From the desktop to the grid: scalable
bioinformatics via workflow conversion
Luis de la Garza1*, Johannes Veit1, Andras Szolek1, Marc Röttig1, Stephan Aiche2, Sandra Gesing3,
Knut Reinert2 and Oliver Kohlbacher1

Abstract

Background: Reproducibility is one of the tenets of the scientific method. Scientific experiments often comprise
complex data flows, selection of adequate parameters, and analysis and visualization of intermediate and end results.
Breaking down the complexity of such experiments into the joint collaboration of small, repeatable, well defined tasks,
each with well defined inputs, parameters, and outputs, offers the immediate benefit of identifying bottlenecks,
pinpoint sections which could benefit from parallelization, among others. Workflows rest upon the notion of splitting
complex work into the joint effort of several manageable tasks.
There are several engines that give users the ability to design and execute workflows. Each engine was created to
address certain problems of a specific community, therefore each one has its advantages and shortcomings.
Furthermore, not all features of all workflow engines are royalty-free —an aspect that could potentially drive away
members of the scientific community.

Results: We have developed a set of tools that enables the scientific community to benefit from workflow
interoperability. We developed a platform-free structured representation of parameters, inputs, outputs of
command-line tools in so-called Common Tool Descriptor documents. We have also overcome the shortcomings and
combined the features of two royalty-free workflow engines with a substantial user community: the Konstanz
InformationMiner, an engine which we see as a formidable workflow editor, and the Grid and User Support
Environment, a web-based framework able to interact with several high-performance computing resources. We have
thus created a free and highly accessible way to design workflows on a desktop computer and execute them on
high-performance computing resources.

Conclusions: Our work will not only reduce time spent on designing scientific workflows, but also make executing
workflows on remote high-performance computing resources more accessible to technically inexperienced users. We
strongly believe that our efforts not only decrease the turnaround time to obtain scientific results but also have a
positive impact on reproducibility, thus elevating the quality of obtained scientific results.

Keywords: Workflow, Interoperability, KNIME, Grid, Cloud, Galaxy, gUSE

Background
The importance of reproducibility for the scientific com-
munity has been a topic lately discussed in both high-
impact scientific publications and popular news outlets
[1, 2]. To be able to independently replicate results—be it
for verification purposes or to further advance research—
is important for the scientific community. Therefore, it

*Correspondence: delagarza@informatik.uni-tuebingen.de
1Center for Bioinformatics and Dept. of Computer Science, University of
Tübingen, Sand 14, 72070 Tübingen, Germany
Full list of author information is available at the end of the article

is crucial to structure an experiment in such a way that
reproducibility could be easily achieved.
Workflows are structured, abstract recipes that help

users construct a series of steps in an organized way. Each
step is a parametrised specific action that receives some
input and produces some output. The collective execution
of these steps is seen as a domain-specific task.
With the availability of biological big data, the need

to represent workflows in computing languages has also
increased [3]. Scientific tasks such as genome comparison,
mass spectrometry analysis, protein-protein interaction,
just to name a few, access extensive datasets. Currently,

© 2016 de la Garza et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-0978-9-x&domain=pdf
mailto: delagarza@informatik.uni-tuebingen.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

de la Garza et al. BMC Bioinformatics (2016) 17:127 Page 2 of 12

a vast number of workflow engines exist [4–8] and each
of these technologies has amassed a considerable user
base. These engines support, in some way or another, the
execution of workflows on distributed high-performance
computing (HPC) resources (e.g., grids, clusters, clouds,
etc.), thus allowing speedier obtention of results. A wise
selection of a workflow engine will shorten the time spent
between workflow design and retrieval of results.

Workflow engines
Galaxy [6] is a free web-based workflow system with
several pre-installed tools for data-intensive biomedical
research. Inclusion of arbitrary tools is reduced to the triv-
ial task of creating ToolConfig [9] files, which are Exten-
sible Markup Language documents (XML). The Galaxy
project also features a so-called toolshed [10], from which
tools can be obtained and installed on Galaxy instances.
At the time of writing Galaxy’s toolshed featured 3470
tools. However, we have found that Galaxy lacks extended
support for popular workloadmanagers andmiddlewares.
Taverna [7] offers an open-source and domain-

independent suite of tools used to design and execute sci-
entific workflows, helping users to automate and pipeline
processing of data coming from different web services.
At the time of writing Taverna features more than 3500
services available on startup and it also provides access
to local and remote tools. Taverna allows users to track
results and data flows with great granularity, since it
implements the Open ProvenanceModel standard (OPM)
[11]. A very attractive feature of Taverna is the ability to
share workflows via the myExperiment research environ-
ment [12].
The Konstanz Information Miner Analytics Platform

(KNIME Analytics Platform) [4, 13] is a royalty-free
engine that allows users to build and execute work-
flows using a powerful and user-friendly interface. The
KNIME Analytics Platform comes preloaded with sev-
eral ready-to-use tasks (called KNIME nodes) that serve
as the building stones of a workflow. It is also possi-
ble to extend the KNIME Analytics Platform by either
downloading community nodes or building custom nodes
using a well-documented process [14, 15].Workflows exe-
cuted on the KNIME Analytics Platform are limited to
run on the same personal computer on which it has been
installed, thus rendering it unsuitable for tasks with high-
memory or high-performance requirements. KNIME is
offered in two variants able to execute workflows on dis-
tributed HPC resources: KNIME Cluster Execution [16],
and KNIME Server [17]. These two suites are, however,
royalty-based—an aspect that might shy away users of the
scientific community.
The grid and cloud User Support Environment (gUSE)

offers an open-source, free, web-based workflow platform
able to tap into distributed HPC infrastructures [5]. gUSE

entails a set of components and services that offers access
to distributed computing interfaces (DCI). The Web Ser-
vices Parallel Grid Runtime and Developer Environment
Portal (WS-PGRADE) component acts as the graphical
user interface. This web-based portal is a series of dynam-
ically generated web pages, through which users can
create, execute, and monitor workflows. WS-PGRADE
communicates with internal gUSE services (e.g., Work-
flow Interpreter, Workflow Storage, Information Service)
using the Web Services Description Language (WSDL)
[18]. Passing documents in the WSDL format between its
components allows gUSE services to interact with other
workflow systems. Figure 1 shows the three-tiered archi-
tecture of gUSE. This complex and granular architecture
of gUSE enables administrators to distribute the installa-
tion of gUSE across resources. A typical set-up is to install
WS-PGRADE on a dedicated web server, while installing
other services and components on more powerful com-
puters.
In order to provide a common workflow submission

Application Programming Interface (API), gUSE channels
workflow-related requests (i.e., start, monitor, cancel a
job on a DCI) through the DCI Bridge component [19].
The DCI Bridge is fully compatible with the Job Sub-
mission Description Language (JSDL) [20], thus enabling
other workflow management systems to interact with it
in order to benefit from gUSE’s flexibility and DCI sup-
port. The DCI Bridge contains so-called DCI Submitters,
each containing specific code to submit, monitor, can-
cel jobs on each of the supported DCIs (e.g., UNICORE
[21], LSF [22], Moab [23]). Figure 2 presents a schematic
overview of the interaction between the DCI Bridge and
other components.
Designing a workflow in gUSE entails two steps: cre-

ation of an abstract graph, and a node-per-node config-
uration of the concrete. Creation of the abstract graph
is achieved via a Java WebStart [24] application that is
launched from WS-PGRADE, but is executed on the
user’s computer. At this point, users are able to pro-
vide only application domain information. After saving
the abstract graph, users would direct their web browser
back to WS-PGRADE, open the concrete for editing, and
configure each task comprising the workflow separately.
The configuration entails details such as provision of the
required command line arguments to execute each task.
Since gUSE offers interfaces to several middlewares, it is
possible to execute tasks of the same workflow on dif-
ferent DCIs. The possible complexity of workflows that
could be executed by gUSE is reflected in the several avail-
able fields on the task configuration windows presented
to the user while configuring the concrete (see Fig. 6).
The two-step creation of workflows (i.e., creation of the
abstract graph and creation/configuration of the concrete,
as depicted in Fig. 6), combined with the steep learning

de la Garza et al. BMC Bioinformatics (2016) 17:127 Page 3 of 12

Fig. 1 The three-thiered gUSE’s architecture. The three tiers of gUSE’s architecture: WS-PGRADE acts as the user interface, the service layer handles
e.g., file, workflow storage. The Job Submission and Data Management layer contains the DCI Bridge, which is responsible to access DCIs. Figure
based on [47]

curve that gUSE poses to new users is an aspect that might
intimidate users without much technical experience.
Due to the diversity of workflow engines, a variety of

workflow representations has arisen. This disparity of rep-
resentations poses a challenge to scientists who desire to
reuse workflows. Ideally, a scientist would design and test
a workflow only once and it would be possible to execute
it on any workflow engine on a given DCI. Built on this
principle, the Sharing Interoperable Workflow for Large-
Scale Scientific Simulation on Available DCIs project [25]

(SHIWA) allows users to run previously existing work-
flows from different platforms on the SHIWA Simulation
Platform. However, privacy concerns might give scien-
tists second thoughts about executing their workflows
and uploading their sensitive data on the SHIWA Sim-
ulation Platform. Tavaxy [8], focusing on genome com-
parison and sequence analysis, was created to enable the
design of workflows composed of Taverna and Galaxy
sub-workflows, and other workflow nodes in a single
environment.

Fig. 2 Schematic overview of gUSE’s DCI Bridge. Interaction of the DCI Bridge with gUSE services and other workflow management systems is done
via JSDL requests. The DCI Bridge contains DCI Submitters, which contain specific code for each of the supported DCIs in gUSE. Figure based on [19]

de la Garza et al. BMC Bioinformatics (2016) 17:127 Page 4 of 12

There is a clear overlap between the functionalities of
the mentioned workflow engines. All offer royalty-free
workflow design and execution. However, based on feed-
back from users and experience in our research group, we
believe that the KNIMEAnalytics Platform is an accessible
workflow editor, although it lacks on computing power.
On the other hand, again based on experience and feed-
back, we see gUSE as a great back end framework that taps
into several DCIs, but we have found that its workflow
editing capabilities pose a steep learning curve to its user
base.
In this paper we present work that bridges the gap

between the KNIME Analytics Platform and gUSE. Our
work will surely help adopters to significantly reduce the
time spent designing, creating and executing repeatable
workflows on distributed HPC resources.

Workflow representation
Formal representation
Workflows can be represented using Petri nets [26, 27].
Petri nets are directed bipartite graphs containing two
kinds of nodes: places and transitions.
A place represents a set of conditions that must be ful-

filled for a transition to occur. Once a place has satisfied all
its conditions, it is enabled. Transitions represent actions
that affect the state of the system (i.e., copy a file, perform
a computation, modify a file).
Places and transitions are connected by edges called

arcs. No arc connects two nodes of the same kind (i.e.,
this restriction is precisely what makes Petri nets bipartite
graphs). Arcs represent transitions’ pre- and postcondi-
tions. In order for a transition to take place, all of its
preceding placesmust be enabled (i.e., all of the conditions
of preceding places must be satisfied). Conversely, when
a transition has been completed, a postcondition is satis-
fied, influencing the state of subsequent places to which
this transition is connected to.
Whenever a place’s condition is satisfied, a token is

depicted inside the corresponding place. Figure 3 depicts
a simple computer process in which a molecule contained
in an input file will be modified by adding any missing
hydrogen atoms (i.e., the molecule will be protonated).

High-level representation
There are several alternatives to represent workflows in
a platform-independent way. Yet another Workflow Lan-
guage (YAWL) [28] was created after extensive analysis
and review of already existing workflow languages in
order to identify common workflow patterns and develop
a new language that could combine the strengths and
overcome the handicaps of other languages. The Inter-
operable Workflow Intermediate Representation (IWIR)
[29] is a standard adopted by several workflow engines
and is the language describing workflows in the SHIWA

Simulation Platform [25]. More recently a group of indi-
viduals, vendors and organizations joined efforts to create
the Common Workflow Language (CWL) [30] in order
to provide a specification that enables scientists to rep-
resent workflows for data-intensive scientific tasks (e.g.,
mass spectrometry analysis, sequence analysis).
For the sake of clarity and brevity, literature commonly

depicts workflows as directed acyclical graphs, in which
each vertex represents a place together with its pre- and
postconditions (i.e., the preceding and following transi-
tions) [31]. Each of the vertices is labelled, has a unique
identifier and represents a task to be performed. Fur-
thermore, each of the tasks in a workflow can receive
inputs and can produce outputs. Outputs of a task can
be channeled through another task as an input. An edge
between two nodes represents the channeling of an out-
put from a task into another. Edges determine the logical
sequence to be followed (i.e., the origin task of an edge
has to be completed before the destination task of an edge
can be performed). A task will be executed once all of
its inputs can be resolved. Workflow tasks are commonly
referred by workflow systems as nodes or jobs and in this
manuscript we will use these terms interchangeably.

Workflow abstraction
Workflows contain three different dimensions or abstrac-
tion layers, namely, case, process and resource dimensions
[26]. Mapping these dimensions into concepts used on
distributed execution workflow systems, we find that:

• The case dimension refers to the execution of a
workflow (i.e., a single run).

• The process dimension, also referred to as the
abstract layer [32, 33], deals with the application
domain (i.e., the purpose of the workflow), therefore,
technical details such as architecture, platform,
libraries, implementation, programming language,
etc., are hidden in this dimension.

• The resource dimension, often called the concrete
layer [32, 33], encompasses the hardware and software
used to execute the desired process; questions such as
How many processors does a task require?, Which
software running on which device will perform a
certain task?, What are the provided parameters for a
specific task?, etc., must be answered in this layer.

Given that the focus of our work is distributed work-
flows, we prefer the use of the abstract/concrete termi-
nology throughout this document. Figure 4 depicts the
abstract layer of the previously introduced protonation
process. This workflow is now composed of four tasks (i.e.,
vertices) and three edges. The task labelled Input has no
predecessor tasks, therefore this task is the first one to
be executed. In comparison, the task labelled Protonate

de la Garza et al. BMC Bioinformatics (2016) 17:127 Page 5 of 12

Fig. 3 A workflow as represented by a Petri net. Petri net modelling a software pipeline to protonate a molecule found in a single input file. Places
are shown as circles, transitions are depicted as squares. The place P0 expects and contains one token, represented by a black dot, and is thus
enabled. It follows that P0 is the starting place and P4 represents the end of the process

depends on the completion of Split, which in turn depends
on the completion of Input.
Figure 5, in contrast to Fig. 4, shows a possible con-

crete representation of the presented sample workflow,
in which each vertex has been annotated with informa-
tion needed in order to actually execute the correspond-
ing tasks. While this information varies across workflow
execution systems and platforms, the abstract representa-
tion of a workflow is constrained only to the application
domain and is thus independent of the underlying soft-
ware and infrastructure. At the concrete layer, the edges
not only determine the logical sequence to be followed,
but also represent channeled output files. For instance, the
Protonate task receives an input file from its predecessor,
Split and generates an output file that will be channeled to
the Output task.

Workflow conversion
As it has been mentioned before, gUSE splits the cre-
ation of workflows into two steps, creation of the abstract
graph and configuration of the concrete. These steps
match the abstract and concrete layers we have discussed
in the previous section. Both Galaxy and the KNIME
Analytics Platform, in turn, represent workflows with-
out this separation. In order to create a workflow in
either Galaxy or the KNIME Analytics Platform, users
drag and drop visual elements representing nodes into

a workspace. Nodes come pre-configured and commonly
execute a single task, therefore the user creates both
the abstract and concrete layer at the same time. Inputs
and outputs of nodes are visually represented and they
can be connected to other nodes. Each node has a con-
figuration dialog in which users can change the default
parameters.
It is easy to see how functionally equivalent work-

flow constructs (e.g., conditional execution of a workflow
section, parameter sweep, etc.) are represented differ-
ently across workflow engines. Furthermore, engines may
offer features that are not available on other workflow
systems (e.g., the KNIME Analytics Platform offers ele-
ments that are not present neither in gUSE nor in Galaxy,
such as flow variables [34]). The proper identification and
conversion of these elements is important for the con-
version, since they play their part in workflow execution.
Figure 6 displays a schematic comparison of the imple-
mentation of our example workflow across three selected
workflow engines, the KNIMEAnalytics Platform, Galaxy,
and gUSE.
Due to the variety of workflow systems—we have men-

tioned only a few instances, it is not surprising that there
are several languages and file formats to represent work-
flows. A first step towards a successful conversion of
workflows is to be able to represent the vertices of a work-
flow (i.e., the tasks, or nodes) in a consistent way across

Fig. 4 An abstract workflow. Each vertex corresponds to a task and each edge corresponds to the logical sequence to be followed. Only application
domain information is present

de la Garza et al. BMC Bioinformatics (2016) 17:127 Page 6 of 12

Fig. 5 A concrete workflow. Similar to an abstract workflow, a concrete workflow contains implicit application domain information. However, vertices
of concrete workflows are annotated with extra attributes needed to actually execute the given tasks and obtain the needed data

platforms. Once a platform-independent representation
of the vertices has been achieved, it is easier to import
tasks into several workflow engines with less effort. Con-
version of edges is an endeavour that is specific to each
of the workflow engines (i.e., a task can be seen as a

standalone component, while edges are the result of the
collaboration of two or more tasks). Over the course
of the last years, we have developed a series of tools
enabling workflow interoperability across disparate work-
flow engines.

Fig. 6 Comparison of the same pipeline across KNIME Analytics Platform, Galaxy, gUSE. The KNIME Analytics Platform and Galaxy (sections A, B,
respectively) offer an intuitive workflow creation and there is no perceived boundary between the abstract and the concrete layers. gUSE, however,
(section C) splits the creation of workflows in two phases, creation of the abstract graph and the further configuration of each node in the concrete
workflow

de la Garza et al. BMC Bioinformatics (2016) 17:127 Page 7 of 12

Implementation
Conversion of whole workflows can be split into two parts,
namely, conversion of vertices and conversion of edges.
Vertices represent tasks that take inputs, parameters and
produce outputs. This information can be represented in
a structured way.
Common Tool Descriptor files (CTD) are XML docu-

ments that contain information about parameters, inputs
and outputs of a given tool. This information is presented
in a structured and human readable way, thus facilitating
manual generation for arbitrary tools. Since CTDs are also
properly formatted XML documents, it is a trivial matter
to parse them in an automated way. Generation of CTDs
can be either done manually or by CTD-enabled pro-
grams. Software libraries and suites such as SeqAn [35],
OpenMS [36] and BALL [37] are CTD-enabled, that is,
they are able to generate CTDs for each of its tools, parse
input CTDs and execute tools accordingly. Executing a
CTD-enabled tool across different platforms is a process
transparent for end users. Figures 7 and 8 display how
CTDs encapsulate needed runtime information into a sin-
gle file, and how CTDs interact with other languages and
platforms, respectively.
We have also worked towards making CTDs more

accessible. Taking into account that refactoring tools to
make them CTD-enabled might be time consuming, we
have developed CTDopts in order to bind an already exist-
ing tool via Python wrappers. Naturally, this interaction
is not done automatically without any further input, but
this is an easier endeavor than performing a refactor-
ing. CTDopts acts as a wrapper allowing users to execute
arbitrary command line tools via CTDs. These Python
wrappers will communicate directly with the tool, thus
offering end users an interface to a CTD-enabled tool.
Of course, manual creation of CTDs is always an option.
Since CTDs are XML documents, a text editor is all is
needed to manually generate them.
Representing a simple vertex using CTDs brings users

closer to workflow interoperability, but this exercise might
not pay off on its own. In order to extend a workflow

engine by adding new tools, one could delve into the
inner-workings of said workflow engine and import new
tools. Since this could be a technical effort not accessi-
ble to users without the needed experience, we have also
developed converters of tasks (i.e., vertices).
The KNIME Analytics Platform is an application based

on the EclipseModelling Framework (EMF) [38], allowing
the development of extensions. One of these extensions,
and perhaps the most interesting for KNIME Analytics
Platform users, is the ability to develop new KNIME nodes
[14]. It is also possible to download so-called community
nodes [15].
We developed the Generic KNIMENodes (GKN) exten-

sion to make use of KNIME Analytics Platform’s extensi-
bility. GKN takes a set of CTDs as an input and generates
the needed resources to implement KNIME nodes. In
order to achieve this, its functionality is split into two
main components: node generation and node execution.
Once a node built via GKN has been generated (i.e., via
the node generation component) and imported into the
KNIMEAnalytics Platform, it interacts with otherKNIME
nodes via the node execution component. This interaction
is transparent for the user.
Since Galaxy is one of the most popular workflow sys-

tems in the bioinformatics community, we felt that pro-
viding a suitable conversion would benefit the scientific
community, so we developed CTD2Galaxy, a set of scripts
to convert a CTD into a Galaxy ToolConfig XML file [9].
We also analysed Galaxy’s toolshed [10] and we deter-
mined that it would be possible to automatically convert
around 1200 of these tool descriptions into CTD files. The
rest of the tools in the toolshed contain elements that are
not easily translated and are not supported in CTD format
(e.g., if-else constructs, for loops, etc.).
So far, we have discussed conversion of vertices. Differ-

ent workflow engines represent workflows using a differ-
ent format. It follows that conversion of edges is an effort
that heavily depends on the involved workflow engines.
Analog to the need of a platform-independent represen-
tation of vertices, a first step of workflow interoperability,

Fig. 7 A CTD in action. The upper section shows all three parameters needed for the tool PDBCutter to be executed. The middle section shows a
snippet of a CTD representing a CTD-enabled tool. The bottom section shows how to execute a CTD-enabled tool with the given sample CTD

de la Garza et al. BMC Bioinformatics (2016) 17:127 Page 8 of 12

Fig. 8 Overview of how CTDs interact with programming languages and workflow systems. CTDs can be generated by CTD-enabled tools (e.g., BALL,
OpenMS, SeqAn) or via CTDopts. Once a tool is CTD-enabled, it can be imported into the KNIME Analytics Platform or Galaxy. We have also
developed converters that can import KNIME Analytics Platform, Galaxy workflows into gUSE to take advantage of HPC resources and DCIs

which is our end target, is the development of a platform-
independent representation of workflows.
In spite of the apparent variety of workflow languages,

we have focused our efforts in using the KNIME Ana-
lytics Platform as the source point of workflow con-
version. To this end, we have also started work that
could translate any KNIME Analytics Platform workflow
into either an IWIR representation or a gUSE workflow
(KNIME2gUSE). Alternatively, we have also developed a
set of scripts that convert Galaxy workflows into gUSE
(Galaxy2gUSE). Refer to Fig. 8 for a brief overview of how
our work fits together against workflow systems.

Results and discussion
We have implemented a Label-free-quantification (LFQ)
[39, 40] workflow in the KNIME Analytics Platform. LFQ
is a widely used type of experiment in mass spectrome-
try based proteomics aimed at quantifying and comparing
the abundances of peptides and proteins across different
samples. Unlike other quantification strategies employ-
ing various kinds of chemical labelling of the different
samples, LFQ does not impose a limit on the number of
samples. Experiments with tens or hundreds of samples
are routinely performed in many labs and, considering the
ever-increasing performance of modern mass spectrome-
ters, the number of samples to be analyzed per experiment
is very likely to keep growing. This, in turn, gives rise

to major computational challenges when analyzing the
resulting large and complex data sets consisting of up
to several terabytes of raw data. Hence, data processing
and analysis of label-free quantification experiments can
greatly benefit from distributed HPC resources and shall
therefore serve as an example use case.
Our example workflow is based on tools provided by

OpenMS/TOPP [36, 41–43]. In addition to label-free
quantification, it performs a complete consensus peptide
identification [44] using the search engines OMSSA [45]
and X!Tandem [46]. In essence, so-called tandem mass
spectra containing the masses of fragment ions result-
ing from collision-induced dissociation of selected pep-
tides are compared to theoretical fragment spectra gen-
erated from a given FASTA database containing protein
sequences. Afterwards, peptide hits are filtered so that the
remaining set of identifications has a false discovery rate
of less than 1 %. The quantification part starts with two
major steps of data reduction and signal detection: peak
picking and feature finding. Subsequently, the results of
the identification and quantification branches of the work-
flow are combined, and corresponding peptide signals are
matched across all samples in a process called feature link-
ing. Finally, a normalization step is performed, which is
necessary in order to be able to actually compare the rela-
tive abundances of peptides across the different runs. It is
important to note that each run is executed independently

de la Garza et al. BMC Bioinformatics (2016) 17:127 Page 9 of 12

via parameter sweep. Furthermore, each run is repre-
sented in a different input file, as given by the Input Files
element. The output of the complete workflow is chan-
neled to the TextExporter tool, which in turn generates a
single comma-separated values (CSV) file containing all
identified peptides together with their abundances in all
given samples.
Figure 9 depicts the implementation of our LFQ work-

flow. We used our KNIME2gUSE extension and success-
fully imported our workflow in gUSE, as Fig. 10 shows.

Conclusions
Throughout this document we have presented our work
towards workflow interoperability. We are convinced
that investing time and effort in workflow interoperabil-
ity helps scientists from all fields to expedite retrieval
of results, so we tested and analyzed several workflow
engines.
Based on user feedback and our own usage experience,

we noticed that the creation of workflows in the KNIME
Analytics Platform is straightforward, rapid and user-
friendly. The needed amount of previous knowledge of the

KNIME Analytics Platform or other workflow systems to
put together a workflow and execute it is minimal. How-
ever, we were not satisfied with the fact that execution of
workflows on distributed HPC resources is royalty-based.
Our search then brought us to gUSE.
gUSE is an open-source web-based framework that

enables users to execute workflows on distributed HPC
resources. It supports several major resource managers
and middlewares via the use of so-called DCI Submitters,
which can also be added to extend gUSE’s support. How-
ever, workflow creation in gUSE is not as straightforward
as in the KNIME Analytics Platform.
It was apparent that there was a need for a solution

that combined the features and overcame the drawbacks
of these two framework systems. On one side, a free
and easy-to-use workflow editor and on the other side, a
free and powerful back-end system connecting to several
distributed HPC resources.
We are confident that our work presented in this doc-

ument, in particular KNIME2gUSE, not only provides
scientists a way to design and test workflows on their
desktop computers, but also enables them to use powerful

Fig. 9 Label-free Quantification pipeline implemented in the KNIME Analytics Platform. The section enclosed by the ZipLoopStart and ZipLoopEnd
will be executed independently for each of the given input files (i.e., parameter sweep)

de la Garza et al. BMC Bioinformatics (2016) 17:127 Page 10 of 12

Fig. 10 Label-free Quantification pipeline as imported from the KNIME Analytics Platform into gUSE using the KNIME2gUSE extension. Note how
parameter seep elements depicted in Fig. 9 such as ZipLoopStart and ZipLoopEnd are not present in gUSE. This is due to the fact that gUSE
implements parameter seep by setting properties in input and output ports of the corresponding nodes

resources to execute their workflows, thus producing sci-
entific results in a timely manner. We see KNIME2gUSE
as a potential adopter of CWL: KNIME2gUSE could be
extended in order to generate a CWL representation of a
KNIME Analytics Platform workflow.

Availability and requirements
• Project name:Workflow Conversion.
• Project home page: http://workflowconversion.

github.io/
• Operating system(s): Platform independent.
• Programming language: Java, Python.
• Other requirements: e.g. Python 2.7, Java 1.6 or

higher.
• License: e.g. GNU General Public License (GPL).
• Any restrictions to use by non-academics: none.

Abbreviations
API: Application programming interface; BALL: Bioinformatics algorithms
library; CSV: Comma separated values; CTD: Common tool descriptor; CWL:
Common workflow language; DCI: Distributed computing infrastructure;

EMF: Eclipse modelling framework; GKN: Generic KNIME nodes; gUSE: Grid and
cloud user support environment; HPC: High-performance computing; IWIR:
Interoperable workflow intermediate representation; JSDL: Job submission
description language; KNIME: Konstanz information miner; LFQ: Label-ree
quantification; LSF: Platform load sharing facility; OPM: Open provenance
model; OMSSA: Open mass spectrometry search algorithm; SHIWA: Sharing
interoperable workflow for large-scale scientific simulation on available DCIs
project; TOPP: The OpenMS proteomics pipeline; UNICORE: Uniform interface
to computing resources; WSDL: Web services description language; WS-
PGRADE: Web services parallel grid runtime and developer environment portal;
XML: Extensible markup language; YAWL: Yet another Workflow Language.

Competing interests
We declare that we have no competing interests.

Authors’ contributions
LdlG wrote the manuscript, carried out development work for KNIME2gUSE,
CTD2Galaxy and contributed to GKN, CTDopts. JV created, tested the LFQ
pipeline in the KNIME Analytics Platform and was involved in drafting the
manuscript. SA, together with MR developed the GKN extension. AS has been
a major contributor and released the first version of CTDopts. LdlG, SA, MR, AS,
OK and KR are responsible for the development and maintenance of CTD
schemas. SG released the first version of Galaxy2gUSE. OK, KR conceived the
study, participated in its design and coordination, and helped to draft the
manuscript. All authors read and approved the final manuscript.

http://workflowconversion.github.io/
http://workflowconversion.github.io/

de la Garza et al. BMC Bioinformatics (2016) 17:127 Page 11 of 12

Authors’ information
We have no additional information about the authors.

Acknowledgements
The authors would like to thank BerndWiswedel, Thorsten Meinl, Patrick Winter
and Michael Berthold for their support, patience and help in developing the
KNIME2gUSE extension. Supported by the German Network for Bioinformatics
Infrastructure (Deutsches Netzwerk für Bioinformatik-Infrastruktur, de.NBI). We
acknowledge support by Deutsche Forschungsgemeinschaft and Open
Access Publishing Fund of University of Tübingen.

Author details
1Center for Bioinformatics and Dept. of Computer Science, University of
Tübingen, Sand 14, 72070 Tübingen, Germany. 2Algorithmic Bioinformatics,
Computer Science Institute, Freie Universität Berlin, Takustr. 9, 14195 Berlin,
Germany. 3College of Engineering, University of Notre Dame, 257 Fitzpatrick
Hall, 46556 Notre Dame, IN, United States.

Received: 12 November 2015 Accepted: 3 March 2016

References
1. Gratzer W. Trouble at the lab. Economist. 2013;302(5911):774–5.

doi:10.1038/302774a0.
2. McNutt M. Reproducibility. Science (New York, N.Y.) 2014;343(6168):229.

doi:10.1126/science.1250475.
3. Greene CS, Tan J, Ung M, Moore JH, Cheng C. Big data bioinformatics.

J Cell Physiol. 2014;229(12):1896–900. doi:10.1002/jcp.24662.
4. Berthold MR, Cebron N, Dill F, Gabriel TR, Kotter T, Meinl T, Ohl P,

Sieb C, Thiel K, Wiswedel B. Knime. Web. 20071–8. doi:10.1007/978-3-
540-78246-9.

5. Kacsuk P, Farkas Z, Kozlovszky M, Hermann G, Balasko A, Karoczkai K,
Marton I. WS-PGRADE/gUSE generic DCI gateway framework for a large
variety of user communities. J Grid Comput. 2012;10(4):601–30.
doi:10.1007/s10723-012-9240-5.

6. Blankenberg D, Kuster GV, Coraor N, Ananda G, Lazarus R, Mangan M,
Nekrutenko A, Taylor J. Galaxy: A web-based genome analysis tool for
experimentalists. 2010. NIHMS150003. doi:10.1002/0471142727.
mb1910s89.

7. Missier P, Soiland-Reyes S, Owen S, Tan W, Nenadic A, Dunlop I,
Williams A, Oinn T, Goble C. Taverna, reloaded. In: Lecture Notes in
Computer Science (including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 6187 LNCS; 2010.
p. 471–81. doi:10.1007/978-3-642-13818-8_33.

8. Abouelhoda M, Issa S, Ghanem M. Tavaxy: Integrating Taverna and
Galaxy workflows with cloud computing support. 2012.
doi:10.1186/1471-2105-13-77.

9. Galaxy Tool XML File. https://wiki.galaxyproject.org/Admin/Tools/
ToolConfigSyntax. Accessed 28 July 2015.

10. Galaxy Tool Shed. https://toolshed.g2.bx.psu.edu/. Accessed 07 July 2015.
11. Moreau L, Clifford B, Freire J, Futrelle J, Gil Y, Groth P, Kwasnikowska N,

Miles S, Missier P, Myers J, Plale B, Simmhan Y, Stephan E, Den Bussche
JV. The Open Provenance Model core specification (v1.1). In: Future
Generation Computer Systems, vol. 27; 2011. p. 743–56.
doi:10.1016/j.future.2010.07.005.

12. Goble CA, Bhagat J, Aleksejevs S, Cruickshank D, Michaelides D,
Newman D, Borkum M, Bechhofer S, Roos M, Li P, de Roure D.
myExperiment: A repository and social network for the sharing of
bioinformatics workflows. Nucleic Acids Res. 2010;38(SUPPL. 2).
doi:10.1093/nar/gkq429.

13. KNIME | Open for Innovation. http://www.knime.org/. Accessed 29 June
2015.

14. KNIME | New Node Wizard. https://tech.knime.org/new-node-wizard.
Accessed 06 July 2015.

15. KNIME | Community Contributions. https://tech.knime.org/community.
Accessed 07 July 2015.

16. KNIME | KNIME Cluster Execution. https://www.knime.org/cluster-
execution. Accessed 06 July 2015.

17. KNIME | KNIME Server - The Heart of a Collaborative KNIME Setup. https://
www.knime.org/knime-server. Accessed 06 July 2015.

18. Web Service Definition Language (WSDL). http://www.w3.org/TR/wsdl.
Accessed 06 July 2015.

19. DCI Administration Manual, Version 3.7.1. http://sourceforge.net/
projects/guse/files/3.7.1/Documentation/DCI_BRIDGE_MANUAL_v3.7.1.
pdf/download.

20. Anjomshoaa A, Brisard F, Drescher M, Fellows D, Ly A, McGough S,
Pulsipher D, Savva A. Job Submission Description Language (JSDL)
Specification, Version 1.0. 20051–72. Open Grid Forum.

21. Romberg M. The UNICORE Grid Infrastructure. Spec Issue Grid Comput
Scientifc Program J. 2002;10:149–57.

22. IBM Platform Computing Products: Workload Management Platform -
Platform LSF. IBM Corporation. 2012. http://www-03.ibm.com/systems/
platformcomputing/products/lsf/.

23. HPC Products - Adaptive Computing. http://www.adaptivecomputing.
com/products/hpc-products/. Accessed 06 July 2015.

24. Java SE Desktop Technologies - Java Web Start Technology. http://www.
oracle.com/technetwork/java/javase/javawebstart/index.html. Accessed
03 July 2015.

25. Terstyanszky G, Kukla T, Kiss T, Kacsuk P, Balasko A, Farkas Z. Enabling
scientific workflow sharing through coarse-grained interoperability. Futur
Gener Comput Syst. 2014;37:46–59. doi:10.1016/j.future.2014.02.016.

26. van der Aalst WMP. The application of petri nets to workflow
management. 1998. doi:10.1142/S0218126698000043.

27. Peterson JL, Vol. 24. Petri Net Theory and the Modeling of Systems; 1981,
p. 290. doi:10.1016/0378-4754(82)90087-8.

28. van der Aalst WMP, ter Hofstede AHM. YAWL: yet another workflow
language. Inf Syst. 2005;30(4):245–75. doi:10.1016/j.is.2004.02.002.

29. Plankensteiner K, Montagnat J, Prodan R. IWIR: A Language Enabling
Portability Across Grid Workflow Systems. In: SIGMOD Rec; 2011.
p. 97–106. doi:10.1145/2110497.2110509. http://doi.acm.org/10.1145/
2110497.2110509.

30. Common Workflow Language. http://www.oracle.com/technetwork/
java/javase/javawebstart/index.html. Accessed 03 July 2015.

31. Salimifard K, Wright M. Petri net-based modelling of workflow systems:
An overview. 2001. doi:10.1016/S0377-2217(00)00292-7.

32. Deelman E, Blythe J, Gil Y, Kesselman C, Mehta G, Vahi K, Blackburn K,
Lazzarini A, Arbree A, Cavanaugh R, Koranda S. Mapping abstract
complex workflows onto grid environments. J Grid Comput. 2003;1(1):
25–39. doi:10.1023/A:1024000426962.

33. Yu J, Buyya R. A taxonomy of scientific workflow systems for grid
computing. 2005. doi:10.1145/1084805.1084814.

34. KNIME | Flow Variables. https://tech.knime.org/wiki/flow-variables.
Accessed 26 Oct 2015.

35. Döring A, Weese D, Rausch T, Reinert K. SeqAn an efficient, generic C++
library for sequence analysis. BMC Bioinforma. 2008;9(1):11. doi:10.1186/
1471-2105-9-11.

36. Sturm M, Bertsch A, Gröpl C, Hildebrandt A, Hussong R, Lange E,
Pfeifer N, Schulz-Trieglaff O, Zerck A, Reinert K, Kohlbacher O. Openms -
an open-source software framework for mass spectrometry. BMC
Bioinforma. 2008;9:163.

37. Hildebrandt A, Dehof AK, Rurainski A, Bertsch A, Schumann M,
Toussaint NC, Moll A, Stöckel D, Nickels S, Mueller SC, Lenhof HP,
Kohlbacher O. BALL–biochemical algorithms library 1.3. BMC Bioinforma.
2010;11:531. doi:10.1186/1471-2105-11-531.

38. Steinberg D, Budinsky F, Paternostro M, Merks E. EMF: Eclipse Modeling
Framework; 2008, p. 744. doi:10.1108/02641610810878585. http://portal.
acm.org/citation.cfm?id=1197540.

39. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Quantitative mass
spectrometry in proteomics: a critical review. Anal Bioanal Chem.
2007;389(4):1017–1031.

40. Weisser H, Nahnsen S, Grosman J, Nilse L, Quandt A, Brauer H, Sturm
M, Kenar E, Kohlbacher O, Aebersold R, Malmstrom L. An automated
pipeline for high-throughput label-free quantitative proteomics.
J Proteome Res. 2013;12(4):1628–1644.

41. Kohlbacher O, Reinert K, Gröpl C, Lange E, Pfeifer N, Schulz-Trieglaff O,
Sturm M. Topp–the openms proteomics pipeline. Bioinformatics.
2007;23(2):191–7.

42. Junker J, Bielow C, Bertsch A, Sturm M, Reinert K, Kohlbacher O. Toppas:
a graphical workflow editor for the analysis of high-throughput
proteomics data. J Proteome Res. 2012;11(7):3914–920.

http://dx.doi.org/10.1038/302774a0
http://dx.doi.org/10.1126/science.1250475
http://dx.doi.org/10.1002/jcp.24662
http://dx.doi.org/10.1007/978-3-540-78246-9
http://dx.doi.org/10.1007/978-3-540-78246-9
http://dx.doi.org/10.1007/s10723-012-9240-5
http://arxiv.org/abs/NIHMS150003
http://dx.doi.org/10.1002/0471142727.mb1910s89
http://dx.doi.org/10.1002/0471142727.mb1910s89
http://dx.doi.org/10.1007/978-3-642-13818-8_33
http://dx.doi.org/10.1186/1471-2105-13-77
https://wiki.galaxyproject.org/Admin/Tools/ToolConfigSyntax
https://wiki.galaxyproject.org/Admin/Tools/ToolConfigSyntax
https://toolshed.g2.bx.psu.edu/
http://dx.doi.org/10.1016/j.future.2010.07.005
http://dx.doi.org/10.1093/nar/gkq429
http://www.knime.org/
https://tech.knime.org/new-node-wizard
https://tech.knime.org/community
https://www.knime.org/cluster-execution
https://www.knime.org/cluster-execution
https://www.knime.org/knime-server
https://www.knime.org/knime-server
http://www.w3.org/TR/wsdl
http://sourceforge.net/projects/guse/files/3.7.1/Documentation/DCI_BRIDG E_MANUAL_v3.7.1.pdf/download
http://sourceforge.net/projects/guse/files/3.7.1/Documentation/DCI_BRIDG E_MANUAL_v3.7.1.pdf/download
http://sourceforge.net/projects/guse/files/3.7.1/Documentation/DCI_BRIDG E_MANUAL_v3.7.1.pdf/download
http://www-03.ibm.com/systems/platformcomputing/products/lsf/
http://www-03.ibm.com/systems/platformcomputing/products/lsf/
http://www.adaptivecomputing.com/products/hpc-products/
http://www.adaptivecomputing.com/products/hpc-products/
http://www.oracle.com/technetwork/java/javase/javawebstart/index.html
http://www.oracle.com/technetwork/java/javase/javawebstart/index.html
http://dx.doi.org/10.1016/j.future.2014.02.016
http://dx.doi.org/10.1142/S0218126698000043
http://dx.doi.org/10.1016/0378-4754(82)90087-8
http://dx.doi.org/10.1016/j.is.2004.02.002
http://dx.doi.org/10.1145/2110497.2110509
http://doi.acm.org/10.1145/2110497.2110509
http://doi.acm.org/10.1145/2110497.2110509
http://www.oracle.com/technetwork/java/javase/javawebstart/index.html
http://www.oracle.com/technetwork/java/javase/javawebstart/index.html
http://dx.doi.org/10.1016/S0377-2217(00)00292-7
http://dx.doi.org/10.1023/A:1024000426962
http://dx.doi.org/10.1145/1084805.1084814
https://tech.knime.org/wiki/flow-variables
http://dx.doi.org/10.1186/1471-2105-9-11
http://dx.doi.org/10.1186/1471-2105-9-11
http://dx.doi.org/10.1186/1471-2105-11-531
http://dx.doi.org/10.1108/02641610810878585
http://portal.acm.org/citation.cfm?id=1197540
http://portal.acm.org/citation.cfm?id=1197540

de la Garza et al. BMC Bioinformatics (2016) 17:127 Page 12 of 12

43. OpenMS | An Open-source Framework for Mass Spectrometry and TOPP
– The OpenMS Proteomics Pipeline. http://open-ms.sourceforge.net/.
Accessed 26 June 2015.

44. Nahnsen S, Bertsch A, Rahnenführer J, Nordheim A, Kohlbacher O.
Probabilistic consensus scoring improves tandemmass spectrometry
peptide identification. J Proteome Res. 2011;10(8):3332–343.

45. Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang X,
Shi W, Bryant SH. Open mass spectrometry search algorithm. J Proteome
Res. 2004;3(5):958–64.

46. Craig R, Beavis RC. Tandem: matching proteins with tandemmass
spectra. Bioinformatics. 2004;20(9):1466–1467.

47. gUSE in a Nutshell. http://sourceforge.net/projects/guse/files/gUSE_in_
a_Nutshell.pdf/download.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://open-ms.sourceforge.net/
http://sourceforge.net/projects/guse/files/gUSE_in_a_Nutshell.pdf/down load
http://sourceforge.net/projects/guse/files/gUSE_in_a_Nutshell.pdf/down load

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Workflow engines
	Workflow representation
	Formal representation
	High-level representation

	Workflow abstraction
	Workflow conversion

	Implementation
	Results and discussion
	Conclusions
	Availability and requirements
	Abbreviations
	Competing interests
	Authors' contributions
	Authors' information
	Acknowledgements
	Author details
	References

